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Abstract: Several methods exist to construct complex networks from time series. In general,
these methods claim to construct complex networks that preserve certain properties of the
underlying dynamical system, and hence, they mark new ways of accessing quantitative
indicators based on that dynamics. In this paper, we test this assertion by developing an
algorithm to realize dynamical systems from these complex networks in such a way that
trajectories of these dynamical systems produce time series that preserve certain statistical
properties of the original time series (and hence, also the underlying true dynamical system).
Trajectories from these networks are constructed from only the information in the network
and are shown to be statistically equivalent to the original time series. In the context of
this algorithm, we are able to demonstrate that the so-called adaptive k-nearest neighbour
algorithm for generating networks out-performs methods based on ε-ball recurrence plots.
For such networks, and with a suitable choice of parameter values, which we provide, the
time series generated by this method function as a new kind of nonlinear surrogate generation
algorithm. With this approach, we are able to test whether the simulation dynamics built
from a complex network capture the underlying structure of the original system; whether the
complex network is an adequate model of the dynamics.
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1. Introduction

Recently, increased attention has been paid to the analysis of nonlinear dynamics in time series
through techniques based on complex network theory [1–5]. The complex network-based analysis
provides a new approach for nonlinear time series analysis and offers a complementary view to the
traditional recurrence quantification analysis (RQA). It has been demonstrated that complex network
measures can be usefully applied to: classify nonlinear dynamics of complex systems [6–8]; describe
causal signatures in seismic activity [9–11]; and interpret the geometric properties of an underlying
system [4], among many other applications.

Several approaches have been reported to transform nonlinear time series into networks.
These methods have been classified into proximity networks, visibility graphs and transition
networks [4]. The first such method was proposed by Zhang and Small [7] in 2006. More recently,
Lacasa et al. [6] proposed that visibility graphs can be used to convert time series into a network,
which has been applied to various fields [12–15]. Every time series datum is a node, and two nodes are
connected if a straight line exists between them. Transition networks are constructed between discrete
states, and one estimates the transition probabilities between these states [16–18]. Proximity networks
form the most popular class of methods. Such methods are based on the mutual closeness of different
segments of a time series. Since there are many different ways to characterize similarity, there exist
different types of proximity networks: recurrence networks, cycle networks and correlation networks;
details are reviewed in [4].

Cycle networks [7,19,20] were first proposed to study the pseudo-periodic time series, where nodes
represent the individual cycles, and edges are constructed based on the similarity between cycles.
Those researchers have demonstrated that cycle networks can be used to distinguish different dynamical
systems, such as periodic and chaotic systems.

Correlation networks [21–23] use the embedded state vectors in phase space as nodes and obtain
edges by comparing the Pearson correlation coefficient between embedded vectors subject to a given
threshold. Correlation networks are not the main subject of this communication, but they do represent a
close alternative to recurrence or phase-space-based methods.

If the adjacency matrix of a network is the recurrence matrix of a time series, the network is
called a recurrence network. Actually, a recurrence plot (RP) [24–26] is essentially the graphical
representation of the recurrence matrix of a time series. Since the recurrence matrix can also be treated
as a network adjacency matrix, RPs can be considered as recurrence networks. Nodes in recurrence
networks are the embedded state vectors, while edges connecting nodes indicate that the corresponding
state vectors exhibit a recurrence or close return to state space. There are two common types of
network constructions that broadly fall under the recurrence or phase-space-based methodology: ε-ball
recurrence networks [27] and adaptive k-nearest neighbour networks [1,19]. The former method maps
the recurrence matrix to a network adjacency matrix, while the later method constructs a network from
an adaptive measure of closeness in phase-space. These methods claim to construct complex networks
that inherit some properties of the underlying time series. We note that the simplicity of treating a
recurrence matrix as a network adjacency matrix belies the importance of the underlying idea. The
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network representation provides an entirely new way to view dynamical systems and allows a new set of
quantitative measures into the realm of nonlinear time series analysis.

In this paper, we present a random walk algorithm to test the effectiveness of these methods
to construct complex networks from time series. We do this by generating time series from the
networks. These time series are constructed as the output of a random dynamical system based only
on the dynamical structure encoded in the network. That is, the network is used to formulate a state
transition rule, and that is then randomly iterated to produce the time series output. We argue that
these time series will preserve the statistical features of the original data only if the corresponding
network has adequately captured the deterministic structure of the system dynamics. Observing good
correspondence between the dynamics of these output time series and the original data provides
experimental confirmation that the network contains sufficient information to encode the underlying
dynamical system. Any deviation between the time series simulations produced from networks and the
original data would indicate a corresponding failure of the network to encode appropriate dynamical
properties of the underlying system.

A random walk algorithm to achieve this program is described in Section 2. In Section 3,
we introduced ε-ball recurrence networks and adaptive k-nearest neighbour networks in detail and
compare them by our algorithm. Finally, we explain how to generate surrogates by choosing appropriate
parameters and use some measures to analyse the surrogates.

2. The Algorithm

We study a random walk algorithm on networks constructed from time series, allowing us to
generate time series output of a random dynamical system defined by the network. The random
walk is a fundamental dynamical process and is a useful tool in studying the structural properties
of networks [28,29]. To capture the dynamics, we first need to modify the traditional random walk
algorithm. There are two big differences. First, we define a probability p ∈ [0, 1] to decide whether
to follow the original trajectory exactly or not. Second, we encode the dynamics of the original
deterministic dynamical system by using the next state of the randomly-selected node as the chosen node.
In essence: from a given current node, replace that node with one of its neighbour, chosen randomly,
with probability (1 − p). Otherwise, keep the current node. The next node in our random walk on
the network is the temporal successor of that node, defined by the time series. Finally, the random time
series is a resampling of the original time series according to the nodes selected, in sequence. The precise
description of our random walk algorithm follows.

1. Construct a network of N nodes ni from the time series xt or delay embedding vt =

(xt, xt−τ, xt−2τ, . . . , xt−(de−1)τ) (de and τ are embedding parameters known as the embedding
dimension and embedding lag in the literature). Associate with each node ni in the network the
corresponding scalar time series point xt(i) and the time index t(i). There will be a
one-to-one correspondence between the time index t and node index i. In what follows,
we drop the simultaneous dependence on i and t for clarity, but understand that there is a
one-to-one correspondence.
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2. For simplicity, label the nodes in such a way that node ni is associated with scale time series
point xi. Equivalently, scalar time series point xt is associated with node nt, i.e., t ≡ i.

3. Fix probability p ∈ [0, 1]. This is the probability of choosing to follow the original trajectory
at each time step. For p = 1, the algorithm is deterministic and returns the original time series
(used to generate the network).

4. Choose t at random, and let y1 = xt. Initiate the index k = 1 and record i1 = t, i.e., yk = xik .
5. Sample q ∼ U [0, 1].

• If q < p, then let yk+1 = xik+1. Record ik+1 = ik + 1.
• Otherwise, choose nj from among the neighbours of ni (ni ∼ nj). Suppose nj is that chosen

neighbour. Let yk+1 = xj+1. Record ik+1 = j + 1.

6. If k < N , increment k and repeat from Step 5; otherwise, terminate.
7. {yk}Nk=1 is a random walk over the network, and {ik}Nk=1 are the corresponding time indices.

Our random walk algorithm is designed for connected networks, which is our main focus
(the proximity network generation methods seems to generate connected networks for most reasonable
choice of parameters, particular for k neighbour networks). Nonetheless, ε-ball recurrence networks are
very likely to be unconnected when ε is not big enough. Therefore, we add some supplementary rules to
address the disconnected situation.

• If ik equals N , the step q ≥ p will not be possible, and hence, the other alternative q < p will be
used instead.
• If node ni has no neighbours, the step q ≥ p will replace the step q < p.
• If both situations occur simultaneously, choose one node randomly.

3. Simulation from the Network

We apply the random walk algorithm of the previous section to two types of phase-space-based
networks: ε-ball recurrence networks [2,4,30] and adaptive k-nearest neighbour networks [1,19].
As compared to other methods, phase-space, or proximity, networks are a straightforward and unifying
framework for transferring time series into complex networks in a dynamically-meaningful way,
which has attracted much interest [2,4,5]. Recurrence is a fundamental property of many dynamical
processes, so it is a natural idea that recurrence networks, and also phase space networks, preserve certain
properties of the underlying observational time series. Furthermore, such networks do not take temporal
correlation into consideration (unlike visibility graphs) and are stable and independent of the specific
realization. These are the reasons why we choose two types of recurrence networks as experimental data.
Actually, ε-ball recurrence networks stem directly from the contemporary construction of a recurrence
plot, which excludes self-loops (by definition). Usually, the binary recurrence matrix constructed from a
recurrence plot is defined as:

Rij(ε) = Θ(ε− ‖xi − xj‖) (1)
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where Θ(·) is the Heaviside function, ‖·‖ is a norm in the considered phase-space, ε is a fixed recurrence
threshold and xi ∈ Rm is a state in the m-dimensional phase-space. We can get the the adjacency matrix
A of the recurrence network by:

Aij = Rij − δij (2)

where δij is the identity matrix. The k-nearest neighbour network keeps a constant k neighbours to
every node and may be interpreted as being directed [27], although this is not the interpretation provided
by [1,19]. The so-called adaptive k-nearest neighbour network of [1,19] is an alternative method to the
ε-ball recurrence network, which generates a undirected network. The definition of closeness is not
defined by a fixed threshold, but varies depending on the underlying invariant density from which the
data are sampled. Since an undirected network is more common and directly interpretable, the adaptive
k-nearest neighbour network is chosen in this paper (however, note that there is an argument for
reconstructing the dynamics from a directed network, as this preserves more information; in the current
implementation, we achieve the same result with less information). To construct an adaptive k-nearest
neighbour network, each node is linked to a fixed number E0 (E0 = k) of nearest neighbours (the links
are undirected). To avoid the possibility of multiple links between two nodes, once node i has been
selected as the chosen neighbour of node j, the node j will be excluded in the neighbourhood of node i.
Therefore, there are Nk edges in the resultant network, and the average degree 〈k〉 = 2E0. Additionally,
there are at least E0 edges linked to each node, so the minimum degree of the node in the resultant
network is E0.

3.1. Example

The Rössler system is used to generate the time series data, which is determined as follows.
ẋ = −y − z

ẏ = x + ay

ż = b + z(x− c)

(3)

We select the bifurcation parameters b = 2, c = 4, a = 0.375 for period-4and a = 0.398 for chaos.
The time series is observed in the x-component of the Rössler system with the time step ∆(t) = 1 and
time length t = 2000, so the length of time series is 2000. A 20-dB white noise is added to the time
series. Then, the time series is embedded in a phase space with appropriate embedding parameters. The
methods of the ε-ball recurrence network and the adaptive k-nearest neighbour network are used on the
above embedded phase state to construct the corresponding proximity networks. Finally, we apply our
random walk algorithm to these networks to obtain surrogate time series. We use different E0 (i.e., k)
to construct the adaptive k-nearest neighbour networks. In contrast, according to the recurrence rate
(RR) of the adaptive k-nearest neighbour networks, we construct the corresponding ε-ball recurrence
networks with the same RR. That is, with k fixed, we can compute an average recurrence rate (RR) and
then select ε to achieve the same value. Two different probabilities P(p = 0 and p = 0.5) are used in our
random walk algorithm. The results are shown in Figure 1 for period-4dynamics and Figure 2 for chaos.

As shown in Figures 1 and 2, the surrogates generated with p = 0.5 are qualitatively closer to the
original time series than with p = 0. Moreover, the difference is most obvious when k or RRis
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large. This is because with p = 0.5, it is easier to follow the original time series than when p = 0.
When k or RR is small, for example k = 1 or RR = 0.001, the constructed networks are less highly
connected. Therefore, the random walk algorithm could become trapped in one small connected part of
the unconnected network when p = 0, and then, the surrogates are no longer meaningful. In this case,
there is no discernible difference as the local information in one small connected part is consistent with
the globe information in the periodic time series.

k=1, p=0.5

k=10, p=0

k=10, p=0.5

k=100, p=0

RR=0.001, p=0

RR=0.01, p=0.5

RR=0.01, p=0

RR=0.001, p=0.5

RR=0.1, p=0

RR=0.1, p=0.5k=100, p=0.5

k=1, p=0

original time seriesoriginal time series

Period
(a) adaptive k−nearest neighbor (b) ε−ball recurrence

Figure 1. Surrogates of the periodic time series of the Rössler system. (a) Surrogates
from adaptive k-nearest neighbour networks; (b) surrogates from ε-ball recurrence networks.
The original time series, top panels, is a noisy period-4 orbit. Going down the figure, we
add increasing variability as recurrence rate (RR)(or k) increases, but also switch between
unbiased neighbour selection (p = 0) to bias towards selecting the node itself (p = 0.5). With
p > 0, we see more reproducible short sections of trajectory between the data and surrogates.
As k (or RR) increases, the simulations become more irregular. Beyond moderate values
of randomisation (roughly k = 10 or RR = 0.01), the simulations generate behaviour
qualitatively distinct from the original time series.
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Chaos
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Figure 2. Surrogates of the periodic time series of the Rössler system. (a) Surrogates
from adaptive k-nearest neighbour networks; (b) surrogates from ε-ball recurrence networks.
The original time series, top panels, is a noisy period-4 orbit. Going down the figure, we add
increasing variability as RR (or k) increases, but also switch between unbiased neighbour
selection (p = 0) to bias towards selecting the node itself (p = 0.5). With p > 0, we see
more reproducible short sections of trajectory between the data and surrogates. As k (or RR)
increases, the simulations becomes more irregular. For chaotic dynamics, the simulations
appear more like the original time series for larger values of k and RR, particularly for the
captive k-nearest neighbour method.

From Figures 1 and 2, we can see that the surrogates generated by adaptive k-nearest neighbour
networks are more similar to the original time series than the ε-ball recurrence networks. Here, we focus
on only one-connected networks, and we pay particular attention to surrogates generated by big k and
RR. Taking the periodic surrogates with RR = 0.1 for example, we can see that surrogates generated by
ε-ball recurrence networks basically loose the underlying period. The fact that the surrogates generated
by ε-ball recurrence networks with low RR are better is somewhat surprising. For these surrogates,
the corresponding networks have many nodes with no neighbours in the ε-ball recurrence networks,
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so the surrogates change to follow the original time series based on the supplementary rules of the
random walk algorithm. In other words, it increases the probability p to follow the original time series.
When p = 1, we get exactly the original time series. Since the ε-ball recurrence method sets a fixed
distance threshold, nodes in the denser part of the state space have more neighbours, and those in more
sparsely populated areas, or on the boundary, have fewer neighbours (or even none). Therefore, we have
to choose a bigger ε to ensure that the network is connected. However, such a large value of ε then gives
some nodes too many neighbours, so that the next nodes of these nodes have too many possibilities.
Therefore, the simulations will easily deviate from the original time series, which causes them to loose
information, for example the periodic simulations with RR = 0.1 in Figure 1.

3.2. Accurate Simulation and Good Models

By employing these networks to generate simulations of the original dynamical system, we are now
treating the network as a model of the underlying system. The value of this model is in how well it is
able to capture the salient features of the original system. To evaluate this, we can invoke the rationale
of surrogate data analysis. The basic premise of surrogate data is to generate independent realisation
of some dynamical system that are both qualitatively similar to the observed data (in particular ways,
which we will come to in the next section) and also consistent with some particular model class. Here,
the simulations are the realisation of the model class, and by treating them as surrogates, we can test how
well that model is performing at capturing the important features of the underlying system.

Clearly, it is difficult to choose an appropriate ε to simultaneously meet both criteria. In contrast,
the surrogates generated by the adaptive k-nearest neighbour networks seem both robust and stable.
According to the method of adaptive k-nearest neighbour networks, we know that each node has at least
k neighbours, which makes the networks more connected. As shown in Figures 1 and 2, surrogates with
k = 100 and those with k = 10 are very similar, so there are many appropriate k to choose. The fact
that the k-neighbour approach applies an adaptive threshold to select nodes to be neighbours with an
approximately constant rate is an advantage here, as it consequently ensures a flat invariant density.
In the next section, we exploit this to generate a new form of surrogate time series.

4. Surrogates

In the field of nonlinear time series analysis, many different surrogate algorithms [31–34] have been
proposed. Each of these algorithms is used to provide a robust statistical test of some specified null
hypotheses. Theiler et al. [35] use the method of surrogate to identify nonlinearity in time series.
The cycle shuffled surrogate approach [36] breaks the original time series into individual cycles and
then shuffles these cycles; this tests for the presence of cyclic determinism. The null hypothesis
is that the system is periodic, but otherwise, the dynamics are random. The alternative hypothesis
is that there is inter-cycle deterministic dynamics evident in the data. Using continuous methods,
Small et al. [37] proposed a simple pseudo-periodic surrogate method to test against the null hypothesis
of a periodic orbit with uncorrelated noise; the method constructs (via an embedding process) the
underlying dynamical system in phase space and then constructs a random walk according to the
inferred dynamics.
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In each case, the surrogate data algorithms proposed in the literature address a specific null hypothesis:
they generate randomised data that are consistent with that hypothesis, but otherwise “like” the original
data. In this case, the issue is a little more complicated. We can generate “surrogates” as realisations
of random walks on the corresponding network. The null hypothesis is then that the network, and the
inferred random dynamical system, is an adequate description of the underlying dynamics. Essentially,
we are treating the network as a model of the dynamics and the surrogates as noisy simulations from
that model. We are testing whether that model is a good model. There are two possible answers that
we can arrive at: (1) the model simulations and the original data are indistinguishable, and therefore,
the network is adequate for synthesising the dynamics of the underlying system; or (2) there are
statistical discrepancies between model simulations and the original data. In the former case, we can
employ the network (and simulations produced from this model) as adequate alternative samplings of
the original dynamical system; this could be useful, for example, to provide parametric free estimates of
the distribution of dynamical quantities, such as the correlation dimension or Lyapunov exponents. In
the latter case, these discrepancies point to what is most interesting in the data and unable to be captured
in the network.

Surrogate data must simultaneously appear qualitatively like the original data, while also conforming
to the specific null hypothesis. Based on the comparison of the previous section, we select the method
of adaptive k-nearest neighbours to construct the network and then execute the random walk algorithm
on the constructed network to generate surrogates. Our comparison is based on one particular system,
and we do not claim that this conclusion is universal. However, we have provided reasons why we expect
this to be an appropriate conclusion in many situations.

The value of k (or, equivalently, E0) is an important parameter, which needs to at least make the
network connected. Although there is more freedom to choose a big k, we should avoid using too large
values of k. The main reason is that too large k has more possibility to generate bad surrogates and
to reduce the speed of computation of a feasible random walk. The other important parameter is the
probability p in the random walk algorithm, which sensitively affects the deviation of surrogates from
the original time series. The algorithm of surrogates is independent of the embedding parameter. We
investigate some properties of surrogates as compared to the original time series.

The correlation dimension was assessed using Grassberger and Procaccia’s [38,39] algorithm for the
original time series and their surrogate time series. D(r) is the number of pairs of points whose distance
is less than a specified distance r. We use max|Ds(r) −Do(r)| to measure the discrimination between
surrogate and original time series, where Do(r) is the number of original time series and Ds(r) is that of
the surrogate. As shown in Figure 3, the discrimination depends on the probability p, while the effect of
neighbour parameter k is small. The discrimination of chaotic surrogates increases slowly as k becomes
large. For the chaotic surrogates, the neighbour parameter k has no impact. Note, however, that upon
computing the mean and standard deviation of the surrogate time series values for any particular values
of k and p, we find that the true (original) system is within two standard deviations and, in most cases,
within one standard deviation. That is, we cannot reject the null hypothesis, and these surrogate time
series represent the output of a good model that is statistically indistinguishable from the data.
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Figure 3. Comparison of the correlation dimension for surrogates. z = log(max |Ds(r) −
Do(r)|) is used as the measure (the vertical axis). k is the parameter to construct an adaptive
k-nearest neighbour network. p is the probability in the random walk algorithm. The chaotic
and periodic surrogates are marked with solid and mesh, respectively.
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(the vertical axis). k is the parameter to construct an adaptive k-nearest neighbour network.
p is the probability in the random walk algorithm. The chaotic and periodic surrogates are
marked with solid and mesh, respectively.
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Lempel–Ziv complexity [40] has been widely used as a complexity measure for signal analysis;
we introduce it here to compare complexity as a discriminating statistic for the surrogates and the
original time series. |Cs − Co| is used to measure the complexity difference between surrogates and
original time series, where Cs represents the complexity of surrogates and Co is that of the original time
series. It is obvious that the complexity difference between surrogates and original time series in chaotic
systems is bigger than that in periodic systems; see Figure 4. Again, for both systems, complexity
discrimination is dependent on the probability p. Additionally, the discrimination increases slowly as k
becomes large, which is clearer when p is small. However, just as with the correlation dimension, the
differences between data and surrogates are within two standard deviations of the mean.

In each case, results for the surrogates are within (usually, well within) two standard deviations of
the mean for the data. While in the figures, we report absolute deviation, our calculations show that the
deviation is not statistically significant. In each case, the surrogates produce realisations for which the
algorithmic complexity or correlation dimension is statistically indistinguishable from the data.

5. Conclusions

In this paper, we discussed the existing approaches to construct complex networks from time series
and a proposed random walk algorithm to invert the process and generate independent simulations
from the same complex network model: nonlinear network-based surrogates. The methods of
adaptive k-nearest neighbour and ε-ball recurrence are explained in detail and are compared to the
random walk algorithm. We see that when employed to reconstruct the dynamics from the network,
the adaptive k-nearest neighbour algorithm for generating networks out-performs methods based on
ε-ball recurrence. This indicates that the adaptive k-nearest neighbour algorithm preserves dynamical
properties of the original system more faithfully than ε-ball recurrence. The experiment results also
show that the adaptive k-nearest neighbour network is better by comparing the surrogates. Using the
adaptive k-nearest neighbour networks, we analyse the effects of the parameters on the surrogates and
give some advice to choose the suitable parameters. In all cases, empirical choices, based in our previous
experiences, were sufficient to obtain optimal parameter choices. We find that probability p needs to be
moderate and neighbourhood size k only large enough to capture the dynamics.

Nonetheless, when we quantify the dynamical discrepancy between the original data and an ensemble
of surrogates (using either algorithmic complexity or correlation dimension), we see very good
agreement for all systems over a wide range of scales. Hence, the inversion process, from network back
to time series, is generating time series that are a good representation of the underlying dynamics of the
dynamical system. That is, these networks act as an accurate and sufficient model of the deterministic
dynamics.
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