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Abstract: We study the asymptotically-achievable rate region of subspace codes for wireless
network coding, where receivers have different link capacities due to the access ways or the
faults of the intermediate links in the network. Firstly, an outer bound of the achievable rate
region in a two-receiver network is derived from a combinatorial method. Subsequently,
the achievability of the outer bound is proven by code construction, which is based on
superposition coding. We show that the outer bound can be achieved asymptotically by using
the code presented by Koetter and Kschischang, and the outer bound can be exactly attained
in some points by using a q-analog Steiner structure. Finally, the asymptotically-achievable
rate region is extended to the general case when the network has m receivers with
different levels.
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1. Introduction

Network coding, introduced in [1,2], has attracted a substantial amount of research attention. It is
a technique in which the intermediate node is allowed to make a combination of its received packets
before sending the combined packet out to the network. This method can effectively improve the
network throughput. However, there are still many problems to be studied, such as the collection of
information about the network topology [3]. As the scale of the network grows, the complexity of
network code construction increases accordingly. To address this issue, random network coding was
proposed by Ho et al. [4] without considering network topology, where the intermediate nodes select
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coding coefficients at random from a finite field. It becomes an effective and robust tool when the
network topology changes dynamically, especially in the case of a wireless network. Furthermore,
since the characteristics of the wireless channel are time-varying in general, packets lost and errors
are important factors affecting transmission performance. Therefore, error control in wireless network
coding is essential [5,6].

Taking the advantage of the distance property of vector space, Koetter and Kschischang proposed the
subspace metric codes for random network coding [7], where a subspace is used to represent a codeword.
Even if partial changes occur in the received subspace, as long as the distance between the received
subspace and the transmitted subspace satisfies a certain distance relationship, the message could still
be decoded successfully. Closely relevant works about the coding bounds and the packing and covering
properties of subspace codes are presented in [8–10]. However, the existing works about subspace codes
are based on the multicast network model.

In this paper, we study a real-time media distribution system based on heterogeneous wireless
networks, where end users are intelligent devices, such as smart TVs, mobile phones and computers.
These terminals access the networks with different link capacities. There are several factors that make the
link capacities different, such as the various ways that they access the networks (e.g., WLAN or mobile
network), the packets lost and errors (due to the fault of the intermediate nodes or link failure) [11,12].
In this case, the terminals with high link capacity can receive more useful data, which means that some
receivers are “stronger” than the others. For example, because they access the networks in a more
stable way, they can always receive more than the “weaker” ones. Each end user wants to maximize
the utilization of his link capacity to provide his best service. To meet the diverse requirements of the
users, it is complex and a waste of resources to design the transmission approach for each user. A better
solution is coding at the source node; then, the source node broadcasts the same encoded packets to the
receivers, and each user collects as many packets as possible and then decodes to meet his requirement.
A trivial coding method is to design a code corresponding to the “weaker” receiver. However, in this
way, the “stronger” node cannot get his best service.

We assume that the media can be divided into several different priority levels according to their
importance. The higher priority can ensure the basic demand of users. Meanwhile, the lower priority
can guarantee the additional needs of users. To simplify the problem, we take the simplest case that there
are only two receivers in the network. First, we derive an outer bound for the asymptotically-achievable
rate region by a combinatorial method. Then, we prove the achievability of the outer bound by code
construction with the codes that were proposed by Koetter and Kschischang (K-K codes) [7]. However,
K-K codes require the dimension of ground space to be sufficiently large. We observe that the q-analog
Steiner structure can be used in our construction. Our outer bound could be exactly attained in some
points using a q-analog Steiner structure. We further extend our result to the general case of m receivers
with different link capacities.

The rest of this paper is organized as follows. In Section 2.1, we briefly review the subspace code.
Then, we observe that deletion correcting is equivalent to deletion and insertion error correcting in
constant dimension codes. In Section 2.2, we extend the model to broadcast, which leads us to the
definition of broadcast error correction network codes (BECNC). We state the asymptotically-achievable
rate region of BECNC in Section 3. The main results are proven in Section 4. In Section 5, we present
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that the outer bound can be exactly attained in some points using the q-analog Steiner structure. In
Section 6, we generalize the rate region to the network with more than two receivers.

2. Preliminaries and Our Model

2.1. Previous Results: Subspace Metric Codes

We begin with previous results about subspace metric codes, which were proposed by Koetter and
Kschischang [7]. It is necessary to introduce the previous results of subspace metric codes, since our
works are based on them.

In the “noncoherent” model, the transmitter and receiver are assumed to have no knowledge of the
channel transfer matrix. Let Fq be a finite field with q elements. We use Fl×kq to denote the set of all l×k
matrices over Fq. In the error free case, the transmission model can be characterized as Y = FX, where
F ∈ Fl×kq is a full rank random matrix (the channel transfer matrix), X ∈ Fk×nq is the transmitted matrix
whose rows can be considered as source packets [11] and Y ∈ Fl×nq is the received matrix whose rows
can be considered as received packets.

Since the receiver does not know F, he only knows that the rows of X and Y span the same subspace.
Then, he can correctly recover the transmitted space when no error occurs, if we regard space spanned
by the rows of X as a codeword.

However, the transmitted space will be a subspace of the received space by the receiver when an
insertion error occurs, whereas the receiver will receive a subspace of the transmitted space when a
deletion occurs [7].

Fnq can be regarded as an n-dimensional vector space over Fq. LetPq(n) denote the set of all subspaces
of Fnq , forming the n-order projective space over Fq [17]. A subspace metric code C is a nonempty set
of subspaces of Fnq , where each codeword is a vector space spanned by the rows of a message matrix.
Let U, V ∈ Pq(n) be two subspaces; the subspace distance between them is defined as d(U, V ) =

dim(U) + dim(V ) − 2 dim(U ∩ V ), where dim(U) is the dimension of U . The minimum distance of
code C is defined as D(C) = minU,V ∈C:U 6=V d(U, V ). If:

D(C) > 2(t+ ρ), (1)

then a minimum distance decoder will produce the transmitted space from the received space, where t
and ρ denote the maximum number of deletion and insertion errors induced by the channel, respectively.
Deletion is actually the packets lost, and insertion error is equivalent to malicious attack.

In this paper, we only consider the constant dimension codes, where the dimensions of all codewords
in C are the same. Let Pq(n, k) denote the set of all k-dimensional subspaces (k ≤ n) of the
n-dimensional vector space Fnq . This means that constant dimension code C is a subset of Pq(n, k).
The normalized weight is defined as λ = k/n, where k is the dimension of codewords. The rate of the
code is defined as R =

logq |C|
nk

.
In [7], Koetter and Kschischang obtained the Singleton-type bound of the subspace codes and

constructed a Singleton bound-achieving code using the linearized polynomial. We refer to this code
as the K-K code in the following. The Singleton-type bound is shown in the following lemma.
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Lemma 1 (Corollary 10 of [7]). Let C be a collection of subspaces in Pq(n, k), with normalized
minimum distance δ = D(C)

2k
. The rate of C is bounded by:

R ≤ (1− δ)(1− λ) + o(1), (2)

where λ = k/n is the normalized weight and o(1) approaches zero as n grows.

They also mentioned that, for the decoder, the effects of insertion and deletion are equivalent in
constant dimension codes. Furthermore, there may be an intersection between the insertion subspace and
the transmitted subspace, which would possibly decrease the number of deletions seen by the receiver. In
other words, the negative impact brought by simple deletion is not less than the negative impact caused
by deletion and insertion simultaneously. Next, we will discuss the case of only deletions.

Observe that a subspace Vr is received at the receiver; the minimum distance decoder will decode Vr
to Vs, if the distance between Vr and Vs is minimal among all of the codewords in C, i.e.,

d(Vr, Vs) = min
V ∈C

d(Vr, V ). (3)

We define the operation of deletions as mapping Dτ . For a given k-dimensional subspace V , Dτ (V )

produces a random (k − τ)-dimensional subspace of V , where τ ≥ 0. We say that a code is capable of
correcting τ deletions, if it can correct τ deletions using the decoding criterion in (3). We refer to such a
code as a τ -deletion-correcting code, and its minimum distance must satisfy:

D(C) > 2τ. (4)

Let Vr = Dτ (V ) be the received subspace and V ′ 6= V be any other codeword in C, then D(C) ≤
d(V ′, V ) ≤ d(V ′, Vr)+d(Vr, V ); it follows that d(V ′, Vr) ≥ D(C)−d(Vr, V ). If the condition (4) could
be satisfied, then d(V ′, Vr) > d(Vr, V ), the minimum distance decoder will produce the transmitted
subspace V from the received subspace.

Remark 1. Since Condition (4) coincides with Condition (1), a τ -deletion-correcting code can correct t
deletions and ρ insertions, if t+ ρ = τ . Thus, it is sufficient for us to focus on deletion-correcting codes,
because for this reason, all our results below for deletion hold for deletion and insertion, as well.

An (n, k,M, τ)-deletion-correcting code C over Fq is a k-dimensional subspace code over Fnq with M
codewords whose maximum deletion-correcting capability is τ . The rate of code C is R =

logqM

nk
.

Definition 1. A rate R is said to be (λ, µ)-asymptotically achievable if, for all ε > 0 and sufficiently
large n, there exists an (n, k,M, τ)-deletion-correcting code, such that logqM

nk
> R − ε, where µ = τ/k

and λ = k/n.

The network model of [7] is multicast, which is actually a point-to-point communication channel
with just one sender and one receiver. In next subsection, we will extend the model to broadcast, which
consists of one sender and m receivers.
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2.2. Network Model

We are motivated by a real-time media distribution system based on heterogeneous wireless networks,
where end users are individual intelligent terminals, such as tablets, smart phones and computers. These
intelligent terminals access the network with heterogeneous link capacities. The difference of link
capacities may be caused by different access ways (e.g., WLAN and mobile network) or the instability
of their links.

We assume that the media can be divided into different priority levels corresponding to the link
capacity of receivers. The higher priority level guarantees the basic media quality, and the lower priority
level corresponds to detailed information about media. Let {M1,M2, . . . ,Mm} be a collection of m
message sets with ordered priority, where the index i ∈ {1, . . . ,m} indicates the priority level, and the
smaller index corresponds to the higher-priority level. Without loss of generality, we assume there are m
receivers in the network, each of which has a different level of link capacity. Let {t1, t2, . . . , tm} be the
ordered set of receivers, where the index i ∈ {1, . . . ,m} indicates the link capacity; the smaller index
corresponds to the higher link capacity.

The media is encoded into packets that can be sent to the network. For arbitrary l ∈ {1, . . . ,m}, the
receiver tl downloads the packets with its link capacity constraint. Although there exist some packets lost
and errors in its link, tl can recover the messages with priority levels {1, 2, . . . ,m − l + 1}. Therefore,
with respect to the receiver with lower link capacity, the receiver with higher link capacity can obtain
more detailed information, and it can get clearer vision effects by decoding its received packets.

For simplicity of presentation, we focus the discussion on the network with two receivers nodes t1, t2.
The extension to an arbitrary number of receivers is straightforward. This model can be regarded as
a combinatorial version of the asymmetric two-output broadcast channel [18] in projective space. We
show it in Figure 1. The media is divided into two priority level message setsM1 andM2. The receiver
t1 has a higher link capacity than t2. This means that the receiver t1 can recover both messages i ∈ M1

and j ∈ M2; meanwhile, the receiver t2 can only decode the message i ∈ M1 during the transmission.
We assume that a message pair (i, j) is encoded into a codeword with k packets. Let τ1 and τ2 be the
numbers of errors occurring at the link of receiver t1 and t2, respectively. Receiver t1 and t2 can collect
(k − τ1) and (k − τ2) independent packets with no error, respectively. We assume that τ2 > τ1, i.e., the
receiver t1 can receive more correct packets than t2.

1t 2t

i j

,i j i

Figure 1. Asymmetric two-output broadcast channel.
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Our aim is to design a code C with which the receivers can decode their messages correctly as long as
they received (k − τ1) and (k − τ2) independent packets with no error, respectively. Meanwhile, we are
interested in the achievable rate region of the code. Although both deletion and insertion errors should
be considered, it is sufficient to consider deletion error according to Remark 1.

Let M1 = {1, 2, . . . ,M1} and M2 = {1, 2, . . . ,M2} be two message sets, where M1 has higher
level priority. The message pair (i, j) ∈ (M1,M2) is encoded into codeword Vi,j of C by encoding
mapping. Then, the codeword will be transmitted to the network. Due to the packets lost, the receiver t1
can receive a (k − τ1)-dimensional subspace U1, and the receiver t2 can receive a (k − τ2)-dimensional
subspaceU2. If the codewords satisfy some conditions, the messages (i, j) and i can be decoded correctly
at t1 and t2, respectively. The conditions will be discussed at the end of Section 4.1. In this case, the
receiver t1 can recover messages i and j. Meanwhile, the receiver t2 can only recover message i. Next,
we formally state the definition of such code.

Definition 2. Let t1 and t2 be the two receiver nodes of an acyclic single source network; the
corresponding numbers of errors occurring at the link of receiver t1 and t2 are τ1 and τ2, respectively,
τ2 > τ1. A constant dimension code C ⊆ Pq(n, k) is called an [n, k, (M1,M2), (τ1, τ2)]-BECNC
(broadcast error-correcting network code), if it satisfies that the two receivers can correct errors of
τ1 and τ2, respectively. The cardinalities of the two corresponding message sets are M1 and M2.

We are interested in the maximum number of message set pairs (M1,M2), when the dimension and
the maximum numbers of correctable errors are given. Sometimes, the asymptotic rate pairs are also
interesting.

The asymptotic rate pair is defined as (R1, R2), where Ri =
logqMi

nk
, i = 1, 2.

Definition 3. A rate pair of non-negative real numbers (R1, R2) is said to be (λ, µ1, µ2)-asymptotically
achievable if, for all ε > 0 and sufficiently large n, there exists an [n, k, (M1,M2), (τ1, τ2)]-BECNC, such
that logqMi

nk
> Ri−ε, i = 1, 2, where τ1/k = µ1, τ2/k = µ2 and k/n = λ. The asymptotically-achievable

rate region is the set of all asymptotically-achievable rate pairs.

3. Main Results

We now state the asymptotically-achievable rate region of the broadcast error-correcting network
codes. The proof of the theorem will be presented in next section.

Theorem 1. The asymptotically-achievable rate region of an [n, k, (M1,M2), (τ1, τ2)]-BECNC with
corresponding error-correcting capability τ1 and τ2 over field Fq consists of pairs (R1, R2) of
non-negative numbers that satisfy the inequalities,

R1 ≥ 0, R2 ≥ 0 (5)

R1 ≤ (1− µ1)(λx − λ), (6)

R2 ≤ (1− µ2)(1− λx), (7)

where x is an auxiliary variable, such that k ≤ x ≤ n. The normalized weights are λx = x/n, λ = k/n,
and the normalized error-correcting capabilities are µ1 = τ1/k, µ2 = τ2/k.
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4. Proofs

Before proving the theorem, we introduce some auxiliary results in combinatorial mathematics, which
are used in the proof of our results.

4.1. Combinatorial Lemmas

This part, however, is rather technical. The readers who are not interested in it can just skim the
conclusion without missing the essence of this section.

The number of elements in Pq(n, k) is given by the Gaussian coefficient,

|Pq(n, k)| =

[
n

k

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
. (8)

The subscript q of the Gaussian coefficient will be omitted without causing ambiguity in the
following text.

The asymptotic behavior of the Gaussian coefficient is given by the following lemma.

Lemma 2 ([7]). Gaussian coefficient

[
n

k

]
, for 0 < k < n satisfies:

1 < q−k(n−k)

[
n

k

]
< 4. (9)

We will introduce an important definition in combinatorial mathematics, which is very useful in
our proof.

Let J be a collection of k-subsets of an n-set S, 0 ≤ k ≤ n. The collection:

∂J := {K ∈
(

S

k − 1

)
: K ⊂ J, for some J ∈ J }

is called the shadow of J , where
(
S
k−1

)
denotes the set of all (k − 1)-subsets of S. That is, ∂J consists

of all subsets of S, which can be obtained by deleting an element from a set in J .
The lower bound of the size of a shadow is given by the Kruskal–Katona theorem [13,14].

Additionally, Lovász [15] proposed a weaker and simpler form of the original theorem. In [16], Lovász’s
theorem is extended to vector spaces.

For a given n-dimensional vector space W , we define the shadow as follows.

Definition 4. Let F be a collection of k-dimensional subspaces of an n-dimensional vector space W ,
where k < n. The shadow of F is denoted by ∂F ,

∂F := {E ∈

[
W

k − 1

]
: E ⊂ F, for some F ∈ F},

where

[
W

k − 1

]
denotes the set of all (k − 1)-dimensional subspaces of W .
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A lower bound for the size of the shadow ∂F is shown in the following lemma.

Lemma 3 ([16]). Let F ⊂

[
W

k

]
, and let y ≥ k be the positive integer, which satisfies |F| =

[
y

k

]
.

Then, |∂F| ≥

[
y

k − 1

]
. If equality holds, then y ∈ Z+ and F =

[
Y

k

]
, where Y is a y-dimensional

subspace of W .

We extend Lemma 3 to the case of l-level shadow. Let ∂(l)F denote the l-level shadow of a collection
of k-dimensional subspaces of W . Namely, similarly to the definition of ∂F , we define:

∂(l)F := {E ∈

[
W

k − l

]
: E ⊂ F, for some F ∈ F},

where

[
W

k − l

]
denotes the set of all (k − l)-dimensional subspaces of W . For simplicity, the l-level

shadow will be referred to as the l-shadow. The following lemma gives a lower bound of the size of the
l-shadow.

Lemma 4. Let F ⊂

[
W

k

]
, and let y ≥ k be the positive integer, which satisfies |F| =

[
y

k

]
.

Then,
∣∣∂(l)F∣∣ ≥ [ y

k − l

]
for k ≥ l. If equality holds, then y ∈ Z+ and F =

[
Y

k

]
, where Y is a

y-dimensional subspace of W .

Proof. Refer to Appendix A.1.
In Lemma 4, if the equality holds, there exists a y-dimensional subspace Y , such that ∂(l)F is the set

of all (k − l)-dimensional subspaces of Y , for 0 ≤ l ≤ k.
Since the cardinality of the set F is not exactly equal to a Gaussian coefficient in general, we extend

Lemma 4 to a general case in the following corollary.

Corollary 1. Let F ⊂

[
W

k

]
be a collection of k-dimensional subspaces of W and |F| ≤

[
y

k

]
, then

∣∣∂(l)F∣∣ ≥
 y

k − l


 y

k


|F| .

Proof. Refer to Appendix A.2.
Corollary 1 gives the lower bound for the size of an l-shadow of a given collection of subspaces,

which will be used in the proof of our result.
Using the representation of combinatorial mathematics, we discuss the conditions for correctly

decoding BECNC. Due to the packets lost, the receiver t1 can receive a (k − τ1)-dimensional subspace
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U1 ∈ ∂(τ1){Vi,j}, and the receiver t2 can receive a (k − τ2)-dimensional subspace U2 ∈ ∂(τ2){Vi,j}. We
say that the receivers can decode correctly, if for t1:

∂(τ1){Vi,j} ∩ ∂(τ1){Vi′,j′} = ∅, if (i, j) 6= (i′, j′), (10)

and for t2:
∂(τ2){Vi,j} ∩ ∂(τ2){Vi′,j′} = ∅, if i 6= i′,∀j, j′. (11)

4.2. Outer Bound

We prove the outer bound of the achievable rate region at first. By Remark 1, it is sufficient to consider
the deletion error correcting in the proof. Inspired by the analogues between the definition of shadow
and the packing sphere of deletion-correcting codes, we adopt the concept of shadow in combinatorial
theory. Furthermore, there is a lower bound for the size of the shadow in vector space [16]. A small
generalization of the lower bound is provided in Corollary 1, which will be used in the proof of the
outer bound.

Theorem 2. (Outer bound of the achievable rate region) If (R1, R2) is an achievable rate pair of
an [n, k, (M1,M2), (τ1, τ2)]-BECNC, C ⊂ Pq(n, k), for an x with k ≤ x ≤ n, then the following
inequalities hold,

M1 ≤

[
n

k − τ2

][
x

k − τ1

]
[

x

k − τ2

][
x− 1

k − τ1

] (12)

where x is the smallest integer, such that:

M2

[
k

k − τ1

]
≤

[
x

k − τ1

]
(13)

In particular, if the equality of (13) holds, we have:

M1 ≤

[
n

k − τ2

]
[

x

k − τ2

] (14)

We can obtain the asymptotic form of Theorem 2 directly.

Corollary 2. If (R1, R2) is an achievable rate pair of an [n, k, (M1,M2), (τ1, τ2)]-BECNC, C ⊂
Pq(n, k), for an x with k ≤ x ≤ n, then the following inequalities hold,

R1 ≥ 0, R2 ≥ 0 (15)

R1 ≤ (1− µ1)(λx − λ), (16)

R2 ≤ (1− µ2)(1− λx), (17)
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where λx = x/n, λ = k/n are the normalized weights and µ1 = τ1/k, µ2 = τ2/k are the normalized
deletion-correcting capabilities.

Proof of Theorem 2. Let V = {Vi,j : i = 1, 2, . . . ,M1, j = 1, 2, . . . ,M2} be the codebook of an
[n, k, (M1,M2), (τ1, τ2)]-BECNC that can correct τ1 and τ2 deletions for receivers t1 and t2, respectively,
where dim(Vi,j) = k, τ1 < τ2 < k and δ = τ2 − τ1.

For fixed i, we denote the τ1-shadow of the codeword Vi,j as ∂(τ1){Vi,j}; then, the τ1-shadows of
Vi,j, j = 1, 2, . . . ,M2 are disjoint, namely:

∂(τ1){Vi,j} ∩ ∂(τ1){Vi,j′} = ∅,

and the cardinality of each shadow is |∂(τ1){Vi,j}| =

[
k

k − τ1

]
. We denote the set of these shadows as

SH(i) = {∂(τ1){Vi,j} : j = 1, 2, . . . ,M2}; then, |SH(i)| =M2

[
k

k − τ1

]
.

Figure 2 illustrates the relationship of τ1-shadows when i is fixed. The big dotted line circle on the top
level denotes the set of codewords, in which small solid circles denote the codewords. The small solid
circle on the middle level denotes the τ1-level shadow of a codeword, while the big dotted line circle on
the middle level denotes the set of the τ1-level shadow. Similarly, a small solid circle on the bottom level
denotes the τ2-level shadow of a codeword, while the big dotted line circle on the bottom level denotes
the set of τ2-level shadows.

,i jV  
2,1 ,2 ,, , ,i i i MV V V

k

1k 

2k 

, 'i jV

   1

,i jV




 SH i

   1

, 'i jV




   SH i




Figure 2. The relationship of τ1-shadows when i is fixed.

For i 6= i′ and any j, j′,

∂(δ)∂(τ1){Vi,j} ∩ ∂(δ)∂(τ1){Vi′,j′} = ∅,

because otherwise,
∂(τ2){Vi,j} ∩ ∂(τ2){Vi′,j′} 6= ∅,

which is contradictory to Condition (11). That is, the δ-shadows of SH(i) and SH(i′) are disjoint
for all i 6= i′. From Corollary 1, we can get the minimum size of the δ-shadow of SH(i), which is
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bounded by
∣∣∂(δ)SH(i)

∣∣ ≥
 x

k − τ2


 x

k − τ1


|SH(i)|, and x ≥ k − τ2 is the minimum integer, such that

|SH(i)| ≤

[
x

k − τ1

]
.

Then, we can get M2

[
k

k − τ1

]
≤

[
x

k − τ1

]
, and:

M2 ≤

[
x

k − τ1

]
[

k

k − τ1

] (a)
<

4q(k−τ1)(x−k+τ1)

q(k−τ1)(k−k+τ1)
= 4q(k−τ1)(x−k). (18)

The inequality (a) holds according to Lemma 2.
Now, we consider the cardinality of ∂(δ)SH (i),

∣∣∂(δ)SH (i)
∣∣ ≥

 x

k − τ2


 x

k − τ1


|SH (i)|

(b)

≥

 x

k − τ2


 x

k − τ1



[
x− 1

k − τ1

]
. (19)

The inequality (b) holds since x is the minimum integer, such that |SH(i)| ≤

[
x

k − τ1

]
, and the

Gaussian coefficient

[
n

k

]
is monotone increasing with n.

By packing, M1 is bounded by:

M1 ≤

[
n

k − τ2

]
|∂(δ)SH(i)|

≤

[
n

k − τ2

][
x

k − τ1

]
[

x

k − τ2

][
x− 1

k − τ1

]
(c)
<

16q(k−τ2)(n−k+τ2)+(k−τ1)(x−k+τ1)

q(k−τ2)(x−k+τ2)+(k−τ1)(x−1−k+τ1)

= 16q(k−τ2)(n−x)+(k−τ1). (20)

The inequality (c) holds according to Lemma 2.
Then, the rate pair of [n, k, (M1,M2), (τ1, τ2)]-BECNC, C ⊂ Pq(n, k), satisfies:

R1 =
logqM2

nk
≤ (k − τ1)(x− k)

nk
+ o(1)

= (1− µ1)(λx − λ) + o(1) (21)

and:

R2 =
logqM1

nk
≤ (k − τ2)(n− x) + (k − τ1)

nk
+ o(1)

= (1− µ2)(1− λx) + o(1), (22)
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where o(1) approaches zero as n grows, and x is an auxiliary variable, such that k ≤ x ≤ n. The
normalized weights are λx = x/n, λ = k/n, and the normalized deletion-correcting capabilities are
µ1 = τ1/k, µ2 = τ2/k.

This completes the proof of the outer bound.

4.3. Achievability

In this section, we propose a construction of BECNC based on superposition coding, with which the
achievability of our outer bound can be proven. If the rate pair (R1, R2) is achievable, then the code used
at each level must satisfy certain properties, which are specified below.

Construction: Let Fnq be an n-dimensional vector space over Fq and x be an integer, such that
k ≤ x ≤ n. We can construct an x-dimensional constant dimension subspace code Cx over Fnq for t1
and t2, such that it can correct deletions of x − k + τ2. The encoding mapping is f̂ , and the decoding
mappings at t1 and t2 are ϕ̂ and ψ̂, respectively.

The codeword f̂(i) can be regarded as the cloud center, which will not be actually sent. For every
i ∈M1, the (x− k + τ2)-shadows of {f̂(i)} are disjoint, namely,

∂(x−k+τ2){f̂(i)} ∩ ∂(x−k+τ2){f̂(i′)} = ∅, for i 6= i′, (23)

which guarantees the correctness of decoding at t2. The rate of Cx is:

1

nx
log |M1|. (24)

Additionally, for every i ∈ M1, the (x − k + τ1)-shadow of {f̂(i)} must be disjoint; otherwise, the
(τ2 − τ1)-shadow of the (x− k + τ1)-shadow of {f̂(i)} will have a common subset. That is,

∂(x−k+τ1){f̂(i)} ∩ ∂(x−k+τ1){f̂(i′)} = ∅, for i 6= i′, (25)

which guarantees the correctness of decoding at t1.
Let A(i) be the (x− k)-shadow of a codeword f̂(i), i.e.,

A(i) = ∂(x−k){f̂(i)}, (26)

the shadows A(i), i ∈M1 are disjoint by construction of code Cx.
To every i ∈M1, by using f̂(i) as the ground space, we can construct a k-dimensional subspace code

C ⊆ A(i) for t1, such that it can correct deletions of τ1. For each i, the code has the same message set
M2. The encoding mapping is fi, and the decoding mapping is ϕi; the rate of C is:

1

xk
log |M2|. (27)

The codewords of C will be actually sent, which can be regarded as a satellite codeword. For every
i ∈M1, j ∈M2, the τ1-shadows of {fi(j)} are disjoint, namely,

∂(τ1){fi(j)} ∩ ∂(τ1){fi′(j′)} = ∅, for (i, j) 6= (i′, j′), (28)
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which guarantees the correctness of decoding at t1.
The encoding mapping:

f :M1 ×M2 → P(n, k),

and the decoding mapping:
ϕ : P(n, k − τ1)→M1 ×M2,

and:
ψ : P(n, k − τ2)→M1,

are as follows:

f(i, j) = fi(j), for every i ∈M1, j ∈M2,

ϕ(Vr1) = (i, ϕi(Vr1)), where i = ϕ̂(Vr1),

ψ(Vr2) = ψ̂(Vr2),

where Vr1 ∈ P(n, k − τ1) and Vr2 ∈ P(n, k − τ2) are the subspaces received by node t1 and t2,
respectively.

We do not specify the code Cx and C used at each level in the above construction. The achievability
of our outer bound could be proven if the subspace code used at each level satisfies some properties.

Proposition 1. For an [n, k, (M1,M2), (τ1, τ2)]-BECNC, our outer bound could be achieved at (R1, R2)

asymptotically by the above construction, if there exists an (n, k,M, τ)-deletion-correcting code for
single-user communication, such that the code rate R = (1− µ)(1− λ) is asymptotically achievable.

Proof. If there exists such an asymptotically-achievable code, we can substitute this code for Cx and C in
the above construction, where the parameters are (n, x,M1, x− k + τ2) and (x, k,M2, τ1), respectively.

The rate pair is:

logq |M2|
nk

≥ xk(1− µk)(1− λk)
nk

− ε
= (1− µ1)(λx − λ)− ε, (29)

logq |M1|
nk

≥ nx(1− µx)(1− λx)
nk

− ε
= (1− µ2)(1− λx)− ε, (30)

where µk = τ1/k, µx =
x−k+τ2

x
, λk = k/x, µ1 = τ1/k, µ2 = τ2/k, λ = k/n, λx = x/n and ε > 0.

That is, the rate pair (R1, R2):

R1 = (1− µ1)(λx − λ), (31)

R2 = (1− µ2)(1− λx), (32)

is asymptotically achievable.
Fortunately, K-K codes satisfy the requirement in Proposition 1. From the minimum distance

decoder requirements in Condition (4), we can rewrite Equation (2) in the form of deletion-correcting
capability τ ,
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R ≤ (1− µ)(1− λ) + o(1), (33)

where µ = τ/k is normalized deletion-correcting capability.
The achievability of outer bound can be obtained subsequently.

Theorem 3. (Achievability) If for a rate pair (R1, R2) of nonnegative numbers, there exists an
[n, k, (M1,M2), (τ1, τ2)]-BECNC, C ⊂ Pq(n, k), such that the following inequalities hold,

R1 ≥ 0, R2 ≥ 0 (34)

R1 ≤ (1− µ1)(λx − λ), (35)

R2 ≤ (1− µ2)(1− λx), (36)

where x is an auxiliary variable, such that k ≤ x ≤ n. The normalized weights are λx = x/n, λ = k/n,
and the normalized deletion-correcting capabilities are µ1 = τ1/k, µ2 = τ2/k. Then, (R1, R2) is an
achievable rate pair for the [n, k, (M1,M2), (τ1, τ2)]-BECNC.

Proof. The theorem can be proven by specifying the K-K codes to our construction.

5. Exactly Attained Codes

So far, the asymptotically-achievable rate region of BECNC is obtained by using K-K codes in our
construction. However, the K-K codes achieve the Singleton-type bound in Equation (33) asymptotically,
which requires the dimension of ground space n sufficiently large. In this section, we study the case when
our outer bound can be attained exactly.

Proposition 2. For an [n, k, (M1,M2), (τ1, τ2)]-BECNC, our outer bound could be achieved at
(M1,M2), if there exists an (n, k,M, τ)-code for single-user communication, such that:

M =

[
n

k − τ

]
[

k

k − τ

] . (37)

The proof of this proposition will be given later.
The q-analog Steiner structure [19] could be used in the construction that was presented in Section 4.3,

which does not require the size of n. We will state it in detail in the following.
A collection S ⊆ Pq(n, k) is called a q-analog Steiner structure S[t, k, n]q if the elements of S are

k-dimensional subspaces (called blocks), and each element from Pq(n, t) is contained in exactly one
block from S. S[t, n, n]q and S[t, t, n]q exist, but these are trivial. Until recently, the only known
nontrivial Steiner structures S[1, k, n]q exist when k divides n. The problem of the existence of a Steiner
structure with various parameters is still open. We do not concentrate on the existence of the q-analog
Steiner structure in this paper. The constructions and properties of the q-analog Steiner structure are
further discussed in [20].
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We assume that there exists a q-Steiner structure S[t, k, n]q. This structure could be considered as a
k-dimensional subspace code C over Fnq with deletion-correcting capability τ = k− t, where each block
of S[t, k, n]q is a codeword of C. Since a codeword V produces a random (k−τ)-dimensional subspace of
V by the operation Dτ , the definition of the q-Steiner structure guarantees that each (k− τ)-dimensional
subspace corresponds to exactly one k-dimensional subspace in C, i.e., every (k − τ)-dimensional
subspace can be correctly decoded into a transmitted subspace. The number of codewords of a q-Steiner
structure S[t, k, n]q is given by the number of blocks in S.

Lemma 5 ([19]). The total number of blocks in an S[t, k, n]q is:[
n

t

]
[
k

t

] .

Then, the q-Steiner structure S[k− τ, k, n]q could be regarded as an (n, k,M, τ)-code, which satisfies
Condition (37). Since the size of the codewords is:

M = |S[k − τ, k, n]q| =

[
n

k − τ

]
[

k

k − τ

] . (38)

Proof of Proposition 2. Similar to the proof of Proposition 1. We could substitute the q-Steiner
structure S[k− τ2, x, n]q and S[k− τ1, k, x]q for Cx and C in the construction in Section 4.3, respectively.
The numbers of codewords are:

M2 = |S[k − τ1, k, x]q| =

[
x

k − τ1

]
[

k

k − τ1

] , (39)

M1 = |S[k − τ2, x, n]q| =

[
n

k − τ2

]
[

x

k − τ2

] , (40)

which coincide with Equations (13) and (14) when the equalities hold. That is, the rate pair (M1,M2) in
Theorem 2 is exactly attained.

Note that, because of the number of the known q-Steiner structure is very limited, the exactly attained
codes of BECNC cannot achieve all of the points in the rate region of Theorem 1. It will be of interest
to study the existence of the q-Steiner structure.
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6. Extension

In this section, we will extend the asymptotically-achievable rate region to more than two receivers.
Consider the model depicted in Section 2.2; we can obtain the asymptotically-achievable rate region of
the m-tuple coding rates (R1, R2, . . . , Rm).

Theorem 4. The asymptotically-achievable rate region of an [n, k, (M1,M2, . . . ,Mm), (τ1, τ2, . . . , τm)]-
BECNC with corresponding error correcting-capabilities τ1, τ2, . . . , τm over field Fq consists of rates
(R1, R2, . . . , Rm) of non-negative numbers that satisfy the inequalities,

R1 ≥ 0, R2 ≥ 0, . . . , Rm ≥ 0 (41)

R1 ≤ (1− µ1)(λ1 − λ), (42)

R2 ≤ (1− µ2)(λ2 − λ1), (43)

. . . (44)

Rm ≤ (1− µm)(1− λm−1), (45)

where x1, . . . , xm−1 are auxiliary variables, such that k ≤ x1 ≤ · · · ≤ xm−1 ≤ n. The normalized
weights are λi = xi/n, λ = k/n, i = 1, . . . ,m− 1, and the normalized error-correcting capabilities are
µi = τi/k, i = 1, . . . ,m.

The proof can refer to the steps from the proofs of Theorem 1, where we leave it for the readers as
an exercise.

7. Conclusion

In this paper, we propose a network model based on a real-time media distribution system, where the
receivers have different link capacities due to packets lost or a fault in intermediate nodes. To solve the
transmission problem in our model, we provide the broadcast error-correcting network codes (BECNC),
which are based on subspace metric codes. Then, we present the asymptotically-achievable rate region
for BECNC. In the proof part, we show the outer bound of the achievable rate region, followed by a code
construction. We prove that the outer bound is asymptotically achieved by specifying K-K codes in our
construction. Meanwhile, the outer bound is exactly attained by using the q-analog Steiner structure in
our construction. Since the number of the known q-analog Steiner structure is limited, the outer bound
can be attained exactly in some points. The research on the existence and construction of q-analog
Steiner structures may be interesting. Although K-K codes require the dimension of ground space n
sufficiently large and the known q-analog Steiner structure is limited, the theoretical rate region given in
this paper has certain practical significance. In the future, if we could find the “good” codes, this outer
bound could be attained exactly at all points.
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A. Appendix

A.1. Proof of Lemma 4

We prove by induction on l. Let Y (l) be a y(l)-dimensional subspace in the proof of the l-th level
shadow.

From Lemma 3, we know the lemma holds in the case of l = 1.

We assume that the lemma holds when l = s, then we can get that
∣∣∂(s)F∣∣ ≥ [

y(s)

k − s

]
by

assumption.

Next, we consider the case of l = s + 1. Let ∂(s)F ⊂

[
W

k − s

]
and let y(s+1) ≥ k − s be

the positive integer represented by
∣∣∂(s)F∣∣ =

[
y(s+1)

k − s

]
. By the assumption when l = s, we can

get that y(s+1) ≥ y(s), then
∣∣∂(s)F∣∣ = [

y(s+1)

k − s

]
is well defined since Gaussian coefficient

[
n

k

]
is

monotone increasing with n. By Lemma 3, the size of the shadow of ∂(s)F satisfies that
∣∣∂(s+1)F

∣∣ ≥[
y(s+1)

(k − s)− 1

]
=

[
y(s+1)

k − (s+ 1)

]
.

We now focus on the equality. Again the proof proceeds by induction on l.

In case of l = 1, from Lemma 3, if the equality holds, then y(1) ∈ Z+ and F =

[
Y (1)

k

]
, where Y (1)

is a y(1)-dimensional subspace of W .
We assume that the equality holds when l = s, then we can get that

∣∣∂(s)F∣∣ = [ y(s)

k − s

]
, (46)

then y(s) ∈ Z+ and F =

[
Y (s)

k

]
, where Y (s) is a y(s)-dimensional subspace of W .
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In the case of l = s + 1, from Lemma 3, if equality holds,
∣∣∂∂(s)F∣∣ = ∣∣∂(s+1)F

∣∣ = [ y(s+1)

k − s− 1

]
,

then y(s+1) ∈ Z+ and ∂(s)F =

[
Y (s+1)

k − s

]
, where Y (s+1) is a y(s+1)-dimensional subspace of W . We

know that ∂(s)F is consisted of all (k − s)-dimensional subspaces of Y (s+1), and
∣∣∂(s)F∣∣ = [ y(s+1)

k − s

]
.

Comparing with Equation (46), we get

[
y(s)

k − s

]
=

[
y(s+1)

k − s

]
, hence y(s) = y(s+1). By induction,

y(1) = · · · = y(s) = y(s+1) = · · · = y is constant.
This completes the proof.

A.2. Proof of Corollary 1

Let |F| =

[
x

k

]
, x ≤ y. Then by Lemma 4,

∣∣∂(l)F∣∣ ≥ [
x

k − l

]
=

 x

k − l


 x

k


|F| ≥

 y

k − l


 y

k


|F| , since

[
x

k − l

]
[
x

k

] =
(qk − 1)(qk−1 − 1) · · · (qk−l+1 − 1)

(qx−(k−l) − 1)(qx−(k−l)−1 − 1) · · · (qx−k+1 − 1)

is a decreasing function of x.
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