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Abstract:

 In the application of discriminant analysis, a situation sometimes arises where individual measurements are screened by a multidimensional screening scheme. For this situation, a discriminant analysis with screened populations is considered from a Bayesian viewpoint, and an optimal predictive rule for the analysis is proposed. In order to establish a flexible method to incorporate the prior information of the screening mechanism, we propose a hierarchical screened scale mixture of normal (HSSMN) model, which makes provision for flexible modeling of the screened observations. An Markov chain Monte Carlo (MCMC) method using the Gibbs sampler and the Metropolis–Hastings algorithm within the Gibbs sampler is used to perform a Bayesian inference on the HSSMN models and to approximate the optimal predictive rule. A simulation study is given to demonstrate the performance of the proposed predictive discrimination procedure.
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1. Introduction

The topic of analyzing multivariate screened data has received a great deal of attention over the last few decades. In the standard multivariate problem, an analysis of data generated from a p-dimensional screened random vector [image: there is no content] is our issue of interest, where the [image: there is no content] random vector v and the [image: there is no content] random vector [image: there is no content] (called the screening vector) are jointly distributed with the correlation matrix [image: there is no content] Thus, we observe x only when the unobservable screening vector [image: there is no content] belongs to a known subset [image: there is no content] of its space [image: there is no content], such that 0≤P([image: there is no content]∈[image: there is no content])≤1. That is, x is subject to the screening scheme or hidden truncation (or simply truncation if v=[image: there is no content]). Model parameters underlying the joint distribution of v and [image: there is no content] are then estimated from the screened data (i.e., observations of x) using the conditional density f(x|[image: there is no content]∈[image: there is no content]).

The screening of sample (or sample selection) arises as open in practice as a result of controlling observability of the outcome of interest in the study. For example, the dataset consists of the Otis IQ test scores (the values of x) of freshmen of a college. These students had been screened in the college admission process, which examines whether their prior school grade point average (GPA) and the Scholastic Aptitude Test (SAT) scores (i.e., the screening values denoted by [image: there is no content]) are satisfactory. What the true vale of screening vector variable [image: there is no content] of each student is may not be available due to a college regulation. The observations available are the IQ values of x, the screened data. For the application with real screened data, one can refer to that with the student aid grants data given by [1] and that with the U.S. labor market data given by [2], as well. A variety of methods have been suggested for analyzing such screened data. See, e.g., [3,4,5,6], for various distributions for modeling and analyzing screened data; see, [7,8] for the estimative classification analysis with screened data; and see, e.g., [1,2,9,10], for the regression analysis with screened response data.

The majority of existing methods rely on the fact that v and [image: there is no content] are jointly multivariate normal, and the screened observation vector x is subject to a univariate screening scheme defined by an open interval [image: there is no content] with [image: there is no content] In many practical situations, however, the screened data are generated from a non-normal joint distribution of v and [image: there is no content], having a multivariate screening scheme defined by a q-dimensional ([image: there is no content]) rectangle region [image: there is no content] of [image: there is no content]. In this case, a difficulty in applications with the screened data is that the empirical distribution of the screened data is skewed; its parametric model involves a complex density; and hence, standard methods of analysis cannot be used. See [4,6] for the conditional densities, f(x|[image: there is no content]∈[image: there is no content]), useful for fitting the rectangle screened data generated from a non-normal joint distribution of v and [image: there is no content]. In this article, we develop yet another multivariate technique applicable for analyzing the rectangle screened data: we are interested in constructing a Bayesian predictive discrimination procedure for the data. More precisely, we consider a Bayesian multivariate technique for sorting, grouping and prediction of multivariate data generated from K rectangle screened populations. In the standard problem, a training sample [image: there is no content]={([image: there is no content],[image: there is no content]),i=1,…,n} is available, where, for each [image: there is no content], [image: there is no content] is a [image: there is no content] rectangle screened observation vector coming from one of K populations and taking values in [image: there is no content], and [image: there is no content] is a categorical response variable representing the population membership, so that [image: there is no content]=k implies that the predictor [image: there is no content] belongs to the k-th rectangle screened population (denoted by [image: there is no content]), [image: there is no content] Using the training sample [image: there is no content], the goal of the predictive discriminant analysis is to predict population membership of a new screened observation x based on the posterior probability of x belonging to [image: there is no content]. The posterior probability is given by:



p(z=k|[image: there is no content],x)∝p(x|[image: there is no content],z=k)p(z=k|[image: there is no content]),k=1,…,K,



(1)




where z is the the population membership of x, p(z=k|[image: there is no content]) is the prior probability of [image: there is no content] updated by the training sample [image: there is no content] and:


p(x|[image: there is no content],z=k)=∫p(x|[image: there is no content])p([image: there is no content]|[image: there is no content],z=k)d[image: there is no content],



(2)




p(x|[image: there is no content])=p(x|[image: there is no content]∈[image: there is no content],z=k) and p([image: there is no content]|[image: there is no content],z=k), respectively, denote the predictive density, the probability density of x and the posterior density of parameters [image: there is no content] associated with [image: there is no content]. One of the first and most applied predictive approaches by [11] is the case of unscreened and normally-distributed populations [image: there is no content] with unknown parameters [image: there is no content]={[image: there is no content],Σk}, namely [image: there is no content]:Np(μk,Σk) for [image: there is no content] This is called a Bayesian predictive discriminant analysis with normal populations ([image: there is no content]) in which a multivariate Student t distribution is obtained for Equation (2).

A practical example where the predictive discriminant analysis with the rectangle screened populations ([image: there is no content]’s) is applicable is in the discrimination between passed and failed pairs of applicants in a college admission process (the second screening process). Consider the case where college admission officers wish to set up an objective criterion (with a predictor vector x) for admitting students for matriculation; however, the admission officers must first ensure that a student with observation x has passed the first screening process. The first screening scheme may be defined by the q-dimensional region [image: there is no content] of the random vector [image: there is no content] (consisting of SAT scores, high-school GPA, and so on), so that only the students who satisfy [image: there is no content]∈[image: there is no content] can proceed to the admission process. In this case, we encounter a crucial problem for applying the normal classification by [11]; given the screening scheme [image: there is no content]∈[image: there is no content], the assumption of the multivariate normal population distribution for [x|z=k]=d[x|[image: there is no content]], [image: there is no content] is not valid. The work in [7,12] found that the normal classification shows a lack of robustness to the departure from the normality of the population distribution, and hence, the performance of the normal classification can be very misleading, if used with the continuous, but non-normal or screened normal input vector x.

Thus, the predictive density in Equation (2) has two specific features to be considered for Bayesian predictive discrimination with the rectangle screened populations, one about the prior distribution of the parameters [image: there is no content] and the other about the distributional assumption of the population model with density p(x|[image: there is no content]). For the unscreened populations case, there have been a variety of studies that are concerned with the two considerations. See, for example, [11,13,14] for the choice of the prior distributions of [image: there is no content], and see [15,16] for copious references to the literature on the predictive discriminant analysis with non-normal population models. Meanwhile, for deriving Equation (2) of the rectangle screened observation x, we need to develop a population model with density p(x|[image: there is no content]) that uses the screened sample information in order to maintain consistency with the underlying theory associated with the populations [image: there is no content] generating the screened sample. Then, we propose a Bayesian hierarchical approach to flexibly incorporate the prior knowledge about [image: there is no content] with the non-normal sample information, which is the main contribution of this paper to the literature on Bayesian predictive discriminant analysis.

The rest of this paper is organized as follows. Section 2 considers a class of screened scale mixture of normal (SSMN) population models, which well accounts for the screening scheme conducted through a q-dimensional rectangle region [image: there is no content] of an external scale mixture of normal vector, [image: there is no content].Section 3 proposes a hierarchical screened scale mixture of normal (HSSMN) model to derive the predictive density Equation (2) and proposes an optimal rule for Bayesian predictive discriminant analysis (BPDA) with the SSMN populations (abbreviated as [image: there is no content]). Approximation of the rule is studied in Section 4 by using an MCMC method applied to the HSSMN model. In Section 5, a simulation study is done to check the convergence of the MCMC method and the performance of the [image: there is no content] by making a comparison between the [image: there is no content] and the [image: there is no content] Finally, concluding remarks are given in Section 6.



2. The SSMN Population Distributions

Assume that the joint distribution of respective [image: there is no content] and [image: there is no content] vector variables [image: there is no content] and v, associated with [image: there is no content], is [image: there is no content], where:



[image: there is no content]=F:Ns[image: there is no content],κ(η)[image: there is no content],η∼g(η)withκ(η)>0,andη>0,



(3)




[image: there is no content], [image: there is no content], η is a mixing variable with the pdf [image: there is no content], [image: there is no content] is a suitably-chosen weight function and [image: there is no content] and [image: there is no content] are partitioned corresponding to the orders of [image: there is no content] and v:



v*=[image: there is no content]v,[image: there is no content]=[image: there is no content][image: there is no content],[image: there is no content]=[image: there is no content]Δk⊤ΔkΣk.



(4)




Notice that [image: there is no content] defined by Equation (3) denotes a class of scale mixture of multivariate normal (SMN) distributions (see, e.g., [17,18] for details), equivalently denoted as SMNs([image: there is no content],[image: there is no content],κ(η),G) in the remainder of the paper, where [image: there is no content] denote the cdf of [image: there is no content]

Given the joint distribution [v*|[image: there is no content]]∼SMNs([image: there is no content],[image: there is no content],κ(η),G), the SSMN distribution is defined by the following screening scheme:



[x|[image: there is no content]]=d[v|[image: there is no content]∈[image: there is no content](α,β),[image: there is no content]]∼SSMNp([image: there is no content](α,β);[image: there is no content],[image: there is no content],κ(η),G),



(5)




where [image: there is no content](α,β)={[image: there is no content]∈Rq|α≤[image: there is no content]≤β} is a q-dimensional rectangle screening region in the space of [image: there is no content]∈Rq. Here, [image: there is no content], [image: there is no content], and [image: there is no content] for [image: there is no content]. This region contains the cases of [image: there is no content](α,∞) and [image: there is no content](-∞,β) as special cases.
The pdf of x is given by:



f(x|[image: there is no content],[image: there is no content],[image: there is no content])=∫0∞hp(x|[image: there is no content],[image: there is no content],κ(η),G)dG(η)∫0∞Φ¯q([image: there is no content](α,β);[image: there is no content],κ(η)[image: there is no content])dG(η),x∈[image: there is no content],



(6)




where:


hp(x|[image: there is no content],[image: there is no content],κ(η))=ϕp(x;[image: there is no content],κ(η)Σk)Φ¯q[image: there is no content](α,β);μv0k|x,κ(η)Σv0k|x,








[image: there is no content] and [image: there is no content] Here, ϕq(·μ,Σ) and Φ¯q([image: there is no content](α,β);μ,Σ), respectively, denote the pdf and the probability of the rectangle region of a random vector [image: there is no content]. The latter is equivalent to Pr(w∈[image: there is no content](α,β)).

One particular member of the class of SSMN distributions is the rectangle-screened normal (RSN) distribution defined by Equation (5) and Equation (6), for which [image: there is no content] is degenerate with [image: there is no content]. The work in [4,8] studied properties of the distribution and denoted it as the RSNp([image: there is no content](α,β);[image: there is no content],[image: there is no content]) distribution. Another member of the class is the rectangle-screened p-variate Student t distributions ([image: there is no content]) considered by [8]. Its pdf is given by:



f(x|[image: there is no content],[image: there is no content],[image: there is no content])=tp(x|[image: there is no content],Σk,ν)T¯q[image: there is no content](α,β);μv0k|x,Γv0k|x,ν+pT¯q([image: there is no content](α,β);[image: there is no content],[image: there is no content],ν),x∈[image: there is no content],



(7)




where tp(·|[image: there is no content],B,c) and T¯p([image: there is no content];[image: there is no content],B,c) are the respective pdf and probability of a rectangle region [image: there is no content] of the p-variate Student t distribution with the location vector [image: there is no content], the scale matrix B, the degrees of freedom c and:


[image: there is no content]








Similar to the RSN distributions, the density Equation (7) of [x|[image: there is no content]]∼RStp([image: there is no content](α,β);[image: there is no content],[image: there is no content],ν) is obtained by taking [image: there is no content] and [image: there is no content], i.e.,



g(η)=(ν/2)ν/2Γ(ν/2)ην/2-1exp-ν2η,η>0.








The stochastic representations of the RSN and [image: there is no content] distributions are immediately obtained by applying the following lemma, for which detailed proof can be found in [4].

Lemma 1. Suppose [x|[image: there is no content]]∼SSMNp([image: there is no content](α,β);[image: there is no content],[image: there is no content],κ(η),G). Then, it has the following stochastic representation in a hierarchical fashion,



[x|η,[image: there is no content]]=d[image: there is no content]+ΔkΣ0k-1Z[image: there is no content](ak,bk)+(Σk-ΔkΣ0k-1Δk⊤)1/2Zp,



(8)






η∼G(η)withκ(η)>0,η>0,



(9)




where [image: there is no content]and Z[image: there is no content]-[image: there is no content]=d[Zq|Zq∈[image: there is no content](ak,bk)]are conditionally independent and [image: there is no content]. Here, [image: there is no content]and [image: there is no content]
Lemma 1 provides the following: (i) an intrinsic structure of the SSMN population distributions, which reveals a type of departure from the SMN law because the distribution of [x|[image: there is no content]] reduces to the SMN distribution if [image: there is no content] (i.e., Cov([image: there is no content],v|[image: there is no content])=0); (ii) the representation provides a convenient device for random number generation; (iii) it leads to a simple and direct construction of a HSSMN model for the BPDA with the SSMN populations, i.e., [x|[image: there is no content]]∼SSMNp([image: there is no content](α,β);[image: there is no content],[image: there is no content],κ(η),G).



3. The HSSMN Model


3.1. The Hierarchical Model

For a Bayesian predictive discriminant analysis, suppose we have K rectangle screened populations [image: there is no content](k=1,…,K), each specified by the SSMNp([image: there is no content](α,β);[image: there is no content],[image: there is no content],κ(η),G) distribution. Let [image: there is no content]k={xk1,…,xk[image: there is no content]} be a training sample obtained from the rectangle screened population [image: there is no content] with the SSMNp([image: there is no content](α,β);[image: there is no content],[image: there is no content],κ(η),G) distribution, where the parameters ([image: there is no content],[image: there is no content]) are unknown. The predictive discrimination analysis is to assess the relative predictive odds ratio or posterior probability that a screened multivariate observation x belongs to one of K populations, [image: there is no content]. As noted by Equation (6), however, a complex likelihood function of [image: there is no content]k prevents us from choosing reasonable priors of the model parameters and obtaining the predictive density of x given by Equation (2). These problems are solved if we use the following hierarchical representation of the population models.

According to Lemma 1, we may rewrite the SSMN model for Equations (8) and (9) by a three-level hierarchy given by:



[xki|[image: there is no content],[image: there is no content],[image: there is no content]]=d[image: there is no content]+[image: there is no content][image: there is no content]+[image: there is no content],[image: there is no content]∼indNp(0,κ([image: there is no content])[image: there is no content]),i=1,…,[image: there is no content],



(10)






[image: there is no content]∼indNq(0,κ([image: there is no content])[image: there is no content])I[image: there is no content]∈[image: there is no content](ak,bk),κ([image: there is no content])>0,










[image: there is no content]∼i.i.d.G(η)with[image: there is no content]>0,








where [image: there is no content], [image: there is no content], G is the scale mixing distribution of the independent [image: there is no content]’s, [image: there is no content] and [image: there is no content] are independent conditional on [image: there is no content] and Nq(0,κ([image: there is no content])[image: there is no content])I[image: there is no content]∈[image: there is no content](ak,bk) denotes a truncated Nq(0,κ([image: there is no content])[image: there is no content]) distribution having the truncated space [image: there is no content]∈[image: there is no content](ak,bk).
The first stage model in Equation (10) may be written in a compact form by defining the following vector and matrix notations,



Xk=(xk1-[image: there is no content],…,xk[image: there is no content]-[image: there is no content]),[image: there is no content]=(fk1,…,fk[image: there is no content]),Ek=(εk1,…,εk[image: there is no content]),[image: there is no content]=(ηk1,…,ηk[image: there is no content])⊤.








Then, the three-level hierarchy of the model Equation (10) can be expressed as:



Xk=[image: there is no content][image: there is no content]+Ek,vec(Ek)∼Np[image: there is no content](0,D(κ([image: there is no content]))⊗Ψ),



(11)






vec([image: there is no content])∼Nq[image: there is no content](0,D(κ([image: there is no content]))⊗[image: there is no content])I([image: there is no content]∈[image: there is no content]ak,bk),Cov(vec([image: there is no content]),vec(Ek)⊤|[image: there is no content])=O,










[image: there is no content]∼i.i.d.g(η),i=1,…,[image: there is no content],








where [image: there is no content] denotes the Kronecker product of two matrices [image: there is no content] and [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] is an [image: there is no content] diagonal matrix of the scale mixing functions. Note that the hierarchical population model Equation (11) adopts a robust discriminant modeling by the use of the scale mixture of normal, such as the SMN and the truncated SMN, and thus, it enables us to avoid the anomaly generated from the non-normal sample information.
The Bayesian analysis of the model in Equation (11) begins with the specification of the prior distributions of the unknown parameters. When the prior information is not available, a convenient strategy of avoiding improper posterior distribution is to use proper priors with their hyperparameters being fixed as appropriate quantities to reflect the flatness (or diffuseness) of priors (i.e., limiting non-informative priors). For convenience, but not always optimal, we suppose that [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] of the model in Equation (11) are independent a priori; prior distributions for [image: there is no content] and [image: there is no content] are normal; an inverse Wishart prior distribution for [image: there is no content]; and a generalized natural conjugate family (see [19]) of prior distributions for [image: there is no content], so that we adopt the normal prior density for the [image: there is no content] conditional on the matrix [image: there is no content],



P([image: there is no content]|[image: there is no content])∼|[image: there is no content]|-q/2exp-12tr[Ψk-1([image: there is no content]-Λ0k)Hk([image: there is no content]-Λ0k)⊤],[image: there is no content]∼IWp([image: there is no content],τk),








where [image: there is no content] denotes the inverse Wishart distribution whose pdf [image: there is no content] is:


IWm(W;V,ν)∝|W|-ν/2exp-12tr(W-1V),V>0.








Note that if [image: there is no content]=(λk1,…,λkq), [image: there is no content]≡vec([image: there is no content])=(λk1⊤,…,λkq⊤)⊤ and [image: there is no content], then:



tr[Ψk-1([image: there is no content]-Λ0k)Hk([image: there is no content]-Λ0k)⊤]=([image: there is no content]-λ0k)⊤(Hk-1⊗[image: there is no content])-1([image: there is no content]-λ0k).








This prior elicitation of the parameters, along with the three-level hierarchical model Equation (11), produces a hierarchical screened scale mixture of normal population model, which is referred to as HSSMN([image: there is no content]) in the rest of this paper, where Θ(k)={[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]}. The HSSMN([image: there is no content]) model is defined as follows.



xki|[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]∼indNp([image: there is no content]+[image: there is no content][image: there is no content],κ([image: there is no content])[image: there is no content]),i=1,…,[image: there is no content],



(12)






[image: there is no content]|[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]∼indNq0,κ([image: there is no content])[image: there is no content]I[image: there is no content]∈[image: there is no content](ak,bk),i=1,…,[image: there is no content],










[image: there is no content]∼Np(θk,Ωk),










[image: there is no content]∼Nq(θ0k,Ω0k),










[image: there is no content]|[image: there is no content]∼N[image: there is no content](λ0k,Hk-1⊗[image: there is no content]),










[image: there is no content]∼IWp([image: there is no content],τk),τk>2p,










[image: there is no content]∼IWq(Qk,γk),γk>2q,










[image: there is no content]∼indg(η),i=1,…,[image: there is no content],








where [image: there is no content]≡vec([image: there is no content]), [image: there is no content] and hyperparameters [image: there is no content] are fixed as appropriate quantities to reflect the flatness of priors.
The last distributional specification is omitted in the RSN distribution case. For the HSSMN([image: there is no content]) model for the [image: there is no content] distribution, we may set [image: there is no content]∼indGamma(ν/2,ν/2), [image: there is no content], a truncated Gamma distribution (see, e.g., [20]). See, for example, [21,22] and the references therein for other choices of the prior distribution of [image: there is no content]



3.2. Posterior Distributions

Based on the HSSMN([image: there is no content]) model structure with the likelihood and the prior distributions in Equation (12), the joint posterior distribution of [image: there is no content] is given by:



p(Θ(k)|[image: there is no content]k)∝∏i=1[image: there is no content]|κ([image: there is no content])[image: there is no content]|-1/2exp-12trΨk-1(Xk-[image: there is no content][image: there is no content])D(κ([image: there is no content]))-1(Xk-[image: there is no content][image: there is no content])⊤










×|[image: there is no content]|-(q+τk)/2exp-12tr[Ψk-1Gk]∏i=1[image: there is no content]ϕq([image: there is no content];0,κ([image: there is no content])[image: there is no content])Φ¯q[image: there is no content](ak,bk);0,κ([image: there is no content])[image: there is no content]∏i=1[image: there is no content]g([image: there is no content])










×IWq([image: there is no content];Qk,γk)ϕp([image: there is no content];θk,Ωk)ϕq([image: there is no content];θ0k,Ω0k),



(13)




where:


∏i=1[image: there is no content]|κ([image: there is no content])[image: there is no content]|-1/2exp-12trΨk-1(Xk-[image: there is no content][image: there is no content])D(κ([image: there is no content]))-1(Xk-[image: there is no content][image: there is no content])⊤∝∏i=1[image: there is no content]ϕp(xki;[image: there is no content]+[image: there is no content][image: there is no content],κ([image: there is no content])[image: there is no content]),








Gk=([image: there is no content]-Λ0k)Hk([image: there is no content]-Λ0k)⊤+[image: there is no content] and g([image: there is no content])’s denote the densities of the mixing variables [image: there is no content]’s. Note that the joint posterior of Equation (13) is not simplified in an analytic form of the known density and, thus, intractable for the posterior inference. Instead, we derived each of conditional posterior distribution of [image: there is no content], [image: there is no content], [image: there is no content]≡vec([image: there is no content]), [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]’s, which will be useful for posterior inference based on Markov chain Monte Carlo methods (MCMC). All of the full conditional posterior distributions are as follows (see the Appendix for their derivations):

(1) The full conditional distribution of [image: there is no content] is a p-variate normal given by:



[image: there is no content]|Θ(k)\[image: there is no content],[image: there is no content]k∼Npμ[image: there is no content],Σ[image: there is no content],



(14)




where μ[image: there is no content]=Σ[image: there is no content]Ωk-1θk+∑i=1[image: there is no content]Ψk-1(xki-[image: there is no content][image: there is no content])/κ([image: there is no content]) and Σ[image: there is no content]=∑i=1[image: there is no content]1κ([image: there is no content])Ψk-1+Ωk-1-1.
(2) The full conditional density of [image: there is no content] is given by:



p([image: there is no content]|Θ(k)\[image: there is no content],[image: there is no content]k)∝ϕq([image: there is no content];θ0k,Ω0k)∏i=1[image: there is no content]Φ¯q[image: there is no content](α,β);[image: there is no content],κ([image: there is no content])[image: there is no content].



(15)




(3) The full conditional posterior distribution of [image: there is no content] is given by:



[image: there is no content]|Θ(k)\[image: there is no content],[image: there is no content]k∼N[image: there is no content]μ[image: there is no content],Σ[image: there is no content],



(16)




where:


μ[image: there is no content]=vec(Λk*),Λk*=(XkD(κ([image: there is no content]))-1Fk⊤+Λ0kHk)Qk-1Σ[image: there is no content]=Qk-1⊗[image: there is no content],andQk=[image: there is no content]D(κ([image: there is no content]))-1Fk⊤+Hk.








(4) The full conditional posterior distribution of [image: there is no content] is an inverse-Wishart distribution:



[image: there is no content]|Θ(k)\[image: there is no content],[image: there is no content]k∼IWpVk,νkνk>2p,



(17)




where Vk=(Xk-[image: there is no content][image: there is no content])D(κ([image: there is no content]))-1(Xk-[image: there is no content][image: there is no content])⊤+([image: there is no content]-Λ0k)Hk([image: there is no content]-Λ0k)⊤+[image: there is no content] and [image: there is no content]
(5) The full conditional posterior distribution of [image: there is no content] is the q-variate truncated normal given by:



[image: there is no content]|Θ(k)\[image: there is no content],[image: there is no content]k∼indNqμ[image: there is no content],κ([image: there is no content])Σ[image: there is no content]I[image: there is no content]∈[image: there is no content](ak,bk),i=1,…,[image: there is no content],



(18)




where μ[image: there is no content]=Σ[image: there is no content]Λk⊤Ψk-1(xki-[image: there is no content]) and Σ[image: there is no content]=Σ0k-1+Λk⊤Ψk-1[image: there is no content]-1.
(6) The full conditional posterior density of [image: there is no content] is given by:



p([image: there is no content]|Θ(k)\[image: there is no content],yk)∝IWq([image: there is no content];Qk,γk)∏i=1[image: there is no content]ϕq([image: there is no content];0,κ([image: there is no content])[image: there is no content])Φ¯q[image: there is no content](ak,bk);0,κ([image: there is no content])[image: there is no content].



(19)




(7) The full conditional posterior densities of [image: there is no content]’s are given by:



p([image: there is no content]|Θ(k)\[image: there is no content],yk)∝κ([image: there is no content])-p2exp-zki⊤Ψk-1zki2κ([image: there is no content])



(20)






×ϕq([image: there is no content];0,κ([image: there is no content])[image: there is no content])Φ¯q[image: there is no content](ak,bk);0,κ([image: there is no content])[image: there is no content]g([image: there is no content]),i=1,…,[image: there is no content],








where zki=xki-[image: there is no content]-[image: there is no content][image: there is no content] and [image: there is no content]’s are independent.
Based on the above full conditional posterior distributions and the stochastic representations of the SSMN in Lemma 1, one can easily obtain Bayes estimates of the k-th SSMN population mean μ[image: there is no content]=E[x|[image: there is no content]] and covariance matrix Σ[image: there is no content]=Cov(x|[image: there is no content]), [image: there is no content] Specifically, the mean and covariance matrix of an observation x belonging to [image: there is no content]:SSMNp([image: there is no content](α,β);[image: there is no content],[image: there is no content],κ(η),G), which are used for calculating their Bayes estimates via Rao–Blackwellization, are given by:



μ[image: there is no content]=[image: there is no content]+Ω21kΩ22k-1ξk



(21)






Σ[image: there is no content]=Ω22k-Ω21k(Ω11k-1-Ω11k-1TkΩ11k-1)Ω21k⊤,








where [image: there is no content], Ω11k=κ(η)[image: there is no content], [image: there is no content],


ξk=∫[image: there is no content](ak,bk)zζk(2π)q/2|Ω11k|1/2exp{-z⊤Ω11k-1z2}dz,








ζk=Φ¯q([image: there is no content](α,β);[image: there is no content],Ω11k), [image: there is no content] and:



[image: there is no content]=∫[image: there is no content](ak,bk)zz⊤ζk(2π)q/2|Ω11k|1/2exp{-z⊤Ω11k-1z2}dz.








We see that these moments of Equation (21) agree with the formula for the mean and covariance matrix of the untruncated marginal distribution of a general multivariate truncated distribution given by [23]. Readers are referred to [24] with the R package tmvtnorm and [25] with the R package mvtnorm for implementing calculations of [image: there is no content] and [image: there is no content] involved in the first and second moments.

When the sampling information, i.e., the observed training samples, is augmented by the proper information of prior knowledge, the anomalies of the maximum likelihood estimate of the SSMN model, investigated by [16], would disappear in the HSSMN [image: there is no content] model. Furthermore, note that the conditional distribution of [image: there is no content] in Equation (16) is a [image: there is no content]-dimensional one; and hence, its Gibbs sampling needs to be performed by using the inverse of the matrix of order [image: there is no content], which may cause computational costs in implementing the MCMC method. For large q, a more computationally-convenient Gibbs sampler can be considered based on the full conditional posterior distributions of [image: there is no content], [image: there is no content], than the Gibbs sampler with [image: there is no content] in Equation (16), where [image: there is no content]≡Vec([image: there is no content]) and [image: there is no content]≡(λk1,…,λkq).

For this purpose, we defined the following notations: for [image: there is no content],



λ˜k(j)=(Ej⊗Ip)[image: there is no content],θ˜k(j)=(Ej⊗Ip)μ[image: there is no content],










Ω˜k(j)=(Ej⊗Ip)Σ[image: there is no content](Ej⊗Ip)⊤,Ei=([image: there is no content],e1,…,ej-1,ej+1,…,eq)⊤,








where [image: there is no content] denotes the j-th column of [image: there is no content], namely an elementary vector with unity for its j-th element and zeros elsewhere. Furthermore, we consider the following partitions:


λ˜k(j)=[image: there is no content][image: there is no content],θ˜k(j)=[image: there is no content]θ˜k(2j),andΩ˜k(j)=[image: there is no content]Ω˜k12(j)[image: there is no content]Ω˜k22(j),








where the orders of [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], respectively. Under these partitions, the conditional property of a multivariate normal distribution leads to the full conditional posterior distributions of [image: there is no content] given by:


[image: there is no content]|Θ(k)\[image: there is no content],yk∼Nqμ[image: there is no content],Σ[image: there is no content],



(22)




for [image: there is no content], where:


μ[image: there is no content]=θ˜k(1j)+Ω˜k12Ω˜k22-1([image: there is no content]-θ˜k(2j))andΣ[image: there is no content]=Ω˜k11(j)-Ω˜k12(j)Ω˜k22(j)-1Ω˜k21(j).








When p is large, we may partition [image: there is no content] into two vectors with smaller dimensions, say [image: there is no content]=([image: there is no content](1)⊤,[image: there is no content](2),⊤)⊤, then use their full conditional normal distributions for the Gibbs sampler.

Now, the posterior sampling can be implemented by using all of the conditional posterior Equations (14)–(20). The Gibbs sampler and Metropolis–Hastings algorithm within the Gibbs sampler may be used to obtain posterior samples of all of the unknown parameters [image: there is no content]. Note that in the case where the [image: there is no content]-dimensional matrix is too large to manipulate for computation, the Gibbs sampler can be modified by replacing the full conditional posterior Equation (16) with Equation (22). That is, as indicated by Equation (22), the modified Gibbs sampler based on Equation (22) would be more convenient for numerical computation than the first one using Equation (16). The detailed Markov chain Monte Carlo algorithm with Gibbs sampling is discussed in the next subsection.



3.3. Markov Chain Monte Carlo Sampling Scheme

It is not complicated to construct an MCMC sampling scheme working with Θ(k)={[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]}, since a routine Gibbs sampler would work to generate posterior samples of ([image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]) based on each of their full conditional posterior distributions obtained in Section 3.2. In the posterior sampling of [image: there is no content], [image: there is no content] and [image: there is no content], Metropolis–Hastings within the Gibbs algorithm would be used, since their conditional posterior densities do not have explicit forms of known distributions as in Equation (15), Equation (19) and Equation (20).

Here, for simplicity, we considered the MCMC algorithm based on the HSSMN[image: there is no content] model with a known screening scheme, in which [image: there is no content] and [image: there is no content] are assumed to be known. The extension to the general HSSMN[image: there is no content] model with unknown [image: there is no content] and [image: there is no content] can be made without difficulty.

The MCMC algorithm starts with some initial values [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] The detailed posterior sampling steps are as follows:


	Step 1: generate [image: there is no content] by using the full conditional posterior distribution in Equation (14).


	Step 2: generate [image: there is no content] by using the full conditional posterior distribution in Equation (16).


	Step 3: generate inverse-Wishart random matrix [image: there is no content] by using the full conditional posterior distribution in Equation (17).


	Step 4: generate independent q-variate truncated normal random variables [image: there is no content] by using the full conditional posterior distribution in Equation (18).


	Step 5: given the current values {[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]}, we independently generate a candidate [image: there is no content] from a proposal density q(ηki*|[image: there is no content])=g(ηki*), as suggested by [26], which is used for a Metropolis–Hastings algorithm. Then, accept the candidate value with the acceptance rate:



α([image: there is no content],ηki*)=minp(Θ(k)|ηki*)p(Θ(k)|[image: there is no content])),1








[image: there is no content] Because the target density is proportional to p(Θ(k)|[image: there is no content])g([image: there is no content]) and p(Θ(k)|[image: there is no content]) is uniformly bounded for [image: there is no content] where:



p(Θ(k)|[image: there is no content])=ϕp(xki;[image: there is no content]+[image: there is no content][image: there is no content],κ([image: there is no content])[image: there is no content])ϕq([image: there is no content];0,κ([image: there is no content])[image: there is no content])Φ¯q[image: there is no content](ak,bk);0,κ([image: there is no content])[image: there is no content]








and [image: there is no content] is the density of mixing variable [image: there is no content]. Note that [image: there is no content]=(ηk1,…,ηk[image: there is no content])⊤.




When one conducts a posterior inference of the HSSMN ([image: there is no content]) model using the samples obtained from the MCMC sampling algorithm, the following points should be noted.


	(i)

	See, e.g., [18], for the sampling method for [image: there is no content] from various mixing distributions g([image: there is no content]) of the SMN distributions, such as the multivariate t, multivariate [image: there is no content] , multivariate [image: there is no content] and multivariate [image: there is no content][image: there is no content] models.



	(ii)

	Suppose the HSSMN([image: there is no content]) model involves unknown [image: there is no content]. Then, as indicated by the full conditional posterior of [image: there is no content] in Equation (15), the complexity of the conditional distribution prevents us from using straightforward Gibbs sampling. Instead, we may use a simple random walk Metropolis algorithm that uses a normal proposal density q([image: there is no content]|[image: there is no content])=q(|[image: there is no content]-[image: there is no content]|) to sample from the conditional distribution of [image: there is no content]; that is, given the current point is [image: there is no content], the candidate point is [image: there is no content]∼Nq([image: there is no content],D), where a diagonal matrix D should be turned, so that the acceptance rate of the candidate point is around 0.25 (see, e.g., [26]).



	(iii)

	When the HSSMN([image: there is no content]) model involves unknown [image: there is no content]: The MCMC sampling algorithm, using the full conditional posterior Equation (19) is not straightforward, because the conditional posterior density is unknown and complex. Instead, we may apply a Metropolized hit-and-run algorithm, described by [27], to sample from the conditional posterior of [image: there is no content].



	(iv)

	One can easily calculate the posterior estimate of [image: there is no content]=([image: there is no content],[image: there is no content]) by using that of [image: there is no content], because the re-parameterizing relations are [image: there is no content] and [image: there is no content]=ΔkΣ0k-1.








4. The Predictive Classification Rule

Suppose we have K populations [image: there is no content], [image: there is no content], each specified by the HSSMN[image: there is no content] model. For each of the populations, we have the screened training sample [image: there is no content]k comprised of a set of independent observations {xki,i=1,…,[image: there is no content]} whose population level is [image: there is no content] Let x be assigned to one of the K populations, with prior probability [image: there is no content] of belonging to [image: there is no content], ∑k=1K[image: there is no content]=1. Then, the predictive density of x given [image: there is no content] under the HSSMN[image: there is no content] model with the space [image: there is no content] is:



p(x|[image: there is no content],z=k)=∫[image: there is no content]p(x|Θ(k))p(Θ(k)|[image: there is no content])dΘ(k),k=1,…,K,



(23)




and the posterior probability that x belongs to [image: there is no content], i.e., p(z=k|[image: there is no content],x)=p(x∈[image: there is no content]|[image: there is no content],x), is:


p(x∈[image: there is no content]|[image: there is no content],x)=p(x|[image: there is no content],z=k)p(z=k|[image: there is no content])∑j=1Kp(x|[image: there is no content],z=j)p(z=j|[image: there is no content]),k=1,…,K,



(24)




where [image: there is no content]=⋃k=1K[image: there is no content]k, p(x|Θ(k)) is equal to Equation (6) and p(Θ(k)|[image: there is no content]) is the joint posterior density given in Equation (13). We see from Equation (24) that the total posterior probability of misclassifying x from [image: there is no content] to [image: there is no content], [image: there is no content] is defined by:


TPM(j)=∑i≠j;i=1Kp(x|[image: there is no content],z=i)p(z=i|[image: there is no content])∑ℓ=1Kp(x|[image: there is no content],z=ℓ)p(z=ℓ|[image: there is no content]).



(25)




We minimize the misclassification error at this point if we choose j, so as to minimize Equation (25); that is, we select k that gives the maximum posterior probability p(x∈[image: there is no content]|[image: there is no content],x) (see, e.g., Theorem 6.7.1 of [28] (p. 234). Thus, an optimal Bayesian predictive discrimination rule that minimizes the classification error is to classify x into [image: there is no content], if [image: there is no content], where the optimal classification region is given by:



[image: there is no content]:p(x|[image: there is no content],z=k)p(z=k|[image: there is no content])>p(x|[image: there is no content],z=j)p(z=j|[image: there is no content]),for allj≠k;k=1,…,K,



(26)




p(z=k|[image: there is no content]) is the posterior probability of population [image: there is no content] given the dataset [image: there is no content]. If we assume the values of [image: there is no content]’s are a priori known, then p(z=k|[image: there is no content])=[image: there is no content].

Since we are unable to obtain an analytic solution of Equation (26), a numerical approach is required. Thus, we used the MCMC method of the previous section to draw samples from the posterior density of the parameters, p(Θ(k)|[image: there is no content]), to approximate the predictive density, Equation (23), by:



p(x|[image: there is no content],z=k)≈1[image: there is no content]-M∑t=M+1[image: there is no content]p(x|[image: there is no content]),k=1,…,K,



(27)




where [image: there is no content]’s are posterior samples generated from the MCMC process under the HSSMN[image: there is no content] model and M and [image: there is no content] are the burn-in period and run length, respectively.
If we assume Dirichlet priors for [image: there is no content], that is:



[image: there is no content]








(see, e.g., [19] (p. 143) for the distributional properties), then:


p(z=k|[image: there is no content])=E[[image: there is no content]|[image: there is no content]]=dk+[image: there is no content]∑jKdj+nj,k=1,…,K-1



(28)




and p(z=K|[image: there is no content])=1-∑j=kK-1p(z=k|[image: there is no content]).
Thus, the posterior probabilities in Equation (24) and the minimum error classification region [image: there is no content] in Equation (26) can be generated within the MCMC scheme, which uses Equation (27) to approximate the predictive densities involved in Equation (24) and Equation (26).



5. Simulation Study

This section presents results of a simulation study to show the convergence of the MCMC algorithm and the performance of the [image: there is no content]. Simulation of the training sample observations, model estimation by the MCMC algorithm and a comparison of classification results among three BPDA methods were implemented by coding the R package program. The three methods consist of two proposed [image: there is no content] methods (i.e., [image: there is no content] and [image: there is no content] for classifying RSN and RSt populations) and [image: there is no content] by [11] (for classifying unscreened normal populations).


5.1. A Simulation Study: Convergence of the MCMC Algorithm

This simulation study considers inference of the HSSMN[image: there is no content] model with a two-dimensional case by generating a training sample of one thousand observations, [image: there is no content], from each population [image: there is no content], [image: there is no content] We considered the following specific choice of parameters, i.e., [image: there is no content]=(μk1,μk2)⊤, [image: there is no content], [image: there is no content], [image: there is no content](α,β), [image: there is no content]=Vec(Λk⊤)=(λk1,…,λk4)⊤ and [image: there is no content]=Σk-ΔkΣ0k-1Δk={ψkij} matrices, for generating a synthetic data from [image: there is no content],



[image: there is no content]=1+k-2+k,[image: there is no content]=7+εk-2-24+εk,α=[image: there is no content][image: there is no content],β=44,[image: there is no content]=(0,0)⊤,Δk=2120,Σk=3+εk001+εk,andεk=0.1×k.








Based on the above parameter values with [image: there is no content], we simulated 200 sets of three training samples of each size [image: there is no content] from three populations [image: there is no content], [image: there is no content] Two cases of screened populations were assumed, that is [image: there is no content]:RSNp([image: there is no content](α,β);[image: there is no content],[image: there is no content]) and [image: there is no content]:RStp([image: there is no content](α,β);[image: there is no content],[image: there is no content],ν=5). The respective datasets were generated by using the stochastic representation of each population (see Lemma 1 for the representation). Given a generated training sample, corresponding population parameters were estimated by using the MCMC algorithm based on the HSSMN[image: there is no content] model, Equation (12), for each screened population, [image: there is no content], distribution. We used [image: there is no content]=0, [image: there is no content] and [image: there is no content]=I2 as the initial values of the MCMC algorithm. To satisfy an objective Bayesian perspective considered by [29], we need to specify the hyper-parameters (θk,δk,Ωk,Ω0k,Hk,[image: there is no content],Qk,τk,γk) of the HSSMN[image: there is no content] model, so as to be insensitive to changes of the priors. Thus, we assumed that we have no information about the parameters. To specify this, we adopted [image: there is no content], [image: there is no content], [image: there is no content], Ω0k=103[image: there is no content], Hk=10-3[image: there is no content], [image: there is no content]=10-3Ip, Qk=10-3[image: there is no content], [image: there is no content] and [image: there is no content] (see, e.g., [18]).

The MCMC samplers were based on 20,000 iterations as burn-in, followed by a further 20,000 iterations with a thinning size of 10. Thus, the final MCMC samples with a size of 2000 were obtained for each HSSMN[image: there is no content] model. Table 1 only provides posterior summaries for the parameters of the [image: there is no content] distribution for the sake of saving space. From Column 4–Column 9 of the table list, the mean and three quantiles of 200 sets of posterior samples, which were obtained from the MCMC method, were repeatedly applied to the 200 sets of training sample of size [image: there is no content] Then, the remaining two columns of the table list formal convergence test results of the MCMC algorithm. In estimating the Monte Carlo error (MC error) in Column 5, we used the batch mean method with 50 batches, see e.g., [30] (pp. 39–40). The low values of the MC errors indicate that the variability of each estimate due to the simulation is well controlled. The table also compares the MCMC results with the true parameter values (listed in Column 3): (i) each parameter value in Column 3 is located in the credible interval (2.5% quantile, 97.5% quantile); (ii) for each parameter, we see that the difference between its true value and corresponding posterior mean is less than 2 × the standard error (s.e.). Thus, the posterior summaries, obtained by using the weakly informative priors, indicate that the MCMC method based on the HSSMN[image: there is no content] model performs well in estimating the population parameters, regardless of the SSMN models (RSN and RSt) considered.

Table 1. Posterior summaries of 200 Markov chain Monte Carlo (MCMC) results for the [image: there is no content] models.















	Model ([image: there is no content])
	Parameter
	True
	Mean
	MC Error
	s.e.
	2.5%
	Median
	97.5%
	[image: there is no content]
	p-Value





	RSN
	[image: there is no content]
	2.000
	1.966
	0.003
	0.064
	1.882
	1.964
	2.149
	1.014
	0.492



	
	[image: there is no content]
	−1.000
	−0.974
	0.002
	0.033
	−1.023
	−0.974
	−0.903
	1.011
	0.164



	
	[image: there is no content]
	0.312
	0.320
	0.008
	0.159
	0.046
	0.322
	0.819
	1.021
	0.944



	
	[image: there is no content]
	0.406
	0.407
	0.007
	0.164
	0.030
	0.417
	0.872
	1.018
	0.107



	
	[image: there is no content]
	0.250
	0.253
	0.004
	0.083
	0.082
	0.256
	0.439
	1.019
	0.629



	
	[image: there is no content]
	0.125
	0.133
	0.004
	0.067
	0.003
	0.133
	0.408
	1.017
	0.761



	
	[image: there is no content]
	1.968
	2.032
	0.005
	0.130
	1.743
	2.008
	2.265
	1.034
	0.634



	
	[image: there is no content]
	−0.625
	−0.627
	0.002
	0.098
	−0.821
	−0.617
	−0.405
	1.022
	0.778



	
	[image: there is no content]
	0.500
	0.566
	0.001
	0.039
	0.465
	0.557
	0.638
	1.018
	0.445



	RSt
	[image: there is no content]
	2.000
	2.036
	0.004
	0.069
	1.867
	2.050
	2.166
	1.015
	0.251



	
	[image: there is no content]
	−1.000
	−1.042
	0.003
	0.036
	−1.137
	−1.054
	−0.974
	1.012
	0.365



	
	[image: there is no content]
	0.312
	0.318
	0.008
	0.072
	0.186
	0.320
	0.601
	1.017
	0.654



	
	[image: there is no content]
	0.406
	0.405
	0.006
	0.074
	0.262
	0.414
	0.562
	1.019
	0.712



	
	[image: there is no content]
	0.250
	0.255
	0.005
	0.051
	0.113
	0.257
	0.387
	1.023
	0.661



	
	[image: there is no content]
	0.125
	0.136
	0.005
	0.055
	0.027
	0.133
	0.301
	1.019
	0.598



	
	[image: there is no content]
	1.968
	1.906
	0.006
	0.108
	1.781
	1.996
	2.211
	1.023
	0.481



	
	[image: there is no content]
	−0.625
	−0.620
	0.003
	0.101
	−0.818
	−0.615
	−0.422
	1.021
	0.541



	
	[image: there is no content]
	0.500
	0.459
	0.002
	0.044
	0.366
	0.457
	0.578
	1.016
	0.412










Some of the trace plots from an MCMC run are provided in Figure 1. Each plot demonstrates a parallel zone centered near the true parameter value of interest with no obvious tendency or periodicity. These plots and the small MC error values listed in Table 1 convince us of the convergence of the MCMC algorithm. For a formal diagnostic check, we calculated the Brooks and Gelman diagnostic statistic [image: there is no content] (adjusted shrinkage factor introduced by [31]) using a MCMC runs with three chains in parallel, each one starting from different initial values. The calculated [image: there is no content] value for each parameter is listed in the 10th column of Table 1. Table 1 shows that all of the [image: there is no content] values are close to one, indicating the convergence of the MCMC algorithm. For another formal diagnostic check, we applied the Heidelberger–Welch diagnostic tests of [32] to single-chain MCMC runs, which were used to plot Figure 1. They consist of the stationarity test and the half-width test for the MCMC runs of each parameter. The 11th column of Table 1 lists the p-value of the test for the stationarity of the single Markov chain, where all of the p-values are larger than 0.1. Furthermore, all of the the half-width tests, testing the convergence of the Markov chain of a single parameter, were passed. Thus, all of the diagnostic checking methods (formal and informal methods) advocate the convergence of the proposed MCMC algorithm, and hence, we can say that it generates an MCMC sample that comes from the marginal posterior distributions of interest (i.e., the SSMN population parameters). It is seen that the similar estimation results in Table 1 apply to the posterior summaries of the other parameters in [image: there is no content] and [image: there is no content] distributions. According to these simulation results, we can say that the MCMC algorithm constructed in Section 3.3 provides an efficient method for estimating the SSMN distributions. To achieve this quality of MCMC algorithm for the higher dimensional case (with large p and/or q values), the diagnostic tests, considered in this section, should be used to monitor the convergence of the algorithm; for more details, see [30].

Figure 1. Trace plots of [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] generated from HSSMN[image: there is no content] of the RSt with [image: there is no content] model.
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5.2. A Simulation Study: Performance of the Predictive Methods

This simulation study compares the performance of three BPDA methods using training samples generated from three rectangle screened populations, [image: there is no content] ([image: there is no content]). The three methods compared are [image: there is no content], [image: there is no content] with degrees of freedom [image: there is no content], and [image: there is no content] (a standard predictive method with no screening). Two different cases of rectangle screened population distributions were used to generate the training samples. One case is the rectangle screened population [image: there is no content] with the RSNp([image: there is no content](α,β);[image: there is no content],[image: there is no content]) distribution. The other case is [image: there is no content] with the RStp([image: there is no content](α,β);[image: there is no content],[image: there is no content],ν=5) distribution in order to examine the robustness of [image: there is no content] in discriminating observations from heavily-tailed empirical distributions. For each case, we obtained 200 sets of training and validation (or testing) samples of each size [image: there is no content] generated from the rectangle screened distribution of [image: there is no content]. They are denoted by [image: there is no content]k(i) and [image: there is no content] The i-th validation sample [image: there is no content] that corresponds to the training [image: there is no content]k(i) sample was simply obtained by setting Vk(i)=[image: there is no content]k(i-1)(i=1,…,200), where [image: there is no content]k(0)=[image: there is no content]k(200).

The parameter values of the screened population distributions of the three populations [image: there is no content] were given by:



[image: there is no content]=0qε(-2+k)*1p,[image: there is no content]=[image: there is no content]Δ⊤Δk*Ip,Δ=ρJp×q′,α=a1q,β=1q








for [image: there is no content], [image: there is no content] and [image: there is no content] Further, we assumed that the parameters [image: there is no content] and [image: there is no content] of the underlying q-dimensional screening vector [image: there is no content] and the rectangle screening region [image: there is no content] were known as given above. Thus, we may investigate the performance of the BPDA methods by varying the values of correlation ρ, dimension p of the predictor vector, rectangle screened region and differences among the three population means and covariance matrices whose expressions can be found in [4]. Here, [image: there is no content] is a [image: there is no content] summing vector whose every element is unity, and Jp×q′ denote a [image: there is no content] matrix whose every odd row is equal to (1, 0) and every even row is (0, 1).
Using the training samples, we calculated the approximate predictive densities Equation (27) by the MCMC algorithm proposed in Section 3.3. In this calculation, we assumed that [image: there is no content]=1/3, because [image: there is no content] Thus, the posterior probabilities in Equation (24) and the minimum error classification region [image: there is no content] in Equation (26) can be estimated within the MCMC scheme, which uses Equation (27) to approximate the predictive densities involved in both Equation (24) and Equation (26). Then, we estimated the classification error rates of the three BPDA methods by using the validation samples, [image: there is no content] To apply the [image: there is no content] and [image: there is no content] methods for classifying the simulated training samples, we used the optimal classification rule, which uses Equation (26), while we used the posterior odds ratio given in [11] to implement the [image: there is no content] method. Then, we compare the classification results in terms of error rates. The error rate of each population (ER[image: there is no content]) and the total error rate (Total[image: there is no content]) were estimated by:



TotalER=∑k=13[image: there is no content]ER[image: there is no content]andER[image: there is no content]=[image: there is no content][image: there is no content],k=1,2,3,








where [image: there is no content] is the number of misclassified observations out of [image: there is no content] validation sample observations from [image: there is no content].
For each case of [image: there is no content] distributions, the above procedure was implemented on each set of 200 validation samples to evaluate the error rates of the BPDA methods. Here, [Case 1]denotes that the training (and validation) samples were generated from [image: there is no content]:RSNp([image: there is no content](α,β);[image: there is no content],[image: there is no content]), and [Case 2] indicates that they were generated from [image: there is no content]:RStp([image: there is no content](α,β);[image: there is no content],[image: there is no content],ν=5), [image: there is no content] For each case, Table 2 compares the mean of classification error rates obtained from the 200 replicated classifications by using the BPDA methods. The error rates and their standard errors in Table 2 are indicated as follows. (i) Both the [image: there is no content] and [image: there is no content] methods work reasonably well in classifying screened observations, compared to the [image: there is no content] method. This implies that, in BPDA, they provide better classification results than the [image: there is no content], provided that [image: there is no content]’s are screened by a rectangle screening scheme. (ii) The performance of the [image: there is no content] methods becomes better as the correlation (ρ) between the screening variables and predictor variables becomes larger. (iii) For a comparison of the error rates with respect to the values of a, we see that the [image: there is no content] methods tends to yield better performance in the discrimination of a screened by a small rectangle screened region. (iv) The performance of the three BPDA methods improves when the differences of the mean increases. (v) An increase in the sizes of dimension p and training sample n also tends to yield a better performance of the BPDA methods. (vi) As expected, the performance of the [image: there is no content] in [Case 1] is better than the other two methods, because the estimates of error rates are not covered by the corresponding two standard errors. Further, a considerable gain in the error rates over the [image: there is no content] manifests the utility of the [image: there is no content] in the discriminant analysis. (vii) As for [Case 2], the table indicates that the performance of the [image: there is no content] is better than the two other methods. This demonstrates the robustness of the [image: there is no content] method in the discrimination with screened and heavy tailed data.


Table 2. Classification error rates: the respective standard errors are in parenthesis.
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[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	

	

	

	

	

	
[Case 1]

	

	




	
2

	
20

	
0.5

	
[image: there is no content]

	
0.322(0.0025)

	
0.174(0.0022)

	
0.281(0.0024)

	
0.106(0.0020)




	

	

	

	
[image: there is no content]

	
0.335(0.0025)

	
0.185(0.0023)

	
0.306(0.0025)

	
0.115(0.0021)




	

	

	

	
[image: there is no content]

	
0.350(0.0025)

	
0.206(0.0023)

	
0.356(0.0025)

	
0.205(0.0021)




	

	

	
[image: there is no content]

	
[image: there is no content]

	
0.329(0.0027)

	
0.182(0.0023)

	
0.301(0.0025)

	
0.134(0.0021)




	

	

	

	
[image: there is no content]

	
0.348(0.0024)

	
0.193(0.0022)

	
0.319(0.0024)

	
0.142(0.0021)




	

	

	

	
[image: there is no content]

	
0.349(0.0025)

	
0.201(0.0023)

	
.349(0.0025)

	
0.192(0.0020)




	

	
100

	
0.5

	
[image: there is no content]

	
0.303(0.0016)

	
0.161(0.0014)

	
0.266(0.0015)

	
0.097(0.0013)




	

	

	

	
[image: there is no content]

	
0.316(0.0017)

	
0.165(0.0013)

	
0.275(0.0015)

	
0.101(0.0013)




	

	

	

	
[image: there is no content]

	
0.351(0.0025)

	
0.186(0.0023)

	
0.356(0.0025)

	
0.186(0.0021)




	

	

	
[image: there is no content]

	
[image: there is no content]

	
0.306(0.0015)

	
0.163(0.0014)

	
0.282(0.0014)

	
0.116(0.0013)




	

	

	

	
[image: there is no content]

	
0.318(0.0017)

	
0.168(0.0015)

	
0.291(0.0015)

	
0.121(0.0013)




	

	

	

	
[image: there is no content]

	
0.338(0.0024)

	
0.172(0.0023)

	
0.337(0.0026)

	
0.170(0.0021)




	
5

	
20

	
0.5

	
[image: there is no content]

	
0.318(0.0025)

	
0.158(0.0022)

	
0.240(0.0024)

	
0.101(0.0020)




	

	

	

	
[image: there is no content]

	
0.327(0.0026)

	
0.175(0.0023)

	
0.276(0.0025)

	
0.114(0.0021)




	

	

	

	
[image: there is no content]

	
0.337(0.0026)

	
0.183(0.0023)

	
0.332(0.0025)

	
0.184(0.0020)




	

	

	
[image: there is no content]

	
[image: there is no content]

	
0.321(0.0025)

	
0.165(0.0023)

	
0.231(0.0025)

	
0.109(0.0021)




	

	

	

	
[image: there is no content]

	
0.330(0.0026)

	
0.207(0.0023)

	
0.318(0.0025)

	
0.141(0.0021)




	

	

	

	
[image: there is no content]

	
0.345(0.0026)

	
0.216(0.0024)

	
0.346(0.0025)

	
0.218(0.0021)




	

	
100

	
0.5

	
[image: there is no content]

	
0.280(0.0015)

	
0.150(0.0014)

	
0.233(0.0015)

	
0.084(0.0012)




	

	

	

	
[image: there is no content]

	
0.291(0.0016)

	
0.153(0.0015)

	
0.249(0.0015)

	
0.092(0.0013)




	

	

	

	
[image: there is no content]

	
0.307(0.0025)

	
0.186(0.0023)

	
0.308(0.0025)

	
0.189(0.0021)




	

	

	
[image: there is no content]

	
[image: there is no content]

	
0.291(0.0016)

	
0.163(0.0014)

	
0.239(0.0015)

	
0.103(0.0013)




	

	

	

	
[image: there is no content]

	
0.294(0.0016)

	
0.169(0.0015)

	
0.253(0.0015)

	
0.117(0.0013)




	

	

	

	
[image: there is no content]

	
0.305(0.0024)

	
0.175(0.0022)

	
0.301(0.0025)

	
0.176(0.0021)




	

	

	

	

	

	
[Case 2]

	

	




	
2

	
20

	
0.5

	
[image: there is no content]

	
0.351(0.0025)

	
0.189(0.0022)

	
0.310(0.0025)

	
0.114(0.0021)




	

	

	

	
[image: there is no content]

	
0.320(0.0024)

	
0.175(0.0023)

	
0.293(0.0024)

	
0.105(0.0020)




	

	

	

	
[image: there is no content]

	
0.367(0.0026)

	
0.185(0.0023)

	
0.365(0.0024)

	
0.191(0.0020)




	

	

	
[image: there is no content]

	
[image: there is no content]

	
0.349(0.0026)

	
0.192(0.0022)

	
0.317(0.0024)

	
0.149(0.0022)




	

	

	

	
[image: there is no content]

	
0.321(0.0023)

	
0.183(0.0021)

	
0.304(0.0023)

	
0.132(0.0021)




	

	

	

	
[image: there is no content]

	
0.356(0.0025)

	
0.210(0.0023)

	
0.357(0.0025)

	
0.199(0.0020)




	

	
100

	
0.5

	
[image: there is no content]

	
0.313(0.0016)

	
0.164(0.0015)

	
0.273(0.0015)

	
0.098(0.0014)




	

	

	

	
[image: there is no content]

	
0.306(0.0015)

	
0.158(0.0013)

	
0.265(0.0014)

	
0.091(0.0012)




	

	

	

	
[image: there is no content]

	
0.346(0.0023)

	
0.179(0.0022)

	
0.341(0.0024)

	
0.175(0.0022)




	

	

	
[image: there is no content]

	
[image: there is no content]

	
0.321(0.0015)

	
0.170(0.0014)

	
0.287(0.0015)

	
0.119(0.0015)




	

	

	

	
[image: there is no content]

	
0.310(0.0014)

	
0.164(0.0013)

	
0.281(0.0013)

	
0.112(0.0013)




	

	

	

	
[image: there is no content]

	
0.329(0.0025)

	
0.181(0.0025)

	
0.327(0.0027)

	
0.176(0.0022)




	
5

	
20

	
0.5

	
[image: there is no content]

	
0.329(0.0024)

	
0.181(0.0024)

	
0.281(0.0023)

	
0.119(0.0021)




	

	

	

	
[image: there is no content]

	
0.317(0.0023)

	
0.164(0.0020)

	
0.265(0.0021)

	
0.094(0.0020)




	

	

	

	
[image: there is no content]

	
0.340(0.0027)

	
0.196(0.0024)

	
0.314(0.0026)

	
0.152(0.0022)




	

	

	
[image: there is no content]

	
[image: there is no content]

	
0.342(0.0025)

	
0.205(0.0024)

	
0.332(0.0024)

	
0.194(0.0024)




	

	

	

	
[image: there is no content]

	
0.328(0.0022)

	
0.171(0.0022)

	
0.275(0.0022)

	
0.118(0.0021)




	

	

	

	
[image: there is no content]

	
0.351(0.0026)

	
0.224(0.0025)

	
0.329(0.0025)

	
0.175(0.0025)




	

	
100

	
0.5

	
[image: there is no content]

	
0.284(0.0016)

	
0.155(0.0018)

	
0.283(0.0016)

	
0.154(0.0013)




	

	

	

	
[image: there is no content]

	
0.271(0.0014)

	
0.149(0.0014)

	
0.238(0.0014)

	
0.086(0.0011)




	

	

	

	
[image: there is no content]

	
0.294(0.0026)

	
0.192(0.0024)

	
0.274(0.0026)

	
0.161(0.0024)




	

	

	
[image: there is no content]

	
[image: there is no content]

	
0.289(0.0016)

	
0.177(0.0015)

	
0.288(0.0016)

	
0.175(0.0013)




	

	

	

	
[image: there is no content]

	
0.278(0.0013)

	
0.162(0.0013)

	
0.231(0.0014)

	
0.107(0.0011)




	

	

	

	
[image: there is no content]

	
0.312(0.0025)

	
0.178(0.0025)

	
0.270(0.0026)

	
0.141(0.0022)














6. Conclusions

In this paper, we proposed an optimal predictive method (BPDA) for the discriminant analysis of multidimensional screened data. In order to incorporate the prior information about a screening mechanism flexibly in the analysis, we introduced the SSMN models. Then, we provided the HSSMN[image: there is no content] model for Bayesian inference of the SSMN populations, where the screened data were generated. Based on the HSSMN[image: there is no content] model, posterior distributions of [image: there is no content] were derived, and the calculation of the optimal predictive classification rule was discussed by using an efficient MCMC method. Numerical studies with simulated screened observations were given to illustrate the convergence of the MCMC method and the usefulness of the BPDA.

The methodological results of the Bayesian estimation procedure proposed in the paper can be extended to other multivariate linear models that incorporate non-normal errors, a general covariance matrix and truncated random covariates. For example, the seemingly unrelated regression (SUR) model and the factor analysis model (see, e.g., [19]) can be explained in the same framework of the proposed HSSMN[image: there is no content] in Equation (12). The former is a special case of the HSSMN[image: there is no content] model in which [image: there is no content]’s are observable as predictors. Therefore, when the regression errors are non-normal, it would be plausible to apply the proposed approach by using the HSSMN[image: there is no content] model to work with a robust SUR model, whereas the latter is a natural extension of the oblique factor analysis model to the case of that with non-normal measurement errors. The HSSMN[image: there is no content] model can also be extended to accommodate missing, values as done in the other models by [33,34]. We are hopeful to address these issues, as well, in the near future.
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Appendix

Derivations of the full conditional posterior distributions


	(1)

	The full conditional posterior density of [image: there is no content] given [image: there is no content],[image: there is no content],[image: there is no content],Fk,[image: there is no content],[image: there is no content] and [image: there is no content]k is proportional to:



∏i=1[image: there is no content]ϕp(xki;[image: there is no content]+[image: there is no content][image: there is no content],κ([image: there is no content])[image: there is no content])ϕp([image: there is no content];θk,Ωk)∝exp-12([image: there is no content]-μ[image: there is no content])⊤Σ[image: there is no content]-1([image: there is no content]-μ[image: there is no content])








which is a kernel of the Np(μ[image: there is no content],Σ[image: there is no content]) distribution.



	(2)

	It is obvious from the joint posterior density in Equation (13).



	(3)

	It is straightforward to see from Equation (13) that the full conditional posterior density of [image: there is no content] is given by:



p([image: there is no content]|Θ(k)\[image: there is no content],[image: there is no content]k)∝exp-12tr[Ψk-1Vk]∝exp-12tr[Ψk-1([image: there is no content]-Λk*)Qk([image: there is no content]-Λk*)⊤]∝exp-12([image: there is no content]-μ[image: there is no content])⊤Σ[image: there is no content]-1([image: there is no content]-μ[image: there is no content]).








This is a kernel of N[image: there is no content](μ[image: there is no content],Σ[image: there is no content]), where Vk=(Xk-[image: there is no content][image: there is no content])D(κ([image: there is no content]))-1(Xk-[image: there is no content][image: there is no content])⊤+([image: there is no content]-Λ0k)Hk([image: there is no content]-Λ0k)⊤+[image: there is no content] and [image: there is no content]



	(4)

	We see from Equation (13) that the full conditional posterior density of [image: there is no content] is given by:



p([image: there is no content]|Θ(k)\[image: there is no content],[image: there is no content]k)∝|[image: there is no content]|-([image: there is no content]+q)/2exp-12tr[Ψk-1(Xk-[image: there is no content][image: there is no content])D(κ([image: there is no content]))-1(Xk-[image: there is no content][image: there is no content])⊤×exp-12tr[Ψk-1([image: there is no content]-Λ0k)Hk([image: there is no content]-Λ0k)⊤]×IWp([image: there is no content];[image: there is no content],τk)∝|[image: there is no content]|-([image: there is no content]+τk+q)/2exp-12trΨk-1Vk.








This is a kernel of [image: there is no content]



	(5)

	We see, from Equation (13), that the full conditional posterior densities of [image: there is no content]’s are independent, and each density is given by:



p([image: there is no content]|Θ(k)\[image: there is no content],[image: there is no content]k)∝ϕq([image: there is no content];0,κ([image: there is no content])[image: there is no content])ϕp(xki;[image: there is no content]+[image: there is no content][image: there is no content],κ([image: there is no content])[image: there is no content])I[image: there is no content]∈(ak,bk)∝exp{-12κ([image: there is no content])[fki⊤Σ0k-1+Λk⊤Ψk-1[image: there is no content][image: there is no content]-2fki⊤Λk⊤Ψk-1(xki-[image: there is no content])]}I[image: there is no content]∈[image: there is no content](ak,bk)∝exp-12κ([image: there is no content])([image: there is no content]-μ[image: there is no content])⊤Σ[image: there is no content]-1([image: there is no content]-μ[image: there is no content])I[image: there is no content]∈[image: there is no content](ak,bk)








which is a kernel of the q-variate truncated normal Nqμ[image: there is no content],κ([image: there is no content])Σ[image: there is no content]I[image: there is no content]∈[image: there is no content](ak,bk).



	(6)

	It is obvious from the joint posterior density in Equation (13).



	(7)

	It is obvious from the joint posterior density in Equation (13).
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