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Abstract: The present study provides a thermodynamic analysis of solar thermochemical cycles for
splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to
produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water
splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency.
Based on this purely thermodynamic approach, efficiency trends are discussed. The comprehensive
and vivid representation in T-S diagrams provides researchers in this field with the required
theoretical background to improve process development. Furthermore, results about the required
entropy change in the used redox materials can be used as a guideline for material developers.
The results show that CO2 splitting is advantageous at higher temperature levels, while water
splitting is more feasible at lower temperature levels, as it benefits from a great entropy change
during the splitting step.

Keywords: solar; thermochemical cycle; CSP; water splitting; CO2 splitting; T-S diagram;
efficiency; entropy

1. Introduction

Fossil fuel depletion and the ongoing climate change lead to the need for a sustainable energy
system. One important pillar of an energy system is the availability of fuels. Today, almost all fuels
consumed worldwide are based on petroleum or natural gas, i.e., our mobility relies on unsustainable
raw materials.

In order to improve this situation in the future, great research effort is put into the production
of sustainable fuels, mainly hydrogen and synthetic hydrocarbons. One possible way to produce
hydrogen and carbon monoxide is to apply solar-driven thermochemical cycles for water splitting
or CO2 splitting. The obtained gases can be either used directly as a fuel or further processed in
a Fischer–Tropsch plant to generate synthetic hydrocarbons. Many thermochemical cycles have been
investigated and evaluated in the past [1–4]. The cycle which is subject to most research activities in
this area today is the two-step cycle based on a redox reaction as follows [5]:

1. Endothermic reduction of a metal oxide (MO):

MOxÑMOx´δ ` δ{2 O2 (1)

2. Splitting step (for H2O or CO2)

MOx´δ ` CO2ÑMOx ` δCO (2)

MOx´δ ` H2OÑMOx ` δH2 (3)
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Several thermodynamic evaluations of these cycles, especially the water-splitting cycle have been
conducted [6–9]. In our group, we intend to revive the thermodynamic analysis of these cycles in
a different way, based on vivid graphical representation. Further, we extend the existing work by
analyzing the thermodynamic exigencies for different process parameters (temperatures, pressures).
This way, we obtain the maximum efficiency as well as the required entropy change which the material
needs to undergo. In a previous publication [10], we presented the methodology of the analysis
based on T-S diagram representation. The work was limited to the water-splitting process and the
influence of the solar efficiency was not taken into account. The present paper extends the analysis
by considering also CO2 splitting and comparing it to water splitting. Further, the solar efficiency is
discussed and its influence on the theoretical process efficiency is presented.

2. One-Step Cycle and Solar Efficiency

2.1. Direct Gas Splitting—Thermolysis

In reality, direct splitting of water and CO2 is not as trivial as presented in this paragraph.
However, for the relevant temperature range this representation is sufficient, especially because the
present section has an explanatory purpose only. In order to completely split water at 1 bar into oxygen
and hydrogen, a temperature of about 4315 K is necessary. This high temperature is a result of the large
enthalpy of formation of water and the low entropy change between H2O and the product gases H2

and O2. The T-S representation of one-step water splitting and subsequent recombination at ambient
temperature is shown in Figure 1. The entropy values shown here and in all subsequent figures
in this paper are temperature-dependent and were generated with the thermochemistry software
FactSage [11,12].
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Figure 1. T-S diagram of one step splitting of 1 mol H2O/CO2 at 1 bar and 100% conversion.

The water-splitting curve in Figure 1 encloses an area which represents the energy of formation of
water (237 kJ/molH2O). This energy could be extracted from all water-splitting cycles, for example
by recombining hydrogen and oxygen in an ideal fuel cell. In addition to the water-splitting cycle,
Figure 1 also shows the simplified T-S representation of direct CO2 splitting. Comparing the two
cycles, CO2 splitting seems to be more feasible, because the maximum process temperature is lower.
The larger entropy change in the case of CO2 splitting leads to an increased width of the enclosed
area. Thus, the upper temperature being 3346 K is lower compared to H2O splitting. This is the case,
although the Gibbs free energy change is larger for CO2 splitting (257 kJ/molCO), resulting in a larger
enclosed area in Figure 1.

Due to the high process temperatures, the theoretical efficiency of direct splitting processes is high.
The splitting-cycle efficiency ηsc is based on the net heat input

.
QNET assuming ideal heat recovery.



Entropy 2016, 18, 24 3 of 12

This heat recovery is the result of a pinch-point analysis with minimum temperature difference of 0 K.
Such ideal heat recovery is assumed for all processes throughout this publication. In the case of water
splitting, the enumerator in the efficiency formulation is the Gibbs free energy of formation of water
∆Gf,H2O. In the case of CO2 splitting, the benefit is (∆Gf,CO2 ´ ∆Gf,CO). This leads to the general form:

ηsc “
∆G f
.

QNET

(4)

The efficiency of direct CO2 splitting (ηsc = 90.6%) is advantageous compared to the efficiency
of direct water splitting (nsc = 82.8%). This advantage is due to the fact that the evaporation of water
takes place at a low temperature. Such a low temperature input to a process decreases its efficiency.

2.2. Solar Absorption Efficiency

The solar absorption efficiency describes to which extent the solar radiation reaching the receiver
can be used by a coupled process as thermal energy. It is strongly dependent on the receiver
temperature and the concentration ratio C [13]. The concentration ratio describes the ratio between
the collector aperture area and the absorber aperture area. Rising the receiver temperature as well as
lowering the concentration ratio leads to increased thermal reradiation of the receiver. High reradiation
results in low solar absorption efficiencies. This relation is displayed in Figure 2.
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Figure 2. Maximum absorption efficiency of a black body at different temperatures and
concentration ratios.

In the current analysis, whenever we take the solar absorption efficiency into account, we assume
the receiver temperature to be the reduction temperature, because at this temperature the endothermic
reaction takes place. Further, we set the concentration ratio to a constant value of C = 4000. This is
a quite high value, but for high temperature processes it should be aimed at such high values to avoid
drastic thermal losses. Using solar towers together with secondary optics, such high concentration
ratios can be reached [14]. Considering the absorption efficiency ηabs, the overall solar to useful work
efficiency ηtot is defined as:

ηtot “ ηabs ˆ ηsc (5)

During the following study, the reader should keep in mind that this efficiency formulation
represents an ideal thermodynamic description far from real applications. With a concentration ratio
of C = 4000, the required temperatures for the direct splitting cannot be reached. The concentration
ratios required to reach complete direct gas splitting are close to 8000 (CO2 splitting) and 20,000 (H2O
splitting). Such high concentration ratios are technically not feasible.
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2.3. Two Step Splitting at Normal Pressure, Gas Phase Only

Direct splitting has been discussed before and considered technically not feasible, even when
aiming at lower conversion which would relax the temperature exigencies but at the same time require
high temperature gas separation [5]. Therefore, thermochemical cycles which increase the entropy
difference and thus widen the enclosed area in the T-S diagram have been introduced. Out of many
possible cycles with different numbers of intermediate steps, two-step cycling based on redox reactions
has drawn most attention of the solar fuels research community [15,16]. In our previous paper we
explain the two-step water-splitting process in detail [10]. Here, we directly compare it to the CO2

splitting process. At first, we introduce only the gas phase entropy change, as this is most generic and
the basis of all processes independent of the redox material choice. The T-S diagram in Figure 3 shows
the water-splitting and the CO2-splitting process. The oxidation temperature is set to 1600 K for both
processes. In the following, the CO2-splitting cycle is explained in detail.
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The cycle starts with heating CO2 from ambient to the oxidation temperature. Then each CO2

molecule loses one oxygen atom to the redox material resulting in the product gas carbon monoxide.
In this step, the entropy decreases, because diatomic CO has lower degree of freedom than triatomic
CO2. In the next step, the redox material is heated to the reduction temperature. At this temperature,
oxygen evolves from the redox material leading to a strong entropy increase. This is the endothermal
reduction step which requires solar energy input. As the oxygen and the CO evolve at different parts
of the process, they are kept separately so that entropy of mixing is not regarded here. In the following
step, oxygen and CO are cooled to ambient temperature. Then they are finally recombined to CO2.
In this recombination step, useful work equivalent to the enclosed area in the diagram (Gibbs free
energy of formation) can be extracted. There are three options to draw the T-S diagrams above the
oxidation temperature:

1. In real processes, the product gases (CO and H2 respectively for CO2/water splitting) are not
heated above oxidation temperature. Therefore, one could exclude their contribution to the
overall entropy in the graphs. Then, the entropy would actually drop to zero at the reduction
temperature and rise to the entropy of oxygen at the reduction temperature. When cooling the
oxygen down from the reduction temperature, the product gas entropy would need to be added
leading to a distorted graph, which would be difficult to capture for the reader. Therefore, we did
not choose this option.

2. The entropy contribution of the product gases could also be considered to stay constant while the
reduction takes place. In the T-S representation, this option would result in a straight line upwards
after the oxidation reaction and in a slight change of slope at Tox in the curve representing the
cooling of all gases. This kind of representation is easy to grasp visually, but may be confusing,
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because entropy terms from gases at different temperatures would be added and represented by
only one line at Tred. Therefore, we also did not consider this way of representation.

3. In the T-S diagrams shown in this paper, the product gas is always heated to the reduction
temperature to avoid the confusion which may come up with option 1 or 2. In real applications
this heating would not take place. As long as ideal heat recovery is assumed, which is the case in
this study, the heating of CO to the reduction temperature does not influence the cycle efficiency.
Thus, this is just a question of display and has no effect on the outcome of the analysis.

In the processes shown in Figure 3, all pressures are set to 1 bar. Thus, the only degree of freedom
to adjust the area enclosed by the curves is the reduction temperature (the oxidation temperature
was set to a fixed value of 1600 K). Although the reduction temperatures still reach very high values
of above 2500 K, they could be radically reduced compared to the one-step process. Further, the
CO2-splitting cycle still has a slightly lower reduction temperature than the water-splitting cycle.

The extent to which the reduction temperature can be lowered due to the two-step approach
is determined by the shaded areas in Figure 3 labelled extra area due to second step. These areas
represent the difference between the one-step and the two-step splitting. It can be directly observed
that the impact of the second step is larger in the case of water splitting. In the following paragraph,
we give a possible explanation for this difference. However, for a thorough understanding, an ab initio
analysis is required, which is not within the scope of this work.

Oxidizing the product gases CO and H2 to CO2 and H2O respectively leads to an entropy decrease,
mainly because the number of moles in the gas is reduced. However, the extent of this entropy change
differs remarkably between the two splitting processes. In the case of CO2 splitting, the entropy change
is more than 80% larger than in the case of water splitting. This only applies for the temperature
range at which water is gaseous (being the relevant temperature range in this context). A possible
explanation for this discrepancy is that the CO2 molecule is linear, while the H2O molecule is nonlinear.
Therefore, CO2 has two rotational and four vibrational degrees of freedom, while H2O has three
rotational and three vibrational degrees of freedom. As the energy spacing between the rotational
energy states is closer compared to vibrational energy states, molecules with more rotational freedom
have more possibilities to distribute energy resulting in larger entropy [17]. Nevertheless, CO2 has
higher absolute entropy than H2O, because it is a larger, heavier molecule. But relative to its weight,
water has high entropy which leads to the low entropy decrease when recombining H2 with O2.
As a straightforward consequence to the above, the reduction of water to hydrogen leads to a large
entropy decrease compared to reducing CO2 to CO.

Resulting from this difference in entropy change, a large temperature gap between oxidation
and reduction leads to an advantage of the water-splitting process in terms of potential to lower
the reduction temperature. An example of such a case is displayed in Figure 4. Here, the oxidation
temperature is set to 800 K and all other conditions are the same as in Figure 3.
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At oxidation temperatures below 1100 K, water splitting can be performed at lower reduction
temperatures than CO2 splitting.

Concluding from the above, it is instructive to show the resulting reduction temperature when
changing the oxidation temperature. This dependency is displayed in Figure 5. At an oxidation
temperature of about 1100 K, the two processes have the same reduction temperature. At higher
oxidation temperatures, CO2 splitting leads to lower reduction temperatures, while water splitting is
advantageous at lower oxidation temperatures.

The impact of this trend on the efficiency is displayed in Figure 6. It shows the ideal process
efficiency ηsc as well as the total efficiency ηtot which includes solar absorption losses. Regarding the
process efficiency ηsc, the CO2-splitting process is advantageous in the complete range subject to this
analysis. This is can be explained by the fact that the extra area due to the second step (as shown in
Figure 3) is smaller in the case of CO2 splitting. This area itself has a poor efficiency, because heat
at a high temperature level is dumped. Thus, the process with the smaller extra area has the higher
efficiency ηsc. This trend is reversed when taking the solar absorption efficiency into account. A large
extra area which considerably reduces the upper process temperature is rewarded by good absorption
efficiencies. Thus, at low oxidation temperatures which typically lead to large extra areas, the overall
efficiency ηtot of water splitting is higher compared to CO2 splitting.
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2.4. Two Step Splitting at Reduced Pressure, Gas Phase Only

Up to now, the pressure of all gases was kept at 1 bar in order to introduce the concepts and show
general dependencies. However, real applications work with reduced oxygen pressure in the reduction



Entropy 2016, 18, 24 7 of 12

step. This is accomplished by either sweeping with inert gas reducing the oxygen partial pressure
or by reducing the total pressure with vacuum pumps. Thermodynamically, these two options are
equivalent, so they will not be treated separately in the following.

Typically, the oxygen pressure during reduction is reduced to about 10´4–10´5 bar in order to
further lower the reduction temperature. The T-S diagram representations of the two cycles with low
oxygen pressure during reduction are shown in Figure 7. In the figure, the entropy of the products
with oxygen pressure of 1 bar and 10´4 bar is labelled to show the benefit of lowering the pressure: the
oxygen entropy is increased and thus the enclosed area of the cycle increases, too. This results in the
possibility to considerably decrease the reduction temperature. In the case of Figure 7, the reduction
can take place below 2000 K, while at ambient pressure the reduction temperature would need to be
well above 2400 K.

The effect of this temperature reduction on the efficiency is shown in Figure 8, exemplarily for
Toxidation = 1000 K. The process efficiency ηsc is hardly affected by reducing the pressure, because the
dominating effect limiting the efficiency is the heat dump at oxidation temperature. Only a slight
decrease can be observed when lowering the pressure, because the heat input takes place at lower
temperatures. In strong contrast to that, reducing the pressure brings quite a large benefit when taking
into account the solar absorption efficiency. From 1 bar to 10´5 bar, the total efficiency can almost be
doubled, because the reduction temperature is decreased by about 600 K.
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the efficiency [8,18,19]. Therefore, the pressure reduction should mainly be considered as a technical
advantage rather than an efficiency boost.

2.5. Two Step Splitting at Reduced Pressure, Gas and Solid Phase

A possible approach in system design is to define the temperature limits which are technically
reasonable and then use a material which can work at these temperatures. A typical material candidate
for such an approach is ceria. It can be reduced from CeO2 to CeO2´δ with values of δ reaching from
0 to 0.5. In the relevant temperature range, ceria does not undergo a phase change, but δ increases
steadily with increasing temperature and decreasing oxygen pressure. The entropy change in the
material per mole of oxygen released is considerably higher at low values of δ [20]. The explanation for
this effect is the higher configurational disorder caused by the first oxygen atoms leaving the crystal
structure. The drawback of low values of δ is a high thermal mass which needs to be cycled between
oxidation and reduction temperature at low fuel generation rates. Thus, the lower the δ, the more
important becomes solid phase heat recovery [7,21].

For a complete analysis of a specific redox material, it is important to also consider the enthalpy
of reaction. Only then, it can be determined if a certain process can be accomplished at selected
temperature levels. But in this analysis we want to point out the entropy requirement and discuss it
in a vivid way together with the efficiency. The enthalpy of reaction is assumed to be always of the
value which is necessary to make the reaction feasible. This idealization should be kept in mind when
dealing with specific materials. Thus, in this paper we show the highest possible efficiency which
could be reached with materials perfectly matching the process conditions.

Figure 9 shows the T-S diagram with typical process parameters in the range of recent projects
realizing solar thermochemical cycles [22]. The reduction takes place at 1700 K and a pressure of 10´5

bar. The oxidation temperature is set to 1300 K. In order to keep the representation of the T-S diagrams
consistent and generic, we do not include the absolute entropy value of a possible redox material.
Instead, we only include the entropy difference during oxidation and reduction. The dashed lines in
Figure 9 represent the gas phase entropy only. The required extra entropy change which needs to be
undergone by the redox material in order to reach the necessary ∆G is also marked in the figure.
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Figure 9. T-S diagram of splitting one mole of H2O/CO2 at defined reaction temperatures. The entropy
change required by the redox material is marked.

Analogous to the example in Figure 9, we determined the required entropy change in the redox
material for different process conditions, see Figure 10. The oxidation temperature is varied on the
x-axis, the reduction temperature is varied by setting the temperature difference between oxidation
and reduction to dT = 200 K and dT = 400 K. The results are shown for a reduction pressure of 0.1 bar
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and 10´5 bar. The graphs show that at oxidation temperatures above 1100 K, the entropy exigencies
regarding the redox material are less demanding in the case of CO2.
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However, at oxidation temperatures below 1100 K, the opposite is the case: water-splitting does
not require such a high entropy change in the redox material. This trend can again be explained
by the extra area which the second step generates in the T-S diagram (see Figure 3). If that area
plays a dominant role—which is the case at low process temperatures—the water-splitting process is
advantageous, because the entropy change in the gas phase during oxidation is larger. Further, lower
reduction pressures also lead to a decrease of the required redox material entropy change.

The total efficiency of the process is shown in Figure 11 for the same parameter set used in
Figure 10. The effect of the oxidation temperature on the efficiency has been discussed before [10].
It can be summarized as follows: at low oxidation temperatures the heat loss accompanied with the
oxidation step is dominating the efficiency. If that heat loss takes place at higher temperatures, the
efficiency drops. However, at one point the influence of that heat loss is overruled by the positive
effect of rising heat input temperatures. Then, the efficiency rises again with rising temperatures.
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Further, lower reduction pressures are beneficial for the absorption efficiency, as discussed above
when considering the gas phase only. Reducing the temperature difference to dT = 200 K, the efficiency
drops remarkably. This is again due to the large influence of the heat loss during oxidation.
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Figure 12 shows an example of such a process with low dT. The strong influence of the large
area associated to the second step is clearly visible. In this case, the heat released during oxidation
should be coupled to a secondary process. Energetically, the thermochemical cycle could surely always
be extended with secondary processes using all waste heat and thus leading to the Carnot efficiency
between the reduction temperature and ambient temperature. Technically and economically however,
such an approach is not always feasible.Entropy 2016, 18, 24 
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3. Conclusions

We have conducted a comprehensive study on the efficiency of solar thermochemical splitting
cycles. The study is based on an approach using mainly T-S diagrams, hence emphasizing
graphical explanations rather than the underlying equations. A previous study analyzing the purely
thermochemical process efficiency of water splitting was extended. On the one hand, CO2-splitting
cycles were analyzed and compared to the previous results. On the other hand, the solar absorption
efficiency was included in the overall efficiency calculation.

CO2 splitting is in many cases advantageous compared to water splitting regarding the efficiency.
This is due to the higher entropy change which occurs when recombining CO with oxygen compared to
H2. However, when splitting CO2, the low entropy change in the gas phase during the oxidation step
can lead to higher demands regarding the redox material. The entropy difference in the solid between
the oxidized and the reduced state needs to be higher in some cases, especially when operating at
low temperatures.

The study has theoretical thermodynamic character only and should therefore only help
understanding the general principles of the analyzed cycles. Real applications have to cope with many
other factors like heat recovery from solids, efficiency cutbacks due to means to create an oxygen
deficient atmosphere and many more. This should be kept in mind when interpreting the efficiency
values. Furthermore, the redox material entropy values shown here are only valid in combination
with certain enthalpies of reaction. Therefore, no specific material analysis was conducted here.
Also especially at low temperatures, slow kinetics may impede the process to practical infeasibility.
Thus, this study does not intend to present real process efficiencies, but rather to provide the relevant
thermodynamic background every process developer should have when trying to bring theory
into practice.
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