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Abstract: This paper studies contrastive divergence (CD) learning algorithm and proposes a new
algorithm for training restricted Boltzmann machines (RBMs). We derive that CD is a biased estimator
of the log-likelihood gradient method and make an analysis of the bias. Meanwhile, we propose
a new learning algorithm called average contrastive divergence (ACD) for training RBMs. It is an
improved CD algorithm, and it is different from the traditional CD algorithm. Finally, we obtain
some experimental results. The results show that the new algorithm is a better approximation of the
log-likelihood gradient method and outperforms the traditional CD algorithm.
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1. Introduction

The learning of restricted Boltzmann machines (RBMs) has been an important and hot topic in
machine learning. The learning is an inference process of the model parameters. The general learning
algorithm, for example the gradient method, is challenging for training RBMs. Hinton proposed
a learning algorithm called the contrastive divergence (CD) algorithm [1]. The CD algorithm has
become a popular way to train this model [1–7]. Recently, more and more researchers have studied the
properties of the CD algorithm [6,8–12]. Bengio and Delalleau [6] have given the bias of the expectation
of the CD approximation of the log-likelihood gradient for RBMs. Fischer and Igel [13] gave the upper
bound on the bias.

This paper provides two main contributions. One is to provide an analysis of the CD algorithm.
We derive the bias of the CD approximation of the log-likelihood gradient and provide an analysis of
the bias and the approximation error of CD. We generalize the conclusions of Bengio and Delalleau [6].
Our analysis of the approximation error explicitly shows that the expectation of CD is closer to the
log-likelihood gradient than CD; the idea of our new learning algorithm is derived from the conclusion.
The other is to propose a new algorithm that is called the average contrastive divergence (ACD)
algorithm for training RBMs. We show that ACD is a better approximation of the log-likelihood
gradient than CD. The ACD algorithm is superior to the traditional CD algorithm.

The rest part of the paper is organized as follows. In Section 2, we introduce the CD algorithm and
give some analysis results of CD. In Section 3, we propose a new algorithm, called ACD, for training
RBMs and provide a theoretical analysis of ACD. In Section 4, we show that the ACD algorithm is
superior to the traditional CD with some experiments. We draw some conclusions in the final section.
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2. Contrastive Divergence Algorithm

2.1. Contrastive Divergence Algorithm

Consider a probability distribution over a vector x:

p(x; w) =
∑h e−ε(x,h;w)

Z(w)
(1)

where w is the model parameter, Z(w) = ∑x,h e−ε(x,h;w) is a normalization constant and ε(x, h; w) is an
energy function.

Learning the parameters of the model is an important area. The common learning method is the
gradient method. The log-likelihood gradient of the model parameter w given a training datum x(0) is:

∂ log p(x(0); w)

∂w
= −∑

h
p(h; w|x(0))∂ε(x(0), h; w)

∂w
+ ∑

x
p(x|w)∑

h
p(h; w|x)∂ε(x, h; w)

∂w
(2)

The first term can be computed exactly; however, the second term is intractable, because its
complexity is exponential in the size of the smallest layer. Obtaining unbiased estimates of the
log-likelihood gradient using Markov chain Monte Carlo (MCMC) methods typically requires many
sampling steps. However, it has been shown that estimates obtained after running the chain for
just a few steps can be sufficient for the training of the model. This leads to contrastive divergence
(CD) learning.

The idea of k-step contrastive divergence learning (CD-k) is simple: instead of approximating the
second term in the log-likelihood gradient by a sample for the RBM distribution (which would require
running a Markov chain until the stationary distribution is reached), a Markov chain is run for only k
steps. The Markov chain is derived by Gibbs sampling, so it is also called Gibbs chain. The Gibbbs
chain is initialized with a training example x(0) of the training set and yields the sample x(k) after k
steps. Each step t consists of sampling h(t) from p(h; w|x(t)) and subsequently sampling x(t+1) from
p(x; w|h(t)). The gradient Equation (2) with regard to w of the log-likelihood for one training example
x(0) is approximated by:

CDk(w, x(0)) = −∑
h

p(h; w|x(0))∂ε(x(0), h; w)

∂w
+ ∑

h
p(h; w|x(k))∂ε(x(k), h; w)

∂w
(3)

The expectation of CD (ECD) can be ascribed by:

ECDk(w, x(0)) = −∑
h

p(h; w|x(0))∂ε(x(0), h; w)

∂w
+ ∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
(4)

where pk(x̃, h̃; w) is the empirical distribution function on the samples obtained by the data x(0) and
running the Markov chain forward for k steps, pk(x̃, h̃; w) = p(x(k) = x̃, h(k) = h̃).

We can obtain the following theorem using the definition of CD, ECD and the log-likelihood
gradient. In this paper, we consider the case where both x and h can only take a finite number of values.
We assume that there is no pair (x, h) such that p(x|h; w) = 0 or p(h|x; w) = 0. This ensures that
the Markov chain associated with Gibbs sampling is irreducible, and there exists a unique stationary
distribution to which the chain converges. We also assume that ‖∂ε(x, h; w)/∂w‖ is bounded, where
‖w‖ = (∑n

i=1 w2
i )

1/2, ‖ · ‖ stands for the Euclidean norm in <n.
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Theorem 1. For a converging Gibbs chain x(0) ⇒ h(0) ⇒ x(1) ⇒ h(1) ⇒ · · · starting at data point x(0), the
log-likelihood gradient can be written as:

∂ log p(x(0); w)

∂w
= ECDk + vk = CDk + vk + uk (5)

where
vk = ∑

x̃,h̃
p(x̃, h̃; w) ∂ε(x̃,h̃;w)

∂w − ∑
x̃,h̃

pk(x̃, h̃; w) ∂ε(x̃,h̃;w)
∂w ,

uk = ∑
x̃,h̃

pk(x̃, h̃; w) ∂ε(x̃,h̃;w)
∂w −∑

h
p(h; w|x(k)) ∂ε(x(k),h;w)

∂w ,

Ep(x(k) |x(0))[uk] = 0 and vk converges to zero as k goes to infinity.

Proof. Using Equations (2) and (4), we have:

∂ log p(x(0); w)

∂w
= −∑

h
p(h; w|x(0))∂ε(x(0), h; w)

∂w
+ ∑

x̃,h̃

p(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

= −∑
h

p(h; w|x(0))∂ε(x(0), h; w)

∂w
+ ∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

+∑
x̃,h̃

p(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
−∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

= ECDk + vk,

where vk = ∑
x̃,h̃

p(x̃, h̃; w) ∂ε(x̃,h̃;w)
∂w − ∑

x̃,h̃
pk(x̃, h̃; w) ∂ε(x̃,h̃;w)

∂w .

Using Equations (2) and (3), we have:

∂ log p(x(0); w)

∂w
= −∑

h
p(h; w|x(0))∂ε(x(0), h; w)

∂w
+ ∑

x̃,h̃

p(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

= −∑
h

p(h; w|x(0))∂ε(x(0), h; w)

∂w
+ ∑

h
p(h; w|x(k))∂ε(x(k), h; w)

∂w

+∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
−∑

h
p(h; w|x(k))∂ε(x(k), h; w)

∂w

+∑
x̃,h̃

p(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
−∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

= CDk + uk + vk,
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where uk = ∑
x̃,h̃

pk(x̃, h̃; w) ∂ε(x̃,h̃;w)
∂w −∑

h
p(h; w|x(k)) ∂ε(x(k),h;w)

∂w . We have:

Ep(x(k) |x(0))[uk] = Ep(x(k) |x(0))[∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

−∑
h

p(h; w|x(k))∂ε(x(k), h; w)

∂w
]

= ∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
− Ep(x(k) |x(0))[∑

h
p(h; w|x(k))∂ε(x(k), h; w)

∂w
]

= ∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
−∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

= 0.

Using the definition of pk(x̃, h̃; w), we have:

lim
k→∞

pk(x̃, h̃; w) = p(x̃, h̃; w),

then:

‖vk‖ =

∥∥∥∥∥∥∑
x̃,h̃

p(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
−∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

∥∥∥∥∥∥
≤ ∑

x̃,h̃

∥∥p(x̃, h̃; w)− pk(x̃, h̃; w)
∥∥ · ∥∥∥∥∂ε(x̃, h̃; w)

∂w

∥∥∥∥ .

Since ‖∂ε(x̃, h̃; w)/∂w‖ is bounded and x and h can only take a finite number of values, so ‖vk‖
converges to zero as k goes to infinity.

The theorem is proven.

Theorem 1 gives the bias of the CD approximation of the log-likelihood gradient; the bias
converges to zero as k goes to infinity. Meanwhile, Theorem 1 gives the approximation error of
the CD approximation of the log-likelihood gradient; the error includes two terms vk and uk; vt is the
approximation error of the ECD approximation of the log-likelihood gradient (that is also the bias
of CD approximation of the log-likelihood gradient); uk is a stochastic term; the expectation of the
stochastic term is zero. Theorem 1 shows that ECD is closer to the log-likelihood gradient than CD.

2.2. Contrastive Divergence Algorithm for RBMs

The RBM structure is a bipartite graph consisting of one layer of observable variables
X = (X1, · · · , Xm) and one layer of hidden variables H = (H1, · · · , Hn). The model distribution is
given by p(x, h) = e−ε(x,h;w)/Z(w), where Z(w) = ∑x,h e−ε(x,h;w), and the energy function is given by:

ε(x, h; w) = −
n

∑
i=1

m

∑
j=1

wijhixj −
m

∑
j=1

bjxj −
n

∑
i=1

cihi

with wij, ci, bj being real-valued parameters, which are denoted by w.
There are some theoretical results about the CD algorithm for training RBMs [6,8–10,12].

The theoretical results from Bengio and Delalleau [6] give a good understanding of the CD
approximation and the corresponding bias by showing that the log-likelihood gradient can, based on a
Markov chain, be expressed as a sum of terms containing the k-th sample:
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Theorem 2. (Bengio and Delalleau, 2009) For a converging Gibbs chain x(0) ⇒ h(0) ⇒ x(1) ⇒ h(1) ⇒ · · ·
starting at data point x(0), the log-likelihood gradient can be written as:

∂ log p(x(0); w)

∂w
= −∑

h
p(h; w|x(0))∂ε(x(0), h; w)

∂w

+Ep(x(k) |x(0))[∑
h

p(h; w|x(k))∂ε(x(k), h; w)

∂w
]

+Ep(x(k) |x(0))[
∂p(x(k);w)

∂w
] (6)

and the final term converges to zero as k goes to infinity.

The first two terms in Equation (6) just correspond to the expectation of CD (ECD), and the bias
of the CD approximation of the log-likelihood gradient is given by the final term; Fischer and Igel
have given a bound of the bias [13]. The theorem gives the bias of the CD approximation of the
log-likelihood gradient for RBMs; however, Theorem 1 gives the bias of the CD approximation of the
log-likelihood gradient for the energy model. Meanwhile, Theorem 1 gives the approximation error of
the CD approximation of the log-likelihood gradient. Theorem 2 could be considered as a corollary of
Theorem 1. Next, we give the proof of the conclusion.

Theorem 3. Theorem 2 is the corollary of Theorem 1.

Proof. In order to prove that Theorem 2 is the corollary of Theorem 1, it is enough to prove
vt = Ep(x(k) |x(0))[∂p(x(k); w)/∂w]. Using p(x, h; w) = e−ε(x,h;w)/Z(w) and Z(w) = ∑x,h e−ε(x,h;w),
we have:

∂p(x, h; w)

∂w
= − e−ε(x,h;w)

Z(w)
· ∂ε(x, h; w)

∂w
+

e−ε(x,h;w)

Z(w)
· ∑x,h e−ε(x,h;w) ∂ε(x,h;w)

∂w
Z(w)

= p(x, h; w)∑
x,h

p(x, h; w)
∂ε(x, h; w)

∂w
− p(x, h; w)

∂ε(x, h; w)

∂w

and:

∂ log p(x; w)

∂w
=

∂ log(∑h p(x; w))

∂w
=

1
∑h p(x, h; w)

∂(∑h p(x, h; w))

∂w

=
1

∑h p(x, h; w) ∑
h
[p(x, h; w)∑

x,h
p(x, h; w)

∂ε(x, h; w)

∂w
− p(x, h; w)

∂ε(x, h; w)

∂w
]

= ∑
h

p(x, h; w)
∂ε(x, h; w)

∂w
−∑

h
p(h; w|x)∂ε(x, h; w)

∂w
,

then:
∂ log p(x(k); w)

∂w
= ∑

x,h
p(x, h; w)

∂ε(x, h; w)

∂w
−∑

h
p(h; w|x(k))∂ε(x(k), h; w)

∂w
.

Taking conditional expectations with respect to p(x(k)|x(0)),

Ep(x(k) |x(0))[
∂p(x(k);w)

∂w
]

= ∑
x,h

p(x, h; w)
∂ε(x, h; w)

∂w
−∑

x(k)
p(x(k))∑

h
p(h; w|x(k))∂ε(x(k), h; w)

∂w

= ∑
x,h

p(x, h; w)
∂ε(x, h; w)

∂w
−∑

x,h
pk(x, h; w)

∂ε(x, h; w)

∂w
.
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Since:

vk = ∑
x̃,h̃

p(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
−∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
,

so we have:

vt = Ep(x(k) |x(0))[
∂p(x(k); w)

∂w
].

The proof is completed.

Using Theorem 1, we have the following corollary.

Corollary 1. For a converging Gibbs chain x(0) ⇒ h(0) ⇒ x(1) ⇒ h(1) ⇒ · · · starting at data point x(0), the
log-likelihood gradient can be written as:

∂ log p(x(0); w)

∂w
= −∑

h
p(h; w|x(0))∂ε(x(0), h; w)

∂w
+ ∑

h
p(h; w|x(k))∂ε(x(k), h; w)

∂w

+uk + Ep(x(k) |x(0))[
∂p(x(k);w)

∂w
] (7)

where uk is defined in Theorem 1, and the final term converges to zero as k goes to infinity.

The first two terms in Equation (7) just correspond to the CD approximation, and the
approximation error of the CD approximation of the log-likelihood gradient for RBMs is given by the
final two terms.

3. Average Contrastive Divergence Algorithm

The empirical comparisons of the CD approximation and the true log-likelihood gradient for RBMs
show that the bias can lead to a convergence to parameters that do not reach the maximum likelihood.
More recently proposed learning algorithms try to obtain better approximations of the log-likelihood
gradient [14–18]. In this section, we propose a new algorithm for training RBMs. In Section 2, we
know that ECD is closer to the log-likelihood gradient than the traditional CD. It is unfortunate that
we cannot calculate ECD as calculating the log-likelihood gradient for the actual problem. We know
the fact that the average value of a random variable is approximate to the expectation of the random
variable. Hence, we could look for a quality to approximate ECD. This leads to our new learning
algorithm, called average contrastive divergence (ACD).
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Algorithm 1 ACD-k-l
input: RBM (X1, · · · , Xm, H1, · · · , Hn), training batch S.
output: gradient approximation4wij,4bj and4ci for i = 1, · · · , n, j = 1, · · · , m
Initialize4wij = 4bj = 4ci = 0 for i = 1, · · · , n, j = 1, · · · , m
for all the x ∈ S do

for r = 1, · · · , l do
x(0) ← x
for t = 0, · · · , k− 1 do

for i = 1, · · · , n do
Sample h(t,r)i ∼ p(hi|v(t,r))

end for
for j = 1, · · · , m do

Sample v(t+1,r)
j ∼ p(vj|h(t,r))

end for
end for
for i = 1, · · · , n, j = 1, · · · , m do
4wij ← 4wij + p(Hi = 1|v(0)j )v(0)j −

1
l ∑l

r=1 p(Hi = 1|v(k,r)
j )v(k,r)

j
end for
for j = 1, · · · , m do
4bj ← 4wj + v(0)j −

1
l ∑l

r=1 v(k,r)
j

end for
for i = 1, · · · , n do
4ci ← 4ci + p(Hi = 1|v(0)j )− 1

l ∑l
r=1 p(Hi = 1|v(k,r)

j )

end for
end for

end for

The idea of average contrastive divergence learning (ACD-k-l) is as follows: to approximate the
second term in the log-likelihood gradient by the average of l samples for a k-step Gibbs distribution.
The samples for the k-step Gibbs distribution of ACD and CD are the same. lThe Gibbs chain is
initialized with a training datum x(0) of the training set and yields the sample x(k) after k steps (each step
t consists of sampling h(t) from p(h; w|x(t)) and subsequently sampling x(t+1) from p(x; w|h(t))).lThe
k-step Gibbs chain repeats l times. We have samples x(k,1), x(k,2) · · · x(k,l). The gradient (2) with regard
to w of the log-likelihood for the training data x(0) is approximated by:

ACDk,l(w, x(0)) = −∑
h

p(h; w|x(0))∂ε(x(0), h; w)

∂w

+
1
l

l

∑
i=1

∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w
(8)

In order to further understand the ACD algorithm, we give the bias of the ACD-k-l approximation
of the log-likelihood gradient by the following theorem.

Theorem 4. For a converging Gibbs chain x(0) ⇒ h(0) ⇒ x(1) ⇒ h(1) ⇒ · · · starting at data point x(0), the
log-likelihood gradient can be written as:

∂ log p(x(0); w)

∂w
= ACDk,l + zk + vk (9)

where:

zk = ∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
− 1

l

l

∑
i=1

∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w
,
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vk is defined in Theorem 1, Ep(x(k) |x(0))[zk] = 0, and vk converges to zero as k goes to infinity.

Proof. Using Equations (2) and (8), we have:

∂ log p(x(0); w)

∂w

= −∑
h

p(h; w|x(0))∂ε(x(0), h; w)

∂w
+ ∑

x̃,h̃

p(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

= −∑
h

p(h; w|x(0))∂ε(x(0), h; w)

∂w
+

1
l

l

∑
i=1

∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w

+∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
− 1

l

l

∑
i=1

∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w

+∑
x̃,h̃

p(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
−∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

= ACDk,l + zk + vk,

where:

zk = ∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
− 1

l

l

∑
i=1

∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w
,

vk = ∑
x̃,h̃

p(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
−∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
.

We have:

Ep(x(k) |x(0))[zk]

= Ep(x(k) |x(0))[∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
− 1

l

l

∑
i=1

∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w
]

= ∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
− Ep(x(k) |x(0))[

1
l

l

∑
i=1

∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w
]

= ∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
− 1

l
Ep(x(k) |x(0))[

l

∑
i=1

∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w
].

Since x(k,i) and x(k) have the same distribution, we have:

Ep(x(k) |x(0))[∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w
] = Ep(x(k) |x(0))[∑

h
p(h; w|x(k))∂ε(x(k), h; w)

∂w
].
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Then, we have:

Ep(x(k) |x(0))[zk] = ∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

−1
l

l

∑
i=1

Ep(x(k) |x(0))[∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w
]

= ∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
− 1

l

l

∑
i=1

∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

= ∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
−∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w

= 0.

By the proof of Theorem 1, we have that vk converges to zero as k goes to infinity. The theorem
is proven.

The theorem gives the bias of the ACD approximation of the log-likelihood gradient; the bias is vt;
the bias converges to zero as k goes to infinity. Meanwhile, the theorem gives the approximation error
of the ACD approximation of the log-likelihood gradient, which is denoted by ErrorACD; the ErrorACD
is ||vk + zk||. We can obtain the approximation error of the CD approximation of the log-likelihood
gradient from Theorem 1, which is denoted by ErrorCD; the ErrorCD is ||vk + uk||. The following
theorem gives the relationship between ErrorACD and ErrorCD.

Theorem 5.
Ep(x(k) |x(0))[Error2

CD − Error2
ACD] =

l − 1
l

E[||uk||2] (10)

Proof. Using the definition of zk, we have:

Ep(x(k) |x(0))[||zk||2]

= Ep(x(k) |x(0))[||∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
− 1

l

l

∑
i=1

∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w
||2]

=
1
l2 Ep(x(k) |x(0))[||

l

∑
i=1

(∑
x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
−∑

h
p(h; w|x(k,i))

∂ε(x(k,i), h; w)

∂w
)||2]

=
1
l2 Ep(x(k) |x(0))[||

l

∑
i=1

(∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w
−∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
)||2]

=
1
l2 [

l

∑
i=1

Ep(x(k) |x(0))[||∑
h

p(h; w|x(k,i))
∂ε(x(k,i), h; w)

∂w
||2]− l||∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
||2]

=
1
l2 [

l

∑
i=1

Ep(x(k) |x(0))[||∑
h

p(h; w|x(k))∂ε(x(k), h; w)

∂w
||2]− l||∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
||2]

=
1
l
[Ep(x(k) |x(0))[||∑

h
p(h; w|x(k))∂ε(x(k), h; w)

∂w
||2]− ||∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
||2].

The fourth and fifth equalities made use of the fact that x(k) and x(k,i) are two independent
identically-distributed random variables.
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Using the definition of uk, we have:

Ep(x(k) |x(0))[||uk||2]

= Ep(x(k) |x(0))[||∑
h

p(h; w|x(k))∂ε(x(k), h; w)

∂w
−∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
||2]

= Ep(x(k) |x(0))[||∑
h

p(h; w|x(k))∂ε(x(k), h; w)

∂w
||2]− ||∑

x̃,h̃

pk(x̃, h̃; w)
∂ε(x̃, h̃; w)

∂w
||2.

Then, we have:

Ep(x(k) |x(0))[||zk||2] =
1
l

Ep(x(k) |x(0))[||uk||2].

Note that Ep(x(k) |x(0))[uk] = Ep(x(k) |x(0))[zk] = 0; according to Theorems 1 and 4, we have:

Ep(x(k) |x(0))[Error2
CD]

= Ep(x(k) |x(0))[||vk + uk||2]

= Ep(x(k) |x(0))[||vk||2] + Ep(x(k) |x(0))[||uk||2] + Ep(x(k) |x(0))[v
T
k uk] + Ep(x(k) |x(0))[u

T
k vk]

= ||vk||2 + Ep(x(k) |x(0))[||uk||2] + vT
k Ep(x(k) |x(0))[uk] + vkEp(x(k) |x(0))[u

T
k ]

= ||vk||2 + Ep(x(k) |x(0))[||uk||2],

Ep(x(k) |x(0))[Error2
ACD]

= Ep(x(k) |x(0))[||vk + zk||2]

= Ep(x(k) |x(0))[||vk||2] + Ep(x(k) |x(0))[||zk||2] + Ep(x(k) |x(0))[v
T
k zk] + Ep(x(k) |x(0))[z

T
k vk]

= ||vk||2 + Ep(x(k) |x(0))[||zk||2] + vT
k Ep(x(k) |x(0))[zk] + vkEp(x(k) |x(0))[z

T
k ]

= ||vk||2 + Ep(x(k) |x(0))[||zk||2]

= ||vk||2 +
1
l

Ep(x(k) |x(0))[||uk||2].

Then, we have:

Ep(x(k) |x(0))[Error2
CD − Error2

ACD] =
l − 1

l
E[||uk||2].

The theorem is proven.

Intuitively, the smaller the approximation error of the log-likelihood gradient estimation, the
higher the chance of converging to a maximum likelihood solution quickly. Still, even small deviations
of a few gradient components can deteriorate the learning process. An important task of proposing a
new learning algorithm is to obtain a better approximation of the log-likelihood gradient. We know
that ACD and CD have the same bias from Theorems 1 and 4. Theorem 5 gives the relationship of
ErrorCD and ErrorACD. Since l ≥ 1 and due to the definition of || · ||, we can see that the value of
Error2

CD is not smaller than that of Error2
ACD with probability one. The conclusion of the theorem

shows that ACD is a better approximation than the traditional CD.

4. Experiments

This section will present some experiments illustrating the ACD algorithm. In the first two
experiments, we train an RBM with 12 visible units and 10 hidden units, so that the log-likelihood
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gradient could be calculated exactly. Then, in the third experiment, we consider the Mixed National
Institute of Standards and Technology (MNIST) data task by using the RBM with 500 hidden units.

4.1. The Artificial Data

Popular methods to train RBMs include CD and persistent contrastive divergence (PCD); PCD
is also known as stochastic maximum likelihood [14,19]. Since ACD, CD and PCD are biased with
respect to the log-likelihood gradient, now we investigate empirically the approximation errors of
these algorithms. In our experiments, ACD, CD, PCD and the log-likelihood gradient are tested under
exactly the same conditions (unless otherwise stated). It is known that the log-likelihood gradient is
intractable for regular-sized RBMs, because its complexity is exponential in the size of the smallest
layer, so we consider the small RBM with 12 visible units and 10 hidden units in this section. In our
experiments, we randomly generate 100 data points and use 10 data points in each gradient estimate.
We consider the square of approximation error (the approximation error has the same results) in order
to illustrate Theorem 5. We also assume the bias parameters ci = bj = 0 for all i and j; the learning rate
is 0.01.

It is known that CD-k is closer to the log-likelihood gradient as k is larger. In the case of the same
number of iterations, ACD-1-k and CD-k have same computational complexity. We give the results
of 10 iterations. More iterations can be considered, which will require more training time. However,
10 iterations is enough to illustrate the approximation error of these algorithms. Figure 1 shows the
approximation error of ACD and CD. The results show that the approximation error of ACD is smaller
than that of CD. We can see that ACD is a better approximation of the log-gradient than CD from
Figure 1, the experimental results are consistent with the conclusion of Theorem 5. In the case of the
same number of iterations, the computational complexity of CD-20 is greater than ACD-1-10; however,
Figure 1 shows that the approximation error of ACD-1-10 is smaller than CD-20, even if ACD-1-2 has
a smaller approximation error than CD-20. One may find that the approximation error is very small as
the number of iterations is small. The reason is that all algorithms are tested under exactly the same
conditions. The initialized values of the parameters are the same. Figure 2 shows the approximation
errors of ACD and PCD. There are similar experiment results about PCD and ACD. The results show
that ACD has smaller approximation errors than PCD.
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Figure 1. The approximation errors of average contrastive divergence (ACD) and CD.
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Figure 2. The approximation errors of ACD and persistent contrastive divergence (PCD).

4.2. The MNIST Task

The dataset is the MNIST dataset of handwritten digital images [20]. The images are 28 by
28 pixels, and the dataset consists of 60,000 training cases and 10,000 test cases. We use the mini-batch
strategy for learning by only using a small number of training cases for each gradient estimate. We
used 100 training points in each mini-batch for most datasets. Following [14,18,21,22], we set the
number of hidden units to 500 in our experiments. One of the evaluations is how well the learned RBM
models the test data, i.e., log-likelihood. This is intractable for a regular size of RBMs, because the time
complexity of that computation is exponential in the size of the smallest layer (visible and hidden).
Salakhutdinov and Murray [23] showed that a Monte Carlo-based method, annealed importance
sampling (AIS), can be used to efficiently estimate the normalization constant Z of RBMs [16,23–26].
We adopt AIS in our experiment, as well.

The CD algorithm and the PCD algorithm have become two popular methods for training RBMs.
Tieliman and Hinton proposed an improved PCD algorithm called fast PCD (FPCD) [15]. The FPCD
algorithm attempts to improve upon PCD’s mixing properties by introducing a group of additional
parameters called fast parameters that are only used for sampling. FPCD tries to get out of any single
mode of the distribution by these fast learning parameters and achieves better results in approximating
the RBMs’ gradient. We consider the CD-1 algorithm, the CD-10 algorithm, the PCD algorithm, the
FPCD algorithm and the ACD-1-10 algorithm for the MNIST task. The results on the MNIST task are
shown in Figure 3. Figure 3 gives the average log-likelihood on the test dataset. The lower the average
log-likelihood on the test dataset is, the more the contribution of the approximation of the gradient is.
It is clear that ACD-1-10 outperforms CD-1, CD-10, PCD and FPCD. In the initial stages of training, the
result of ACD-1-10 is close to the other algorithms. ACD-1-10 has better performance than the other
algorithms with the increase of training time.
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Figure 3. Modeling MNIST data with 500 hidden units (approximation log-likelihood).



Entropy 2016, 18, 35 13 of 14

5. Conclusions

In this paper, we studied the CD algorithm and proposed a new algorithm for training RBMs. We
have given the bias between the CD algorithm and the log-likelihood gradient method. We generalized
the conclusions of Bengio and Delalleau; we can obtain their conclusions from our theorems; hence,
we gave new proofs and interpretations of their results. Meanwhile, we proposed the ACD algorithm
for training RBMs. We gave the bias between the ACD algorithm and the log-likelihood gradient.
We experimentally studied the ACD algorithm; the results show that the ACD algorithm is a better
approximation of the log-likelihood gradient method than the standard CD and PCD. The ACD
algorithm outperforms the other learning algorithms.

Much work still remains. In order to evaluate the learned RBMs, we considered the log-likelihood.
We used annealed importance sampling (AIS) to calculate the log-likelihood, but its reliability has not
been researched extensively. An effective algorithm is needed. Furthermore, the amount of training
time used in our experiments is insufficient to find the asymptotic performance. In Figure 3, one can
see, for example, that ACD clearly profits from more training time. It is future work to find out what
its performance would be with more training time.
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