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Abstract: This article focuses on obtaining analytical solutions for d-dimensional, parabolic Volterra
integro-differential equations with different types of frictional memory kernel. Based on Laplace
transform and Fourier transform theories, the properties of the Fox-H function and convolution
theorem, analytical solutions for the equations in the infinite domain are derived under three
frictional memory kernel functions. The analytical solutions are expressed by infinite series, the
generalized multi-parameter Mittag-Leffler function, the Fox-H function and the convolution form of
the Fourier transform. In addition, graphical representations of the analytical solution under different
parameters are given for one-dimensional parabolic Volterra integro-differential equations with a
power-law memory kernel. It can be seen that the solution curves are subject to Gaussian decay at
any given moment.
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1. Introduction

In this paper, we will consider the following high (d-) dimensional parabolic Volterra
integro-differential equation with memory kernel K(t) in the infinite domain [1]:

∂u(x, t)
∂t

+
∫ t

0
K(t− t′)u(x, t′)dt′ = ∆u(x, t) + f (x, t) , (1)

which satisfies the initial condition and boundary conditions below,

u(x, 0) = g(x) , lim
|x|→∞

u(x, t) = 0 , t > 0 , x = (x1, x2, · · ·, xd) ∈ Rd. (2)

where function f (x, t) and memory kernel function K(t) are assumed to be sufficiently smooth
functions, and ∆ is the d-dimensional Laplacian operator.

Parabolic Volterra integro-differential equations present an important model to simulate the effects
of the “memory” of the system. The model is based on a partial differential equation, combining the
partial differentiation and integral term containing the unknown kernel function that leads to parabolic
Volterra integro-differential equations. In general, the model nonlocal effects of the memory of past
history cannot be described by partial differential equations. Therefore, more and more researchers
have studied the solution of integro-differential equations.

Diffusion is one of the most important and ubiquitous phenomena in nature. The parabolic
Volterra integro-differential equation model Equation (1) can be also describe anomalous diffusion; see
references [2,3]. The reaction diffusion level most depends on the choice of the kernel K(t) present in
the nonlocal reaction diffusion (integral) term.
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Parabolic Volterra integro-differential equations have many important physical applications
to model dynamical systems, such as in compression of viscoelastic media [4], nuclear reactor
dynamics [5], blow-up problems [6], reaction diffusion problems [7] and heat conduction materials with
memory functional [8], etc. So far, the analysis of numerical solution of Volterra integral-differential
equations has been carried out by many authors. Avazzadeh et al. [9] proposed radial basis
functions through the finite difference method to find a nonlinear Volterra integro-differential
equation’s numerical solution. Aguilar et al. [10] proposed collocation methods to solve second-order
parabolic Volterra integro-differential equations. Dehghan et al. [8] studied numerical solution
of parabolic integro-differential equations using the variational iteration method. Han et al. [1]
proposed the artificial boundary method to solve parabolic Volterra integro differential equations
(one/two-dimensional) in infinite spatial domains. Fakhar-Izadi et al. [11] considered the parabolic
Volterra integro-differential equation in one-dimensional finite and infinite spatial domains using
spectral collocation methods. Vasudeva Murthy et al. [12] investigated parabolic integro-differential
equations through explicit integration and the Runge-Kutta-Chebyshev method.

However, to the authors’ knowledge, there are no studies on analytical solutions of parabolic
partial Volterra integro-differential equation in the infinite domain. In this article, our goal is mainly to
discuss analytical solutions of Equation (1) with three different kinds of memory kernel functions in
the infinite domain.

This paper is organized as follows. In Section 2, some definitions and lemmas are introduced. In
Section 3, the analytical solutions of parabolic Volterra integro-differential equation with three different
kinds of memory kernel are demonstrated in the infinite domain. In Section 4, a typical example and
some graphical representations of the solution are presented. Some conclusions are given in Section 5.

2. Preliminaries

In this section, we present some fundamental definitions and lemmas that are used throughout
this paper.

Definition 1. A four-parameter Mittag-Leffler (M-L) function is defined as [13]

Eγ,κ
α,β(z) :=

∞

∑
n=0

(γ)nκ

Γ(αn + β)
· zn

n!
, (3)

where z, β, γ, κ ∈ C , <(α) > max ({0,<(κ)− 1} ,<(κ) > 0), with Pochammer’s symbol (γ)nκ can be
expressed as

(γ)nκ := Γ(γ + nκ)/Γ(γ) =

{
1, i f nκ = 0
γ(γ + 1)(γ + 2)...(γ + nκ − 1) , i f nκ ∈ N, γ 6= 0

.

It is worth noting that when κ = 1, the three-parameter Mittag-Leffler function can be expressed
as Eγ,1

α,β(·) = Eγ
α,β(·) [13,14]:

Eγ
α,β(z) :=

∞

∑
n=0

(γ)n
Γ(αn + β)

· zn

n!
, (4)

where α, β, γ ∈ C, and (γ)n is the Pochhammer symbol.
Note the relation between generalized the Mittag-Leffler function and the Fox-H function:

Eγ
α,β(z) =

1
Γ(γ)

H1,1
1,2

[
−z

∣∣∣∣∣ (1− γ, 1)
(0, 1), (1− β, α)

]
.

where H1,1
1,2(z) [15] is a Fox-H function, and (<(α), <(β) , <(γ) > 0).



Entropy 2016, 18, 344 3 of 14

Note that, when γ = 1, we can obtain a two-parameter Mittag-Leffler function E1
α,β(·) =

Eα,β(·) [16], there

Eα,β(z) :=
∞

∑
n=0

zn

Γ(αn + β)
, (5)

where z , β ∈ C , <(α) > 0. Note that Eα,1(·) reduces to Mittag-Leffler function Eα(·) when β = 1, then

Eα,1(z) = Eα(z) :=
∞

∑
n=0

zn

Γ(αn + 1)
,

where z ∈ C, <(α) > 0. In particular, we can obtain a regular exponential function when α = 1.

Definition 2. An integral operator Ew;γ,κ
a+;α,β ϕ is defined as [17,18]

(
Ew;γ,κ

a+;α,β ϕ
)
(t) :=

(
tβ−1Eγ,κ

α,β(wtα)
)
∗ ϕ(t) =

∫ t

a
(t− τ)β−1Eγ,κ

α,β(w(t− τ)α)ϕ(τ)dτ. (6)

It is worth noting that, when w = 0 and a = 0, integral operator Ew;γ,κ
a+;α,β ϕ would correspond to the

Riemann-Liouville integral operator [13].
In this section, we will introduce some fundamental lemmas for the Laplace transform (L), which

will be help us handle some problems in the next section.

Lemma 1. Let s, b, α, λn ∈ R+, and then the following inverse Laplace transform (L−1) is true [18].

L−1
{

1
s2 + bsα + λn

L [g(t)] (s)
}
(t) =

∞

∑
n=0

(−b)n
(
E−λn ;n+1,1

0+;2,(2−α)(n+1)+1g
)
(t), (7)

where
0 <

λn

s2 + bsα
< 1 , 0 <

b
s2−α

< 1.

Lemma 2. The Laplace transform of a three-parameter Mittag-Leffler function is given by [18,19]

L
[
tβ−1Eγ

α,β(±wtα)
]
(s) =

∫ ∞

0
e−sttβ−1Eγ

α,β(±wtα)dt =
sαγ−β

(sα ∓ w)γ , (8)

where |w/sα| < 1.

Lemma 3. The Laplace transform of e−λttβ−1Eγ
α,β(wtα) is given by the following [19]:

L
[
e−λttβ−1Eγ

α,β(±wtα)
]
(s) =

(s + λ)αγ−β(
(s + λ)α ∓ w

)γ , (λ ≥ 0) (9)

where
∣∣w/(s + λ)α∣∣ < 1.

It is worth noting that in case λ = 0, the structure of Lemma 3 is equivalent to Lemma 2.
Lemma 4 gives one important d-dimensional integral formula for the Mittag-Leffler function.

Lemma 4. For arbitrary α > 0, β is an arbitrary complex number, µ > 0, and a ∈ R, establishing the following
formula: [20]∫

Rd
eik·xE(n)

α,β (−a |k|µ)ddk = (2π)d/2 |x|1−d/2 ×
∫ ∞

0
|k|d/2E(n)

α,β (−a |k|µ)Jd/2−1(|x| |k|)dd |k|. (10)
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In fact, here Jd/2−1(·) is a Bessel function, and E(n)
α,β (z) denotes the n-th derivatives of the

two-parameter Mittag-Leffler function. n-th derivatives of the two-parameter Mittag-Leffler function
can be expressed in terms of the Fox-H function as

E(n)
α,β (z) = H1,1

1,2

[
−z

∣∣∣∣∣ (−n, 1)
(0, 1), (1− (αn + β), α)

]
,

Furthermore, on the right of Equation (10) is the following:

(|x| |k|)1−d/2 Jd/2−1(|x| |k|) = 21−d/2H1,0
0,2

[(
|x| |k|

2

)2
∣∣∣∣∣ (0, 1) (1− d/2, 1)

]
.k = (k1, k2, · · ·, kd) ∈ Rd

where H1,0
0,2(z) [15] is the Fox-H function.

3. Analytical Solution of a Parabolic Volterra Integro-Differential Equation in the
Infinite Domain

3.1. Analytical Solution with Frictional Memory Kernel of M-L type K(t) = 1
ταδ tβ−1Eδ

α,β(−
tα

τα )

In this case, Equation (1) can be written as follows:

∂u(x, t)
∂t

+
1

ταδ

∫ t

0
(t− t′)β−1Eδ

α,β(−
(t− t′)α

τα
)u(x, t′)dt = ∆u(x, t) + f (x, t). x ∈ Rd, t > 0 (11)

where α, β, δ > 0, τ is the memory time.

Theorem 1. The analytical solution of parabolic Volterra integro-differential Equation (11) with boundary
conditions and initial condition (2) can be expressed as the following analytical form

u(x, t) = 1
(2π)d

∫
Rd

∞
∑

i=0
(− 1

ταδ )
i i

∑
n=0

(
i
n

)
( |k|

2

1/ταδ )
n (
E−τ−α ;δ(i−n),1

0+;α,(β+1)(i−n)+n+1 f̃
)
(k, t)eik·xddk

+
∫

Rd G(x− x′, t)g(x′)ddx′. x , k ∈ Rd
(12)

In which G(x, t) is the Green function and reads as

G(x, t) =
1

(2π)d

∫
Rd

(
∞

∑
i=0

(− 1
ταδ

)
i i

∑
n=0

(
i
n

)
(
|k|2

1/ταδ
)

n

t(β+1)(i−n)+nEδ(i−n)
α,(β+1)(i−n)+n+1(−τ−αtα)

)
eik·xddk.

In general, this denotes f̃ (k, t) =
∫

Rd e−ik·x f (x, t)ddx , (x ∈ R) as the Fourier transform of f (x, t)
with respect to the spatial variable x. The Laplace transform of a function u(x, t) with regard to the
time variable t is defined as û(k, t) =

∫ ∞
0 e−stu(k, t)dt, ( t > 0).

Proof. This denotes F {u(x, t)} := ũ(k, t) as the Fourier transform of u(x, t) with respect to variable
x, and L {u(x, t)} := û(x, s) as the Laplace transform of u(x, t) with respect to variable t. Taking the
Laplace transform with respect to the time variable t and the Fourier transform with respect to the
spatial variable x to Equation (11), we obtain a nonhomogeneous equation, which can be written as
the following:

s ˆ̃u(k, s)− ũ(k, 0) +
1

ταδ

sαδ−β

(sα + τ−α)δ
ˆ̃u(k, s) = − |k|2 ˆ̃u(k, s) + ˆ̃f (k, s). k ∈ Rd (13)
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Using the initial condition, it yields:

ˆ̃u(k, s) =
1

s + 1
ταδ

sαδ−β

(sα+τ−α)δ + |k|
2

ˆ̃f (k, s) +
1

s + 1
ταδ

sαδ−β

(sα+τ−α)δ + |k|
2

g̃(k). (14)

Because

1
s+ 1

ταδ
sαδ−β

(sα+τ−α)δ
+|k|2

= s−1
∞
∑

i=0
(− 1

ταδ )
i i

∑
n=0

(
i
n

)
(|k|2 s−1)

n
( sαδ−β−1

(sα+τ−α)δ )
i−n

( 1
ταδ )

−n

=
∞
∑

i=0
(− 1

ταδ )
i i

∑
n=0

(
i
n

)
sαδ(i−n)−(β+1)(i−n)−n−1

(sα+τ−α)δ(i−n) ( |k|
2

1/ταδ )
n
,

(15)

Employing Lemma 2, we can get

sαδ(i−n)−(β+1)(i−n)−n−1

(sα + τ−α)δ(i−n)
= L

[
t(β+1)(i−n)+nEδ(i−n)

α,(β+1)(i−n)+n+1(−τ−αtα)
]
(s). (16)

Substituting Equations (15) and (16) into the first term of Equation (14), we have

1
s+ 1

ταδ
sαδ−β

(sα+τ−α)δ
+|k|2

ˆ̃f (k, s) =

L
[

∞
∑

i=0
(− 1

ταδ )
i i

∑
n=0

(
i
n

)
( |k|

2

1/ταδ )
n
t(β+1)(i−n)+nEδ(i−n)

α,(β+1)(i−n)+n+1(−τ−αtα)

]
(s)L

[
f̃ (k, t)

]
(s).

(17)

By applying inverse Laplace transform (L−1), the convolution definition of a Laplace transform
and Definition 2, we can obtain the inverse Laplace transform of the first term in Equation (14)
as follows:

L−1

 1
s+ 1

ταδ
sαδ−β

(sα+τ−α)δ
+|k|2
L
(

f̃ (k, t)
)
(s)

 (t) =

∞
∑

i=0
(− 1

ταδ )
i i

∑
n=0

(
i
n

)
( |k|

2

1/ταδ )
n (
E−τ−α ;δ(i−n),1

0+;α,(β+1)(i−n)+n+1 f̃
)
(k, t).

(18)

It follows that the inverse Laplace transform of the second term in Equation (14) is

L−1

 1
s+ 1

ταδ
sαδ−β

(sα+τ−α)δ
+|k|2

g̃(k)

 (t) =

∞
∑

i=0
(− 1

ταδ )
i i

∑
n=0

(
i
n

)
( |k|

2

1/ταδ )
n
t(β+1)(i−n)+nEδ(i−n)

α,(β+1)(i−n)+n+1(−τ−αtα)g̃(k).

(19)

According to Equations (18) and (19), we can obtain ũ(k, t) from Equation (14)

ũ(k, t) =
∞
∑

i=0
(− 1

ταδ )
i i

∑
n=0

(
i
n

)
( |k|

2

1/ταδ )
n (
E−τ−α ;δ(i−n),1

0+;α,(β+1)(i−n)+n+1 f̃
)
(k, t)+

∞
∑

i=0
(− 1

ταδ )
i i

∑
n=0

(
i
n

)
( |k|

2

1/ταδ )
n
t(β+1)(i−n)+nEδ(i−n)

α,(β+1)(i−n)+n+1(−τ−αtα)g̃(k).
(20)
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Equation (20) can be further manipulated by employing an inverse Fourier transform:

u(x, t) = 1
(2π)d

∫
Rd eik·x ∞

∑
i=0

(− 1
ταδ )

i i
∑

n=0

(
i
n

)
( |k|

2

1/ταδ )
n (
E−τ−α ;δ(i−n),1

0+;α,(β+1)(i−n)+n+1 f̃
)
(k, t)ddk+

1
(2π)d

∫
Rd eik·x ∞

∑
i=0

(− 1
ταδ )

i i
∑

n=0

(
i
n

)
( |k|

2

1/ταδ )
n
t(β+1)(i−n)+nEδ(i−n)

α,(β+1)(i−n)+n+1(−τ−αtα)g̃(k)ddk.
(21)

We need
∣∣∣∣ 1

ταδ
sαδ−β−1

(sα+τ−α)δ + |k|
2 s−1

∣∣∣∣ < 1, and we presented that the series and integrals (21) are

convergent. And Eδ(i−n)
α,(β+1)(i−n)+n+1(·) is generalization of the Mittag-Leffler function.

The second term in Equation (21) can be further manipulated as follows

1
(2π)d

∫
Rd eik·x

∞
∑

i=0
(− 1

ταδ )
i i

∑
n=0

(
i
n

)
( |k|

2

1/ταδ )
n

t(β+1)(i−n)+nEδ(i−n)
α,(β+1)(i−n)+n+1(−τ−αtα)g̃(k)ddk

= 1
(2π)d

∫
Rd eik·x

∞
∑

i=0
(− 1

ταδ )
i i

∑
n=0

(
i
n

)
( |k|

2

1/ταδ )
n

t(β+1)(i−n)+nEδ(i−n)
α,(β+1)(i−n)+n+1(−τ−αtα)

(∫
Rd e−ik·x′ g(x′)ddx′

)
ddk

=
∫

Rd

[
1

(2π)d

∫
Rd eik·(x−x′)

∞
∑

i=0
(− 1

ταδ )
i i

∑
n=0

(
i
n

)
( |k|

2

1/ταδ )
n

t(β+1)(i−n)+nEδ(i−n)
α,(β+1)(i−n)+n+1(−τ−αtα)ddk

]
g(x′)ddx′.

(22)

Denote Green function G(x, t) is

G(x− x′, t) =
1

(2π)d

∫
Rd

eik·(x−x′)
∞

∑
i=0

(− 1
ταδ

)
i i

∑
n=0

(
i
n

)
(
|k|2

1/ταδ
)

n

t(β+1)(i−n)+nEδ(i−n)
α,(β+1)(i−n)+n+1(−τ−αtα)ddk.

Therefore, we complete the proof of Theorem 1. �

3.2. Analytical Solution with a Frictional Memory Kernel of Power-Law Type K(t) = t−α

Γ(1−α)
, 0 < α < 1

In this case, Equation (1) can be written as the following:

∂u(x, t)
∂t

+
∫ t

0

(t− t′)−α

Γ(1− α)
u(x, t′)dt′ = ∆u(x, t) + f (x, t), x ∈ Rd, t > 0. (23)

Theorem 2. The analytical solution of parabolic Volterra integro-differential Equation (23) with boundary
conditions and initial condition (2) can be expressed as

u(x, t) = 1
(2π)d

∫
Rd

∞
∑

j=0
(−1)j

(
E−|k|

2;j+1,1
0+;1,(2−α)j+1 f̃

)
(k, t)eik·xddk

+
∫

Rd G(x− x′, t)g(x′)ddx′.
(24)

The Green function G(x, t) is given as

G(x, t) =
1

2πd/2 |x|d
∞

∑
j=0

(−t2−α)
j

j!
H2,0

1,2

[
|x|
2t

1
2

∣∣∣∣∣ (1 + (2− α)j, 1/2)
(d/2, 1/2), (1 + j, 1/2)

]
.x, k ∈ Rd

Note that F {g(x)} := g̃(k) and F { f (x, t)} := f̃ (k, t) are the Fourier transform of g(x) and
f (x, t), respectively.
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Remark. Employing the properties of the Fox-H functions, Green function G(x, t) can be expressed as a power
series expansion [15]

G(x, t) = 1
πd/2|x|d

∞
∑

j=0

(−t2−α)
j

j!

[
∞
∑

k=0

Γ(1+j−k−d/2)
Γ(1+(2−α)j−k−d/2)

(−1)k

k!

(
|x|

2t
1
2

)d+2k
+

∞
∑

k=0

Γ(d/2−j−k−1)
Γ((1−α)j−k)

(−1)k

k!

(
|x|

2t
1
2

)2(k+j+1)
]

.

For
∣∣∣∣ |x|

2t
1
2

∣∣∣∣� 1, therefore, the power-law asymptotics behavior is given by

G(x, t) ∼ 1

πd/2 |x|d
∞

∑
j=0

(−t2−α)
j

j!

[
Γ(1 + j− d/2)

Γ(1 + (2− α)j− d/2)

(
|x|
2t

1
2

)d
+

[
Γ(d/2− j− 1)

Γ((1− α)j)

(
|x|
2t

1
2

)2(j+1)
]

.

Proof. Employing the Laplace transform with respect to variable t and Fourier transform with respect
to variable x, respectively. We obtain the following nonhomogeneous equation

s ˆ̃u(k, s)− ũ(k, 0) + sα−1 ˆ̃u(k, s) = − |k|2 ˆ̃u(k, s) + ˆ̃f (k, s). k ∈ Rd (25)

Taking into account the initial condition, we obtain the following nonhomogeneous differential
equation, and Equation (25) can be rewritten as

ˆ̃u(k, s) =
1

s + sα−1 + |k|2
ˆ̃f (k, s) +

1

s + sα−1 + |k|2
g̃(k). (26)

Using the technique introduced by [18], we have

1

s + sα−1 + |k|2
=

1

|k|2
· |k|

2 s1−α

s2−α + 1
· 1

1 + |k|2s1−α

s2−α+1

. (27)

Expanding the third section on the right of Equation (27) and simplifying, one can easily get

1

s + sα−1 + |k|2
=

∞

∑
n=0

(− |k|2)
n s(1−α)(n+1)

(s2−α + 1)n+1 . (28)

Employing Lemma 2 in Equation (28), the first term of Equation (26) can be expressed as

1

s + sα−1 + |k|2
ˆ̃f (k, s)= L

[
∞

∑
n=0

(− |k|2)
n
tnEn+1

2−α,n+1(−t2−α)

]
(s)L

[
f̃ (k, t)

]
(s). (29)

We need
∣∣∣∣ |k|2s1−α

s2−α+1

∣∣∣∣ < 1, and showed that series (29) is convergent. Also, En+1
2−α,n+1(·) is a

generalization of the three-parameter Mittag-Leffler function.
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According to the three-parameter Mittag-Leffler function definition, from Equation (29), we get

∞
∑

n=0
(− |k|2)

n
tnEn+1

2−α,n+1(−t2−α) =
∞
∑

n=0
(− |k|2)

n
tn

∞
∑

j=0

(n+1)j
Γ((2−α)j+n+1)

(−t2−α)
j

j! ,

=
∞
∑

n=0

∞
∑

j=0
(−t2−α)

j (j+1)n
Γ((2−α)j+n+1)

(−|k|2t)
n

n! ,

=
∞
∑

j=0
(−t2−α)

jEj+1
1,(2−α)j+1(− |k|

2 t).

(30)

Applying the convolution property of the Laplace transform and integral operator Ew;γ,κ
a+;α,β ϕ

Definition 2, the inverse Laplace transform of the first term in Equation (26) can be obtained as follows:

L−1

[
1

s + sα−1 + |k|2
L
[

f̃ (k, t)
]
(s)

]
=

∞

∑
j=0

(−1)j
(
E−|k|

2;j+1,1
0+;1,(2−α)j+1 f̃

)
(k, t). (31)

Considering the relationship between the generalized Mittag-Leffler function and the Fox-H
function, the inverse Laplace transform of the second term in Equation (26) can be expressed as [15]

L−1

[
1

s + sα−1 + |k|2
g̃(k)

]
=

∞

∑
j=0

(−1)j

j!
t(2−α)j H1,1

1,2

[
|k|2 t

∣∣∣∣∣ (−j, 1)
(0, 1), (−(2− α)j, 1)

]
g̃(k). (32)

Let

h̃(k, t) = H1,1
1,2

[
|k|2 t

∣∣∣∣∣ (−j, 1)
(0, 1), (−(2− α)j, 1)

]
, (33)

and

G̃(k, t) =
∞

∑
j=0

(−t2−α)
j

j!
h̃(k, t). (34)

Using the inverse Fourier transform (F−1) in Equation (33), we can obtain

h(x, t) =
1

(2π)d

∫
Rd

H1,1
1,2

[
|k|2 t

∣∣∣∣∣ (−j, 1)
(0, 1), (−(2− α)j, 1)

]
eik·xddk. (35)

Using Lemma 4, we get the following result from Equation (35)

h(x, t) =
1

(2π)d/2 |x|
1−d/2

∫ ∞

0
|k|d/2H1,1

1,2

[
|k|2 t

∣∣∣∣ (−j, 1)
(0, 1), (−(2− α)j, 1)

]
Jd/2−1(|x| |k|)dd |k| . (36)

Employing a Hankel transform and the properties of the Fox-H functions [15,21,22], Equation (36)
can be written as

h(x, t) =
1

2πd/2 |x|d
H2,0

1,2

[
|x|
2t

1
2

∣∣∣∣∣ (1 + (2− α)j, 1/2)
(d/2, 1/2), (1 + j, 1/2)

]
. (37)

Substituting Equation (37) into the inverse Fourier transform of Equation (34), we can obtain

G(x, t) =
1

2πd/2 |x|d
∞

∑
j=0

(−t2−α)
j

j!
H2,0

1,2

[
|x|
2t

1
2

∣∣∣∣∣ (1 + (2− α)j, 1/2)
(d/2, 1/2), (1 + j, 1/2)

]
.

Then Equation (32) can also be written formally as

L−1

[
1

s + sα−1 + |k|2
g̃(k)

]
= L−1 [F [G(x, s)] (k)g̃(k)] . (38)
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Applying an inverse Laplace transform to Equation (26), we can finally find

ũ(k, t) =
∞

∑
j=0

(−1)j
(
E−|k|

2;j+1,1
0+;1,(2−α)j+1 f̃

)
(k, t) +F [G(x, t)] (k)g̃(k). (39)

Equation (39) can be further manipulated by employing inverse Fourier transform and Fourier
convolution theorem, respectively. Accordingly, the Theorem 2 is clearly demonstrated.

3.3. Analytical Solution with Frictional Memory Kernel of Exponential Factor Type K(t) = tβe−λt, β > −1

In this case, Equation (1) can be written in the following form

∂u(x, t)
∂t

+
∫ t

0
(t− t′)βe−λ(t−t′)u(x, t′)dt′ = ∆u(x, t) + f (x, t), λ > 0, x ∈ Rd. (40)

Theorem 3. The analytical solution of parabolic Volterra integro-differential Equation (40) with boundary
conditions and initial condition (2) can be expressed as the following analysis formula:

u(x, t) = 1
(2π)d

∫
Rd

{(
∞
∑

n=0
(−1)ne−λt

n
∑

r=0

(
n
r

)
(−λ)r(|k|2)

n−r
tnEn+1

β+2,n+1(−kβtβ+2)

)
∗ f̃ (k, t)

}
eik·xddk

+
∫

Rd G(x− x′, t)g(x′)ddx′, x, k ∈ Rd.
(41)

Letting kβ = Γ(β + 1), using the asterisk (∗) to denote a Laplace convolution, the Green function
G(x, t) is given by

G(x, t) =
1

(2π)d

∫
Rd

(
∞

∑
n=0

(−1)ne−λt
n

∑
r=0

(
n
r

)
(−λ)r(|k|2)

n−r
tnEn+1

β+2,n+1(−kβtβ+2)

)
eik·xddk.

Proof. Applying the Laplace and Fourier transform with respect to the time variable t and spatial
variable x to Equation (40), and using the initial conditions, Equation (40) can be written as

s ˆ̃u(k, s)− ũ(k, 0) + kβ(s + λ)−(1+β) ˆ̃u(k, s) = − |k|2 ˆ̃u(k, s) + ˆ̃f (k, s), k ∈ Rd. (42)

From Equation (42), we have

ˆ̃u(k, s) =
1

s + kβ(s + λ)−(1+β) + |k|2
ˆ̃f (k, s) +

1

s + kβ(s + λ)−(1+β) + |k|2
g̃(k). (43)

Applying power series expansion, one obtains

1

s + kβ(s + λ)−(1+β) + |k|2
=

∞

∑
n=0

(−1)n (|k|2 − λ)
n
(s + λ)(β+1)n+β+1

((s + λ)β+2 + kβ)
n+1 . (44)

Combining with Lemma 3, Equation (44) can be expressed as

1

s + kβ(s + λ)−(1+β) + |k|2
= L

[
∞

∑
n=0

(−1)ne−λt(|k|2 − λ)
n
tnEn+1

β+2,n+1(−kβtβ+2)

]
(s). (45)

We need
∣∣∣∣ (|k|2−λ)(s+λ)β+1

(s+λ)β+2+kβ

∣∣∣∣ < 1, and showed that series (45) is convergent. In addition, En+1
β+2,n+1(z)

is a generalization of the Mittag-Leffler function.
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Through Equation (45), the first term in Equation (43) can be formally written as

1
s+kβ(s+λ)−(1+β)+|k|2

ˆ̃f (k, s) =

L
[

∞
∑

n=0
(−1)ne−λt

n
∑

r=0

(
n
r

)
(−λ)r(|k|2)

n−r
tnEn+1

β+2,n+1(−kβtβ+2)

]
(s)L

[
f̃ (k, t)

]
(s).

(46)

Finally, the inverse Laplace transform of the first term in Equation(43) can be rewritten as

L−1
[

1
s+kβ(s+λ)−(1+β)+|k|2

L
[

f̃ (k, t)
]
(s)
]
=(

∞
∑

n=0
(−1)ne−λt

n
∑

r=0

(
n
r

)
(−λ)r(|k|2)

n−r
tnEn+1

β+2,n+1(−kβtβ+2)

)
∗ f̃ (k, t).

(47)

After analogous manipulation, the inverse Laplace transform of the second term of Equation (43)
can be expressed as

L−1
[

1
s+kβ(s+λ)−(1+β)+|k|2

g̃(k)
]
=

∞
∑

n=0
(−1)ne−λt

n
∑

r=0

(
n
r

)
(−λ)r(|k|2)

n−r
tnEn+1

β+2,n+1(−kβtβ+2)g̃(k).
(48)

Performing an inverse Laplace transform in Equation (43), we finally get

ũ(k, t) =

(
∞
∑

n=0
(−1)ne−λt

n
∑

r=0

(
n
r

)
(−λ)r(|k|2)

n−r
tnEn+1

β+2,n+1(−kβtβ+2)

)
∗ f̃ (k, t)+(

∞
∑

n=0
(−1)ne−λt

n
∑

r=0

(
n
r

)
(−λ)r(|k|2)

n−r
tnEn+1

β+2,n+1(−kβtβ+2)

)
g̃(k).

(49)

The solution is now obtained by performing an inverse Fourier transform in Equation (49),
which produces

u(x, t) = 1
(2π)d

∫
Rd eik·x

(
∞
∑

n=0
(−1)ne−λt

n
∑

r=0

(
n
r

)
(−λ)r(|k|2)

n−r
tnEn+1

β+2,n+1(−kβtβ+2)

)
∗ f̃ (k, t)ddk+

∫
Rd

[
1

(2π)d

∫
Rd eik·(x−x′)

(
∞
∑

n=0
(−1)ne−λt

n
∑

r=0

(
n
r

)
(−λ)r(|k|2)

n−r
tnEn+1

β+2,n+1(−kβtβ+2)

)
ddk

]
g(x′)ddx′,

(50)

where the Green function is denoted as

G(x− x′, t) =
1

(2π)d

∫
Rd

eik·(x−x′)

(
∞

∑
n=0

(−1)ne−λt
n

∑
r=0

(
n
r

)
(−λ)r(|k|2)

n−r
tnEn+1

β+2,n+1(−kβtβ+2)

)
ddk.

Therefore, we complete the proof of Theorem 3.

4. Example

We select one-dimensional parabolic Volterra integro-differential equation with power-law
memory kernel under special initial conditions (Dirac delta function) in the infinite domain. Letting
f (x, t) = 0, the initial boundary value problems in Section 3.2 are

∂u(x,t)
∂t +

∫ t
0

(t−t′)−α

Γ(1−α)
u(x, t′)dt′ = ∆u(x, t) , 0 < α < 1, x ∈ R, t > 0,

u(x, 0) = δ(x) , lim
|x|→∞

u(x, t) = 0, t > 0 , x ∈ R.
(51)
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According to Theorem 2, the analytical solution can be expressed as the following:

u(x, t) =
1

2π1/2 |x|

∞

∑
j=0

(−t2−α)
j

j!
H2,0

1,2

[
|x|
2t

1
2

∣∣∣∣∣ (1 + (2− α)j, 1/2)
(1/2, 1/2), (1 + j, 1/2)

]
. (52)

The graphical representation of solution (52) for the different parameters of α and t are plotted in
Figures 1–4, respectively.
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of time.

Entropy 2016, 18, 344  11 of 14 

 

4. Example 

We select one-dimensional parabolic Volterra integro-differential equation with power-law 
memory kernel under special initial conditions (Dirac delta function) in the infinite domain. Letting 

( , ) 0f x t = , the initial boundary value problems in Section 3.2 are 

0

( , ) ( ) ( , )d ( , ) , 0 1, , 0,
(1 )

( ,0) ( ) , lim ( , ) 0, 0 , .

t

x

u x t t t u x t t u x t x R t
t

u x x u x t t x R

α

α
α

δ

−

→∞

 ′∂ − ′ ′+ = Δ < < ∈ > ∂ Γ −
 = = > ∈




 
(51) 

According to Theorem 2, the analytical solution can be expressed as the following: 

2
2,0
1,21/2 1

0 2

(1 (2 ) ,1 / 2)1 ( )( , ) .
! (1 / 2,1 / 2), (1 ,1 / 2)2 2

j

j

x jtu x t H
j jx t

α α
π

−∞

=

 + −−  =
+ 

 


 
(52) 

The graphical representation of solution (52) for the different parameters of α  and t  are 
plotted in Figures 1–4, respectively. 

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 α=0.25

x

u(
x,

t)

 

 

t=0.2
t=0.25
t=0.3

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 α=0.85

x

u(
x,

t)

 

 

t=0.2
t=0.25
t=0.3

 
(a) (b)

Figure 1. Graphical representation of the solution at different times with 0.25, 0.85α = . (a) The 
analytical solution ( , )u x t  in (52) for different times when parameter α  is fixed, the peak of 

curves will decrease gradually with the increasing of the time. (b) The solution in (52) for different 
times when parameter α  is fixed, the peak of curves distinct decrease gradually and lenitively 
with the increasing of time. 

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
  t=0.2 

x

u(
x,

t)

 

 

α=0.05
α=0.45
α=0.85

-1.5 -1 -0.5 0 0.5 1 1.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
  t=0.3 

x

u(
x,

t)

 

 

α=0.05
α=0.45
α=0.85

(a) (b)

Figure 2. Graphical representation of the solution with different parameters α at times t = 0.2, 0.3.
(a) Times is fixed, the peak of curves will decrease gradually with the increasing of parameter α.
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5. Conclusions

In practical applications, different types of the frictional memory kernel K(t) have been used to
describe a wide variety of complex dynamics and physical phenomena with memory effects. In this
paper, by applying the Laplace transform method to the time variable and the Fourier transform
to the spatial variable, we obtained analytical solutions to parabolic Volterra integro-differential
equations with three different kinds of memory kernel in the infinite domain. The analytical solutions
to the parabolic Volterra integro-differential equation consist of some special functions, such as the
multi-parameter Mittag-Leffler function and Fox-H function. It is worth mentioning that the analytical
solution provided in Equation (24) can also be obtained by applying the references method [23–25] to
Equation (23). In the end, some curves of the analytical solution are given, and the curves exhibit a
long tail behavior for a large time. We found that a parabolic Volterra integro-differential equation with
a power-law memory kernel is characterized by anomalous diffusion. The analytic solution of (1) can
be found in some special cases, but in general it is difficult to obtain because of the non-local property
of the integral term. Thus, in many cases, the more reasonable option is to find its numerical solution.
Meanwhile, the analytical solutions we obtained from parabolic Volterra integro-differential equations
with different types of frictional memory kernel provide great convenience for practical applications.
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