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Abstract: Given that entropy-based IT technology has been applied in homes, office buildings
and elsewhere for IT security systems, diverse kinds of intelligent services are currently provided.
In particular, IT security systems have become more robust and varied. However, access control
systems still depend on tags held by building entrants. Since tags can be obtained by intruders, an
approach to counter the disadvantages of tags is required. For example, it is possible to track the
movement of tags in intelligent buildings in order to detect intruders. Therefore, each tag owner
can be judged by analyzing the movements of their tags. This paper proposes a security approach
based on the received signal strength indicators (RSSIs) of beacon-based tags to detect intruders.
The normal RSSI patterns of moving entrants are obtained and analyzed. Intruders can be detected
when abnormal RSSIs are measured in comparison to normal RSSI patterns. In the experiments,
one normal and one abnormal scenario are defined for collecting the RSSIs of a Bluetooth-based
beacon in order to validate the proposed method. When the RSSIs of both scenarios are compared to
pre-collected RSSIs, the RSSIs of the abnormal scenario are about 61% more different compared to
the RSSIs of the normal scenario. Therefore, intruders in buildings can be detected by considering
RSSI differences.
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1. Introduction

Given that entropy is the key concept of IT security systems, diverse kinds of security algorithms
based on entropy have been developed and applied. Currently, for security, iris recognition [1],
fingerprint recognition [2], and other methods are utilized. Tags are one of the broadly utilized
approaches in security IT systems. Each tag is assigned by the corresponding authority and allows
authorized employees to move within allowed areas. However, tags have the critical weakness that
they can be held by unauthorized employees. Tags can be replaced by other security systems, but at
significantly greater cost.

For tag utilization, their weakness should be addressed. First, when unauthorized persons utilize
tags, the IT security system should alert of an unauthorized situation. To do so, approaches to recognize
the owners of tags should be provided. The owners can be recognized by the patterns of utilization of
their tags, but the weakness of the assessment of tag utilization patterns is that the utilization patterns
of authorized persons can be similar to those of unauthorized persons. Therefore, a novel approach
that classifies the two types of patterns is required. For example, additional environmental information
can be utilized such as the time when tags are utilized or the movement patterns of owners who
hold tags.

This paper proposes an intelligent intruder detection security approach based on received signal
strength indicators (RSSIs) of tags collected by access points. For example, the RSSIs of tags are
measured and analyzed to recognize the patterns of the movements of residents. Abnormal patterns
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are detected by comparison with pre-collected normal patterns of the RSSIs. Therefore, illegal intruders
can be detected from their abnormal patterns.

The rest of this paper is structured as follows. Section 2 introduces security-related research
and demonstrations-based learning research. In addition, the requirements for intruder-detecting IT
systems are suggested. Section 3 describes the concept of the proposed method and then describes
the proposed method in detail. Section 4 shows the results of the proposed method from experiments.
Finally, Section 5 presents conclusions.

2. Related Work

In this paper, wireless signal-related research and demonstration-based learning research are
combined to propose a novel intelligent IT security system. This section introduces both the research
and the requirements of intelligent IT security systems to detect intruders.

2.1. Wireless Signal-Related Research

While the global positioning system (GPS) is utilized to find outdoor locations, multiple
approaches are utilized for indoor localization. Wireless signal-based localization is one of the
core approaches used [3]. For example, crowd-sourced mapping and localization (CMAL) is
a wireless-fidelity (WiFi) localization system based on simultaneous localization and mapping
(SLAM) [4]. A CMAL client generates a WiFi-based global finger print map by utilizing multiple smart
phones and a CMAL server manages the global finger print map. Research has been done that utilizes
a dynamic Bayesian network (DBN) and generates a probability graph to estimate indoor locations [5].
As we described, it is difficult to find the locations in indoor environments. DBN-based research
estimates indoor locations based on the generated probability graph. In addition, particle filter is also
proposed to trace indoor locations approximately. Finally, the quality of collected WiFi-based signals is
improved by Gaussian interpolation [6].

Beacon-based signals are also utilized for indoor localization. For example, research on localization
system using a 3D triangulation algorithm has been introduced [7]. 3D triangulation algorithm is a
method of calculating a location from three points and three measured three distances from these points.
Therefore, this research finds a currrent indoor location based on three beacon-based wireless signals.

2.2. Demonstration-Based Learning Research

For analyzing RSSI patterns, demonstration-based learning approaches as described below can be
applied to IT security systems. Motor primitives executed by autonomous robots consist of consecutive
movements. Prior research on the learning of motor primitives using demonstration-based learning
suggests that the configuration of approaches based on differing learning goals is possible, including
learning the actions of virtual agents in a virtual environment [8] and learning motor primitives of
robots in a real environment [9,10]. The previous demonstration-based learning research is introduced
and the problems encountered with learning processes are described below. Finally, we compare
previous work with our proposed approach.

One focus of research has been learning motor primitives by observing and then dividing
consecutive predecessor movements [11]. In this method, the points of division between consecutive
movements are determined using a cost function to calculate variance. However, sections where
division points are frequently made result in multiple motor primitives with short execution times;
conversely, sections with fewer division points owing to smaller variance result in motor primitives
with excessively long execution times.

The progress of motor primitive generation can also be facilitated in the field of vision systems by
applying methods for observing and imitating motor primitives through division of the recognized
movements of a predecessor [11]. One such visual system imitation learning process is based on a
robotic structure proposed by Matarić [12], in which learning is divided into recognition, encoding,
and action steps. The recognition step consists of visual tracking and visual attention sub-steps and
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involves the extraction of movement data from vision data. In the encoding step, motor primitives
to be executed in advance are learned and then classified. Finally, in the motor primitive step, the
predecessor is imitated by using selected encoded motor primitives.

Vision-based imitation learning can be expanded into research for generating motor primitives
by using spatial-temporal data, in which consecutive sets of data are automatically divided by an
SEG-2 algorithm at the maximum point, as calculated by squaring and adding each joint [13]. Another
approach for vision system applications involves using an isomap algorithm to reduce the amount of
spatial-temporal data [14]. Although conventional isomap algorithms are time-independent and are
not normally suitable for such applications, Jenkins’s method is time-dependent and is therefore usable
here. Jenkins provides another approach to the automatic division of data by isomap algorithms [15]
in which the kinematic centroid segmentation (KCS) algorithm is utilized to divide consecutive data.
Work has also been undertaken in applying several of the processes described above to intelligent
machine architecture (IMA) [16] in which multiple agents communicate with each other.

2.3. Requirements of Intruder Detection Systems

IT security systems are one of the core solutions of Internet of Things (IoT) systems. For IT security
systems, important requirements for detecting intruders are required as follows:

• Convenience: Given that the configuration of an IT security system is usually very complicated,
the setting of the configuration of an IT security system for applying new approaches is more
difficult. Therefore, it is necessary to reduce the difficulty of configuration of new approaches
when each new approach is applied to intruder detection systems. The configuration includes not
only hardware settings but also software settings

• Generality: There are a variety of sensors. Therefore, new approaches of intruder detection
systems should work without being dependent on specific numbers or types of sensors. In
addition, changes in the configuration of sensors should be reflected.

• Accuracy: Detecting intruders is the main function of intruder detection systems. Therefore,
the accuracy of detecting intruders should be improved and revised when each new approach
is applied.

In the proposed method, demonstration-based learning is applied to consider the above
requirements. The accuracy of intruder detection systems can be improved by focusing on the data for
a specific resident based on demonstration-based learning. The proposed method can be performed on
any type of network of sensors. Therefore, it is independent of the sensors. To describe the proposed
method well, we utilize the RSSIs of beacon-based tags.

3. Intelligent Intruder Detection Processes

Given that GPS cannot be utilized in indoor environments to detect intruders, beacon RSSIs are
utilized in this paper instead of GPS. First, it is necessary to analyze beacon RSSIs to decide whether
there are any intruders based on the analyzed RSSIs. This section describes all the processes of the
proposed intelligent intruder detection.

3.1. Concept of the Proposed Processes

The proposed processes consist of six phases, including two “living” phases during which
residents perform activities of day-to-day living as shown in Figure 1. In the configuring environment
phase and deploying sensor phase, the sensors network is configured in cloud computing environments.
The sensors network contains diverse kinds of sensors and actuators. The proposed method focuses on
RSSIs in the sensors network to recognize notable situations and to detect intruders in cloud computing
environments. Devices that invoke RSSIs are not considered in this paper, given that the proposed
method can be applied to any devices that invoke RSSIs. The first living phase and learning phase are
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performed concurrently to learn normal situations. Then, the second living phase and detecting phase
are executed to decide whether or not there is an intruder.
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3.2. Learning and Detecting Phases

RSSIs are collected from deployed Access Points (APs) in the measuring stage as shown in Figure 2.
The more RSSIs that are gathered, the greater the accuracy of the detection of intruders. RSSI ri is
the ith RSSI, RSSI ri,t is the RSSI ri at time t, N is the number RSSIs, and the tuple st is the ordered
set of RSSIs, (r1,t, r2,t, . . . , rN,t), at time t. During the normalization stage, the normalized RSSI r’i,t is
calculated using the constant ψ ( r′i,t =

ri,t
ψ ×ψ ). The tuple s’t is (r’1,t, r’2,t, . . . , r’N,t). The constant ψ is

a positive number that controls the number of types of the tuples, which affects the probability stage.
During the filtering stage in the learning phase, the frequency of each tuple is measured as below.
The count cj is the number of the jth tuple of the tuples. The tuples that have low counts usually do
not show the constant features. Therefore, the tuples whose counts are smaller than the constant ε
are meaningless, and are filtered. The constant ε controls the number of the tuples by removing the
meaningless ones. The filtering stage in the detection phase filters tuples by utilizing the counts of the
filtering stage in the learning phase.
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The molding stage selects valid RSSI ranges. In this paper, an RSSI mold is defined as the
boundary of the measurable RSSIs in the tuples. The molding stage consists of four steps: “setting the
boundary”, “selecting areas”, “creating a mold”, and “pruning the mold”, as shown in Figures 3 and 4.
During the “setting the boundary” step, the molding cell size constant δ is determined. All possible
RSSI spaces are divided into cells by considering the constant δ. If the constant δ is increased, the
number of cells is reduced, and vice versa. Next, during the “selecting area” step, the cells that contain
the RSSIs are selected. The “creating a mold” step reduces the size of each cell that contains RSSIs by
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considering the maximum and minimum values of the RSSIs within the cell. Finally, the “pruning the
mold” step expands all cell sizes by the constant ζ. The constants δ and ζ affect the probability stage.Entropy 2016, 18, 366  5 of 16 
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area step; (c) creating a mold step; (d) pruning the mold step.

When RSSIs are measured, it is necessary to analyze their features according to each tag owner. In
this paper, Bayesian probability is applied to analyze the features of the RSSIs. The probability stage
generates a probability table by considering the top κ counts of tuples as shown in Table 1. The tuple
s’j is the jth tuple when tuples are organized in descending order. The probability pj1,j2 is P(s’j2|s’j1).
The above constant ψ controls the probabilities in the probability table. If the constant ψ is increased,
the probabilities within each mold become smaller, given that the number of the tuples is increased,
and vice versa. The probabilities are also controlled by the constants δ and ζ, given that they control
the sizes of RSSI molds.

Table 1. Normalized probability table.

s’1 s’2 . . . s’κ

s’1 p1,1 p1,2 p1,κ
s’2 p2,1 p2,2 p2,κ
. . .
s’κ pκ,1 pκ,2 pκ,κ

The decision stage in the detection phase detects intruders using two approaches. First, intruders
are detected by the RSSI molds. The percentages of RSSIs within the RSSI molds for all RSSIs during
the detection phase are calculated. If the percentage is less than µ, it is assumed that there is an
intruder. Second, the difference between the probability table in the learning phase and the probability
table in the detection phase is considered. The difference is the average of all differences between
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the probabilities of the probability table in the learning phase and those of the probability table in
the detection phase. When the difference is larger than the constant τ, it is assumed that there is
an intruder.

4. Experiments

The proposed method can be applied to any kind of sensor network in a cloud computing
environment such as in smart buildings and smart houses. In the experiment described here, a
laboratory similar to a regular office was configured. This section introduces the configuration of the
experimental environments and scenarios, and the proposed method is then validated.

4.1. Experimental Configuration

In the laboratory, there are desks, a printer, a scanner, a washstand, a refrigerator, etc., as shown
in Figure 5. To measure the movements of a subject who holds a beacon, four APs are deployed at
each corner. Red rectangles denote the APs and blue circles show where the subject usually stays.
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4.2. Sensor Value Analysis

RSSIs of a Bluetooth-based beacon are measured using four APs during the measurement stage
in the learning phase. Figure 6 shows the measured RSSIs for one subject in two instances; these are
normal RSSIs and are utilizing for learning. Figure 7 shows the results of normalizing the measured
RSSIs. The constant ψ was set to 10 considering the number of the normalized RSSIs in each cell to
be 8. However, some cells had peak counts compared to other cells. Therefore, when the constant ψ
was determined, only the counts of the lower 85% of cells were considered. Table 2 shows the counts
of normalized tuples. There are 163 tuples. Tuple s’1 = (−85, −85, −75, −65) shows the maximum
count, 332.

Table 2. The counts of normalized tuples.

AP a1 AP a2 AP a3 AP a4 Count

−85 −85 −75 −65 332
−85 −75 −75 −65 284
−75 −85 −75 −65 262
−75 −75 −75 −65 210

. . .
−75 −85 −65 −75 5
−75 −75 −65 −85 5

. . .
−95 −65 −65 −85 1
−85 −75 −75 −95 1
−75 −95 −65 −65 1
−95 −95 −85 −55 1
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Figure 8 shows the counts of normalized tuples as a graph. Given that the constant εwas set as
five, 89 tuples were selected and 74 tuples, for which counts were less than five, were filtered. If the
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counts are low, the corresponding probabilities become inaccurate. Therefore, the counts less than five
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Figure 8. Ordered counts of normalized tuples.

The molding stage was processed utilizing 89 tuples. The measured RSSIs were in the range from
−110 to −50. In the experiment, the molding cell size constant δ was set as 10, given that the constant
ψwas 10. The molding cell size constant δ could be set as the half of 10. However, if the molding cell
size constant δ is set as 10, the counts and probabilities of tables became low and inaccurate. Figure 9b
shows the selected cells. Figure 9c shows the generated RSSI molds. In Figure 9d, the RSSI molds are
expanded by ζ = 1, considering the molding cell size constant δ, given that the size of the constant ζ
was 10% of the size of the molding cell size constant δ.
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The probability table in the learning phase is shown in Table 3 below. In the experiment, the
constant κ was 10 according to experiments. Given that the subject usually stays in the same place, the
probabilities where j1 was equal to j2 show high counts. Table 4 shows the normalized probability
table in the learning phase.

Table 3. Counts of tuples of RSSIs in Learning phase.

s’1 s’2 s’3 s’4 s’5 s’6 s’7 s’8 s’9 s’10

s’1 158 28 39 7 1 0 1 13 0 0
s’2 25 122 8 30 14 0 18 1 0 0
s’3 42 4 115 24 0 0 0 4 0 0
s’4 6 24 20 90 1 0 3 0 1 0
s’5 0 11 2 0 77 0 0 0 0 0
s’6 0 0 0 0 0 56 2 0 3 11
s’7 0 11 0 1 0 0 32 10 1 15
s’8 15 1 5 0 0 0 2 34 0 0
s’9 0 0 0 2 0 0 0 0 42 7
s’10 0 3 0 0 0 8 4 0 8 41

Table 4. Probability table in Learning phase.

s’1 s’2 s’3 s’4 s’5 s’6 s’7 s’8 s’9 s’10

s’1 0.64 0.11 0.16 0.03 0.00 0.00 0.00 0.05 0.00 0.00
s’2 0.11 0.56 0.04 0.14 0.06 0.00 0.08 0.00 0.00 0.00
s’3 0.22 0.02 0.61 0.13 0.00 0.00 0.00 0.02 0.00 0.00
s’4 0.04 0.17 0.14 0.62 0.01 0.00 0.02 0.00 0.01 0.00
s’5 0.00 0.12 0.02 0.00 0.86 0.00 0.00 0.00 0.00 0.00
s’6 0.00 0.00 0.00 0.00 0.00 0.78 0.03 0.00 0.04 0.15
s’7 0.00 0.16 0.00 0.01 0.00 0.00 0.46 0.14 0.01 0.21
s’8 0.26 0.02 0.09 0.00 0.00 0.00 0.04 0.60 0.00 0.00
s’9 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.82 0.14
s’10 0.00 0.05 0.00 0.00 0.00 0.13 0.06 0.00 0.13 0.64

4.3. Experimental Validation Scenarios

To validate the proposed method, experimental scenarios were defined as follows. The first is the
scenario when Student A acts in an ordinary way. This scenario is outlined in Figure 10.
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Student A performs research from 13:00 to 18:00 in the laboratory. One day, Student A arrives to
the school and works on research at his/her desk from 13:00. While working, Student A gets thirsty
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and goes to the refrigerator, and then drinks water. After drinking water, Student A returns to his/her
desk and works on research. Student A leaves the laboratory to visit the restroom. After returning
from the restroom, Student A returns to his/her desk to work. Student A prints the data required for a
meeting and goes to the printer to collect the print outs. Student A goes to the conference table with the
print outs and sits down. Student A checks the print outs and go to his/her desk. While working on
research, Student D asks a question about the research assignment, so Student A approaches Student
D to answer the question. After answering, Student A returns to his/her desk to work on research.
In this manner, an ordinary scenario is defined and data is collected.

Abnormal scenarios are also defined to simulate the proposed method as shown in Figure 11.
Student A goes to the professor’s desk and looks for documents to address the work the professor
has requested. After finding the documents, Student A returns to his/her desk, calls the professor,
and informs the professor of the contents of the document. Student A sits at his/her desk to conduct
research. Student A leaves the laboratory to go to another laboratory.
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On the way back to the first laboratory, student A receives documents to pass on to Student B
from another student. Student A enters the laboratory and delivers the documents to Student B. After
describing the content of the documents to Student B, Student A goes to the server desk. Student A
finds important information saved on the server. Student A sends it through email. Student A goes
to the conference table to attend a meeting. After the meeting, Student A goes to his/her desk to
work on research. Student A takes questions about the documents he/she received from Student B.
Then Student A returns to his/her desk to work on research. Student A becomes tired, so goes to
the coffee machine, drinks coffee, and returns to his/her desk to work on research. In this scenario,
Student A’s behavior is not ordinary because student A goes to the professor’s desk and goes to the
server desk to access the server computer.

4.4. Sensor Value Measurement

Figure 12 shows the measured RSSIs when the normal scenario was performed by Student A.
Figure 13 shows the measured RSSIs when the abnormal scenario was performed by Student A.
The RSSI of delivering a paper was similar to that of searching files.
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Before comparing probability tables, whether the percentages of normalized and filtered RSSIs
are within the RSSI mold for all RSSIs is checked during the detection phase. If the percentage is less
than µ, it is assumed that there is an intruder. Figure 17 shows the result of the check for whether the
percentages of normalized and filtered normal RSSIs are within the RSSI mold. When the normalized
and filtered normal RSSIs are within the RSSI mold, a status of “Correct” is indicated. Other cases are
denoted by “Incorrect.” The percentage of normalized and filtered normal RSSIs was 80%. As shown
in Figure 18, the percentage of normalized and filtered abnormal RSSIs was 79%. Therefore, the
two percentages were similar, and larger than the constant µ = 70. The constant µwas set according
to experiments.
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Figure 18. The normalized and filtered abnormal RSSIs in abnormal scenarios comparing to the RSSIs
in the learning phase.

Given that the two percentages were greater than the constant µ, the probability tables were
calculated. Table 5 shows the counts of tuples of RSSIs for the normal scenario and Table 6 shows the
probability table for tuples of RSSIs for the normal scenario. The probability of a normal scenario in
Table 6 was calculated based on the count of tuples of RSSIs for the normal scenario in Table 5. Tables 7
and 8 show the results for the abnormal scenario.
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Table 5. Counts of tuples of RSSIs for the normal scenario.

s’1 s’2 s’3 s’4 s’5 s’6 s’7 s’8 s’9 s’10

s’1 63 8 15 0 1 0 0 2 0 1
s’2 12 44 2 5 3 0 5 0 0 2
s’3 15 2 23 5 0 0 0 0 0 0
s’4 2 4 1 13 0 0 0 0 0 0
s’5 0 2 0 1 4 0 0 0 0 0
s’6 0 0 0 0 0 1 0 0 1 0
s’7 0 6 0 1 0 0 11 0 0 3
s’8 0 0 0 0 0 0 0 0 0 0
s’9 0 0 0 0 0 0 1 0 5 1
s’10 0 1 0 0 0 1 5 0 3 16

Table 6. Probability table of tuples of RSSIs for the normal scenario.

s’1 s’2 s’3 s’4 s’5 s’6 s’7 s’8 s’9 s’10

s’1 0.70 0.09 0.17 0.00 0.01 0.00 0.00 0.02 0.00 0.01
s’2 0.16 0.60 0.03 0.07 0.04 0.00 0.07 0.00 0.00 0.03
s’3 0.33 0.04 0.51 0.11 0.00 0.00 0.00 0.00 0.00 0.00
s’4 0.10 0.20 0.05 0.65 0.00 0.00 0.00 0.00 0.00 0.00
s’5 0.00 0.29 0.00 0.14 0.57 0.00 0.00 0.00 0.00 0.00
s’6 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00
s’7 0.00 0.29 0.00 0.05 0.00 0.00 0.52 0.00 0.00 0.14
s’8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
s’9 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.71 0.14
s’10 0.00 0.04 0.00 0.00 0.00 0.04 0.19 0.00 0.12 0.62

Table 7. Counts of tuples of RSSIs for the abnormal scenario.

s’1 s’2 s’3 s’4 s’5 s’6 s’7 s’8 s’9 s’10

s’1 78 10 5 0 1 0 2 13 0 0
s’2 12 26 2 4 1 0 5 0 0 1
s’3 5 2 16 9 0 0 0 1 0 0
s’4 1 2 6 13 1 0 0 0 0 0
s’5 1 0 0 0 10 0 1 0 0 0
s’6 0 0 0 0 0 1 0 0 0 1
s’7 2 6 0 1 0 0 16 9 0 3
s’8 13 1 2 0 0 1 11 33 0 1
s’9 0 0 0 0 0 0 0 0 0 2
s’10 0 0 0 0 0 0 1 3 1 21

Table 8. Probability table of tuples of RSSIs for the abnormal scenario.

s’1 s’2 s’3 s’4 s’5 s’6 s’7 s’8 s’9 s’10

s’1 0.72 0.09 0.05 0.00 0.01 0.00 0.02 0.12 0.00 0.00
s’2 0.24 0.51 0.04 0.08 0.02 0.00 0.10 0.00 0.00 0.02
s’3 0.15 0.06 0.48 0.27 0.00 0.00 0.00 0.03 0.00 0.00
s’4 0.04 0.09 0.26 0.57 0.04 0.00 0.00 0.00 0.00 0.00
s’5 0.08 0.00 0.00 0.00 0.83 0.00 0.08 0.00 0.00 0.00
s’6 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.50
s’7 0.05 0.16 0.00 0.03 0.00 0.00 0.43 0.24 0.00 0.08
s’8 0.21 0.02 0.03 0.00 0.00 0.02 0.18 0.53 0.00 0.02
s’9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
s’10 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.12 0.04 0.81
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Tables 9 and 10 are the absolute values of the difference between the learned probability and the
probability of the RSSIs for the normal scenario and the abnormal scenario, respectively.

For this experiment, the constant τ was set as 6, given that the possible minimum and maximum
of the constant τ are 0 and 10, respectively. The difference for the normal scenario was 4.47 and the
difference for the abnormal scenario was 7.21. Therefore, we could assume that the subject in the
normal scenario is the subject in the learned scenario and that the subject in the abnormal scenario is
not the subject in the learned scenario. As a result, the subject in the abnormal scenario is treated as
an intruder.

Table 9. Absolute values of the difference between the learned probability and the probability of the
RSSIs for the normal scenario.

s’1 s’2 s’3 s’4 s’5 s’6 s’7 s’8 s’9 s’10

s’1 0.06 0.02 0.01 0.03 0.01 0.00 0.00 0.03 0.00 0.01
s’2 0.05 0.04 0.01 0.07 0.02 0.00 0.01 0.00 0.00 0.03
s’3 0.11 0.02 0.10 0.02 0.00 0.00 0.00 0.02 0.00 0.00
s’4 0.06 0.03 0.09 0.03 0.01 0.00 0.02 0.00 0.01 0.00
s’5 0.00 0.16 0.02 0.14 0.28 0.00 0.00 0.00 0.00 0.00
s’6 0.00 0.00 0.00 0.00 0.00 0.28 0.03 0.00 0.46 0.15
s’7 0.00 0.13 0.00 0.03 0.00 0.00 0.07 0.14 0.01 0.07
s’8 0.26 0.02 0.09 0.00 0.00 0.00 0.04 0.60 0.00 0.00
s’9 0.00 0.00 0.00 0.04 0.00 0.00 0.14 0.00 0.11 0.01
s’10 0.00 0.01 0.00 0.00 0.00 0.09 0.13 0.00 0.01 0.03

Table 10. Absolute values of the difference between the learned probability and the probability of the
RSSIs for the abnormal scenario.

s’1 s’2 s’3 s’4 s’5 s’6 s’7 s’8 s’9 s’10

s’1 0.02 0.00 0.12 0.00 0.00 0.00 0.02 0.10 0.00 0.01
s’2 0.07 0.09 0.01 0.01 0.02 0.00 0.03 0.00 0.00 0.01
s’3 0.18 0.02 0.03 0.16 0.00 0.00 0.00 0.03 0.00 0.00
s’4 0.06 0.11 0.21 0.08 0.04 0.00 0.00 0.00 0.00 0.00
s’5 0.08 0.29 0.00 0.14 0.26 0.00 0.08 0.00 0.00 0.00
s’6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50
s’7 0.05 0.12 0.00 0.02 0.00 0.00 0.09 0.24 0.00 0.06
s’8 0.21 0.02 0.03 0.00 0.00 0.02 0.18 0.53 0.00 0.02
s’9 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.71 0.86
s’10 0.00 0.04 0.00 0.00 0.00 0.04 0.15 0.12 0.08 0.19

4.5. Performance Analysis Experiment

Intruders are detected by generating and comparing probability tables. Additional experiments
were performed to analyze the differences in the probability tables between authorized persons and
intruders to validate the robustness of the proposed method where RSSIs were measured within short
distances. While an authorized person and an intruder walked through the same corridor, the RSSIs of
those were measured only one time for each during the detecting phase and were utilized to generate
probability tables. The intruder walked after watching the authorized person in order to emulate their.
Tables 11 and 12 show the probability tables of the authorized person and the intruder, respectively. All
parameters were set the same as in the previous experiments except for the molding cell size constant δ
and the constant τ, which were set repectively as five and three, given that the size of the walking area
was smaller than that of the previous experimental area and that the possible minimum and maximum
of the constant τwere zero and five, respectively.
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Table 11. Normalized probability table for an authorized person.

s’1 s’2 s’3 s’4 s’5

s’1 0.14 0.14 0 0 0
s’2 0 0.18 0.18 0 0
s’3 0 0.25 0.75 0 0
s’4 0.16 0 0 0.16 0
s’5 0 0 0 0 1

Table 12. Normalized probability table of for intruder.

s’1 s’2 s’3 s’4 s’5

s’1 1 0 0 0 0
s’2 0 0.18 0.18 0 0
s’3 0 0.25 0.75 0 0
s’4 0.16 0 0 0.83 0
s’5 0 0 0 0 1

The probability differences of the authorized person and the intruder were about 2.99 (smaller
than the constant τ) and 4.37 (larger than the constant τ). When the two probability tables are compared,
that of the intruder is more different than that of the authorized person by about 1.38. According to
this result, it appears that the proposed method can detect the RSSI differences between intruders and
authorized persons accurately where RSSIs are measured within short distances. Even though the two
people walked through the same route of the same corridor, there was a difference in their walking
speeds. Although the proposed method does not consider walking speed directly, the walking speed
is reflected when the count table is generated. When a person stays in a specific cell, the count of the
corresponding cell is increased. Therefore, the count table is different depending on the person.

5. Conclusions

This paper proposed an intruder detection system based on the measured RSSIs of a beacon.
By utilizing deployed APs, RSSIs were measured. Based on the measured RSSIs, the movement
patterns of a resident were generated and utilized for detecting intruders. In the experiments, RSSIs
were collected twice: once for normal RSSIs and once for RSSIs for validation of the proposed method.
For validation, two scenarios were defined: one for a normal situation and the other for an abnormal
situation. When the RSSIs of both scenarios were compared to the pre-collected RSSIs, the RSSIs of the
abnormal scenario were about 61% more different compared with the RSSIs of the normal scenario.
Therefore, intruders in buildings can be detected by considering RSSI differences.

By utilizing the proposed method, the patterns of RSSIs of residents can be utilized as the unique
keys of the residents, which has the advantage that the owners of tags do not recognize situations
where the owners’ RSSIs are collected by APs. In the future, an approach for encrypting measured and
collected RSSIs of owners will be researched in order to utilize the RSSIs as unique keys.
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