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Abstract:



A three-dimensional model of binary chemical reactions is studied. We consider an ab initio quantum two-particle system subjected to an attractive interaction potential and to a heat bath at thermal equilibrium at absolute temperature [image: there is no content]. Under the sole action of the attraction potential, the two particles can either be bound or unbound to each other. While at [image: there is no content], there is no transition between both states, such a transition is possible when [image: there is no content] (due to the heat bath) and plays a key role as [image: there is no content] approaches the magnitude of the attractive potential. We focus on a quantum regime, typical of chemical reactions, such that: (a) the thermal wavelength is shorter than the range of the attractive potential (lower limit on T) and (b) [image: there is no content] does not exceed the magnitude of the attractive potential (upper limit on T). In this regime, we extend several methods previously applied to analyze the time duration of DNA thermal denaturation. The two-particle system is then described by a non-equilibrium Wigner function. Under Assumptions (a) and (b), and for sufficiently long times, defined by a characteristic time scale D that is subsequently estimated, the general dissipationless non-equilibrium equation for the Wigner function is approximated by a Smoluchowski-like equation displaying dissipation and quantum effects. A comparison with the standard chemical kinetic equations is made. The time τ required for the two particles to transition from the bound state to unbound configurations is studied by means of the mean first passage time formalism. An approximate formula for τ, in terms of D and exhibiting the Arrhenius exponential factor, is obtained. Recombination processes are also briefly studied within our framework and compared with previous well-known methods.
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1. Introduction


While the foundations of equilibrium statistical mechanics are well established [1,2,3,4,5], those of non-equilibrium statistical mechanics continue to be an open and active important research area [1,6,7,8]. The monographs by [9,10,11] provide a wide and accessible perspective on classical equilibrium and irreversible thermodynamics. Within the realm of quantum thermodynamics (see [12] and the references therein), where the laws of thermodynamics from quantum mechanics and the theory of open quantum systems remain a mainstay [13], particular attention has been put to the Markovian assumptions and the dissipative dynamics proposed by Lindblad and Gorini–Kossakowski–Sudarshan [14,15]. One crucial hallmark is that the off-equilibrium evolution of statistical systems displays stochasticity: see [16,17,18] in the classical regime and [13,19,20,21] in the quantum one.



It is the goal of the present study to focus on non-equilibrium statistical mechanics in the quantum regime, which faces many open fundamental problems. A key question is how to formulate suitably approximate dynamical equations, displaying stochasticity, by starting out from a quantum mechanical framework and carrying out adequate long time approximations. Such a task turns out to be very difficult for isolated and large nonequilibrium quantum systems.



Fortunately, certain rewarding results have been obtained for a closed composite system consisting of the system [image: there is no content] of actual interest and a larger “heat bath” (HB) in quantum mechanics, under various conditions. Those results required considering the quantum states of [image: there is no content] and of the HB altogether and various conditions on Hamiltonians and that the states of [image: there is no content] be spread over many different energies. In short, even if the composite is initially in a pure nonequilibrium state, the reduced state of [image: there is no content] will tend to be canonical. Some of those results (which are related to and support our present work) are: (i) derivation of the canonical density operator for [image: there is no content] for large times [22] and for a suitable overwhelming majority of wave functions (typicality) [23]; (ii) [image: there is no content] will approach an equilibrium state and remain close to it for almost all times, independently both of the HB and, under suitable conditions, also of the initial state of [image: there is no content] [24]. For equilibration of isolated systems, see [25]. For further strengthening results, which include a number of extensions, small [image: there is no content] and equilibration for finite times, under wider conditions on energy spreads of states, as well as the interplay between quantum information and thermodynamics, see [26,27,28,29] and the references therein.



Chemical reactions constitute a very important and wide class of phenomena in which quantum mechanics and (equilibrium and non-equilibrium) statistical mechanics play essential roles. See [4,5] and the references therein for studies devoted to the equilibrium chemical constant. Much research has also been devoted to non-equilibrium chemical reactions: see, in particular, [9,11,17] for stochastic and thermodynamical approaches. The non-equilibrium rate constant is treated in [17] by means of a thorough analysis of the Kramers equation. Pulsed lasers allow one to probe, with very short temporal resolution, off-equilibrium dynamics in chemical reactions (see [30,31] and the references therein).



In biological systems, one prominent example is the thermal denaturation of DNA: a physical non-equilibrium process through which the two homologous strands, initially bound to each other, split off into two separate single ones, at a certain (melting) temperature [32,33]. In a previous work [34], and motivated by non-equilibrium DNA thermal denaturation, the present authors treated the dynamics of two interacting classical three-dimensional macromolecular chains. Each chain was assumed to be Gaussian (except for possible additional weak interactions along it). These chains were immersed in a medium at thermal equilibrium and initially bound to each other by potentials, which were attractive for medium and large distances (say, Morse-like). As temperature increased from room values up to about the melting one, the two strands became dissociated, and the mean first passage time of this process was calculated. Here, we shall generalize nontrivially the methods used in [34] to a different process, namely a non-equilibrium chemical reaction of two quantum particles (atoms and small molecules) in a medium, by resorting to a somewhat simplified model.



The strategy in our present study will parallel that of [34] very closely. Then, for a better understanding of the present work, it is adequate to start by summarizing below the main successive conceptual steps followed in [34]:

	
The two macromolecular chains were described, from the outset, by a classical (non-negative) probability distribution, depending on all spatial positions of all atoms and on time and evolving through an irreversible Kramers-like master equation (stochasticity being thereby taken care of). Neither Planck’s constant ℏ nor thermal wavelengths were included. However, the formulation did include an important length scale, namely the bond length yielding the average distance between two successive atoms along each chain.



	
The overall center of mass (CM) motion was factored out off-equilibrium from the remaining spatial variables (the set [image: there is no content] of all positions of the atoms along the two chains and the relative position y of the two centers of mass of the chains). The interest focused then on the non-equilibrium reduced probability distribution depending on [image: there is no content], y and time t. The inclusion of attractive potentials between the two chains in the corresponding Kramers-like master equation seemed to be, to the best of our knowledge, a novel feature.



	
Upon integrating over all [image: there is no content] (leaving y unintegrated), the classical reduced Boltzmann equilibrium distribution for the two interacting chains was used as the generating function for an infinite family of orthogonal polynomials in [image: there is no content] (depending on y, parametrically). That generating function was not a Gaussian one, due to the various potentials.



	
The orthogonal polynomials were used to define non-equilibrium moments (y- and t-dependent) for the non-equilibrium reduced probability distribution.



	
The Kramers-like equation yielded a hierarchy for the non-equilibrium moments.



	
At temperatures below, but close to, the melting one (i.e., DNA denaturation), the long-time dynamics was approximated by a Smoluchowski-like equation (containing a y-dependent effective potential) for the lowest non-equilibrium moment.



	
The application of the mean first passage time formalism [16,17,35] to the Smoluchowski-like equation in step 6 enabled us to study approximately the time duration of non-equilibrium thermal denaturation of the two strands, initially bound to each other, towards configurations of two separate single strands.








We shall firstly outline the contents of the present work by emphasizing the correspondence with the above steps 1–7 in [34] and, secondly, underline the differences with [34]. Section 2 deals with the non-equilibrium evolution of two quantum particles in three spatial dimensions, subject to an attractive potential between them and in contact with a large HB at thermal equilibrium. Throughout our study, we assume that the state of the system, for sufficiently long times, approaches towards its own canonical density operator at thermal equilibrium with the HB, in agreement with the results in [22,23,24,25,26,27,28,29]. We shall simplify the treatment by omitting the detailed analysis of the states of the HB (just retaining the fact that it establishes the temperature), and in an effective way, we will focus exclusively on the quantum states of the two particles. The quantum Hamiltonian, nonequilibrium Wigner function and evolution equation (t-reversible and without ab initio dissipation) for the system, the separation (at both equilibrium and off-equilibrium) of the overall center of mass from the relative motion variables (position x and momentum q) of the two particles and certain spectral properties are treated in Section 2.1, Section 2.2 and Section 2.3 (counterparts of steps 1 and 2 in [34]). The construction of an infinite family of orthogonal polynomials in the relative momentum q, generated by the equilibrium relative Wigner function as the weight function, is carried out in Section 2.4 and Section 2.5 (counterpart of step 3 in [34]). The moments (x- and t-dependent) of the non-equilibrium relative Wigner function are constructed in Section 2.6 (counterpart of step 4 in [34]). Section 3 provides the dynamical equations for the non-equilibrium moments implied by those for the non-equilibrium relative Wigner function. The infinite hierarchy is presented and analyzed in Section 3.1 (counterpart of step 5) in [34]). The restrictions to the lowest non-equilibrium moment and to an irreversible Smoluchowski-like equation for it, under various approximations, are considered and justified in Section 3.2 and Section 3.3 (counterpart of step 6) in [34]). Section 4 deals with approximate kinetic equations. Section 5 compares approximately thermal and chemical equilibria. Section 6 and Section 7 are devoted to the application of the mean first passage time formalism to the Smoluchowski equation for the lowest non-equilibrium moment (counterpart of step 7) in [34]). Section 8 compares briefly our approach with other well-known methods and, in so doing, treats chemical recombination. Section 9 summarizes our conclusions.



Let us quote some key differences between the classical system considered in [34] and the quantum one to be treated here. In the quantum case: (a) even if, in general, Wigner functions could be negative in some domain [36,37], we shall argue that the actual equilibrium Wigner function could still be used as a weight function to generate orthogonal polynomials, by invoking a suitable mathematical framework (Section 2.4); (b) upon constructing the orthogonal polynomials, one integrates over the relative momentum q (while in [34], one integrated over all positions [image: there is no content] of the atoms along the two chains); (c) even if the system approaches thermal equilibrium for sufficiently long times [22,23,24,25,26,27,28,29], the nonequilibrium evolution equation for the Wigner function (our starting point in Section 2) does not display either irreversibility or a thermalizing evolution in general (while the Kramers-like master equation in [34] did display them from the outset). Then, approximations (for short thermal wavelengths and long times) are necessary here in order to arrive at the actual irreversible Smoluchowski-like equation for the lowest non-equilibrium moment in Section 3.3. In turn, for a simpler presentation, those approximations underlying the contents of Section 3.3 are carried out successively and separately, for a one-dimensional case, in Appendix C, Appendix D, Appendix E and Appendix F. One underlying basic question is why the starting point of our analysis is the non-equilibrium Wigner equation without explicit dissipation, instead of a master equation displaying the latter from the very outset: Appendix G will be devoted to discuss this issue, a posteriori.




2. Two Particles: Towards Non-Equilibrium Toy Chemical Reactions


2.1. General Features


We shall consider two non-relativistic spinless quantum particles of masses [image: there is no content] (with [image: there is no content]) in three spatial dimensions, inside a large finite volume Ω (outside which, an infinitely repulsive potential is assumed). Those individual particles can be either atoms or small molecules. We emphasize that Ω is large only at the microscopic scale. In Cartesian coordinates, the position vector and the momentum operator of the j-th particle are [image: there is no content] and [image: there is no content], where [image: there is no content], [image: there is no content] and ℏ is Planck’s constant. We shall denote [image: there is no content].



There are no external forces, and all interactions “seen by the system” are described, in principle, by a time-independent and velocity-independent two-body instantaneous potential V between the particles. The total (Hermitian) quantum Hamiltonian is:


[image: there is no content]



(1)







Let [image: there is no content] be the total momentum. Then, one has: [image: there is no content] ([image: there is no content] being the commutator of the operators A and B).



We shall separate off the standard CM: its position vector being [image: there is no content] with [image: there is no content]. Let us introduce the relative position vector [image: there is no content] and the reduced mass [image: there is no content]. Then, one has:


H=HCM+Hre,HCM=-ℏ22M∂2∂X2,HCM,Hre=0,



(2)






[image: there is no content]



(3)







Here, [image: there is no content] is the free CM Hamiltonian, and [image: there is no content] is the Hamiltonian of the reduced-mass particle. We now express x in terms of the standard radial ([image: there is no content]) and angular coordinates (θ, φ). Then:


Hre=pre,r22m+V(r)+12mr2l2,pre,r2=-ℏ21r2∂∂rr2∂∂r,



(4)




where l is the orbital angular momentum operator. Spatial integrations over X and x will be carried out inside large finite volumes Ω. The eigenfunctions corresponding to both [image: there is no content] and [image: there is no content] will vanish, by assumption, at the surfaces enclosing Ω.




2.2. Non-Equilibrium Statistical Formulation and Equilibrium Distributions


Let the two-particle system be immersed in an HB at thermal equilibrium, which is at absolute temperature T. The temporal evolution for [image: there is no content] is given by the density operator [image: there is no content] (a statistical mixture of quantum states). It fulfills the (t-reversible) operator equation [image: there is no content] with initial condition [image: there is no content]. The Hermitian and positive-definite linear operators [image: there is no content] and [image: there is no content] act on the Hilbert space spanned by the set of all eigenfunctions of H. Unless otherwise stated, we shall not impose that [image: there is no content] be normalized.



Let [image: there is no content], with [image: there is no content] being Boltzmann’s constant. The canonical density operator describing the two-particle system at thermal equilibrium with the HB is [image: there is no content] (with [image: there is no content]), and it factorizes as [image: there is no content], where [image: there is no content] and [image: there is no content].



We now resort to the non-equilibrium Wigner function [1,8,38,39,40,41,42,43], which reads as:


[image: there is no content]



(5)




where [image: there is no content], [image: there is no content] and [image: there is no content].



The time evolution of the Wigner function is furnished by:


[image: there is no content]



(6)




with:


MQW=iℏ(πℏ)6∫dq′W(x,q′;t)∫dx′exp2iℏ∑j=12∑α=13xj,α′(qj,α-qj,α′)×V(|x1+x1′-x2-x2′|)-V(|x1-x1′-x2+x2′|),



(7)




where [image: there is no content]. As Ω is large, we shall approximate spatial integrals by those for an infinite volume when such approximations are harmless, unless some specific discussion is required. Strictly speaking, as Ω is not infinite, the [image: there is no content] are discretized momenta, and [image: there is no content] in Equation (7) should be interpreted as a six-fold series. However, as Ω is large, we shall disregard the small spacings in [image: there is no content] and approximate it as a six-fold integral (thus, varying continuously). A similar remark and interpretation will apply and be understood whenever integrations over momenta occur (namely, in Equations (10), (16), (18), (19), and so on). We shall accept that all integrals (or all series) over momenta converge for large values of the latter: explicit expressions for [image: there is no content] below, together with (11), (12) and the computations in Appendix A will support this assumption. The initial condition [image: there is no content] is determined by [image: there is no content] through Equation (5). The equilibrium Wigner function [image: there is no content] is given by Equation (5) for the actual [image: there is no content]. Let [image: there is no content] and [image: there is no content] be the CM and relative momentum vectors, respectively. The actual [image: there is no content] factorizes as:


[image: there is no content]



(8)




with [image: there is no content] being the relative equilibrium Wigner function. [image: there is no content] is proportional to [image: there is no content]. Correspondingly, there is also factorization off-equilibrium: [image: there is no content], with [image: there is no content], and the (t-reversible) Wigner function [image: there is no content] of the relative particle fulfills:


[image: there is no content]



(9)






Mre,QWre=∫d3q′Wre(x,q′;t)∫d3x′iℏ(πℏ)3expi2(q-q′)x′ℏ×V(|x+x′)-V(|x-x′|).



(10)







We shall introduce the fixed, physically relevant and x-independent momentum [image: there is no content]. Recall that, in the classical case, the equilibrium (or Boltzmann’s) canonical distribution describing thermal equilibrium of two classical particles with an HB is (proportional to a) Gaussian in [image: there is no content]: that is, [image: there is no content], with [image: there is no content] being now the classical momenta. In the high temperature or small β (quasiclassical) regime, Wigner [38] obtained successive approximations for the equilibrium quantum distribution. Based on [38], we shall give the leading terms in the small β expansion for [image: there is no content]:


Wre,eq=c0fre,eq1+c1+c2∑α=13∂2V∂xα2H2(qα/qeq)+∑α,α′=1;α≠α′3∂2V∂xα∂xα′H1(qα/qeq)H1(qα′/qeq),



(11)




where:


[image: there is no content]



(12)






[image: there is no content]



(13)




and:


[image: there is no content]



(14)




with [image: there is no content]. [image: there is no content] and [image: there is no content] denote standard Hermite polynomials. We shall refer to the contributions associated with [image: there is no content] and [image: there is no content] as quantum contributions in the quasiclassical regime.



It is a reasonable assumption that the initial conditions [image: there is no content] and [image: there is no content] factorize into CM and relative ones. The initial condition for [image: there is no content] is [image: there is no content].




2.3. Assumptions on [image: there is no content], the Spectrum of [image: there is no content] and Application to [image: there is no content]


To further advance with the present framework, we suppose that the two-body interaction potential V satisfies the following conditions:

	
[image: there is no content] is repulsive ([image: there is no content]) for [image: there is no content] (“hard core”, with adequately small [image: there is no content]), attractive ([image: there is no content]) in the interval [image: there is no content] and vanishes fast as [image: there is no content].



	
[image: there is no content] is finite everywhere, and its magnitude [image: there is no content] is appreciable in [image: there is no content]. a is understood to be the range of V.



	
[image: there is no content] and all [image: there is no content], for [image: there is no content], are continuous for all [image: there is no content].



	
[image: there is no content] does give rise to only one bound state (bound spectrum). Thus, the relevance of the region where [image: there is no content] is larger than that of the hard core.








As we have mentioned, each individual particle could be either an atom or a small molecule. Hence, on physical grounds, we assume that [image: there is no content] is an effective potential between them (which, in particular, includes and averages over Coulomb interactions). Let [image: there is no content] denote a suitably-normalized eigenfunction of [image: there is no content] with corresponding eigenvalue [image: there is no content] and j denoting a set of labels. [image: there is no content] has both a discrete spectrum (due to the above assumptions, just one bound state) and a denumerably-infinite number of discrete states. For the discrete spectrum [image: there is no content] and [image: there is no content]. The denumerably-infinite discrete spectrum has a small spacing, and it becomes a continuous one (sweeping the continuous positive real axis) as [image: there is no content]. We shall denote it by CS, even if the small [image: there is no content] remains positive. The eigenfunctions corresponding to the continuous spectrum of [image: there is no content] are [image: there is no content], with [image: there is no content] being an almost continuous wavevector, and eigenvalues [image: there is no content]. The CS eigenfunctions are normalized through: [image: there is no content] (a Kronecker delta). Furthermore, [image: there is no content] (normalized) and [image: there is no content]. Hence, [image: there is no content], and all CS [image: there is no content] span two separate Hilbert subspaces [image: there is no content] and [image: there is no content]. Accordingly, [image: there is no content] will include the contribution of both the single discrete eigenfunction plus that of a three-fold infinite summation over the whole CS ones. For the CS only: [image: there is no content] as [image: there is no content]. Therefore,


Wre,eqx,q=1(πℏ)3∫d3x′expi2qx′ℏ⟨x-x′|exp[-βHre]|x+x′⟩=1(πℏ)3∫d3x′expi2qx′ℏ∑jexp[-βEj]φj(x-x′)φj*(x+x′).



(15)







While at [image: there is no content], there is no transition between the bound state and the CS ones, such a transition is indeed possible for [image: there is no content] (due to the HB) and plays a key role as [image: there is no content] approaches [image: there is no content], as will be discussed below. Thus far, we have implemented the counterparts of steps 1 and 2 in [34]. We emphasize that the contributions of the bound states have disappeared in the high temperature (quasi-classical) regime corresponding to Equations (11)–(14), which should not be employed in regions where bound states be relevant. However, there seems to be no compelling reason for not using Equations (11)–(14) for rough or zeroth order approximations in regions where the contributions due to the bound states are negligible.




2.4. [image: there is no content] as a Quasi-Definite Functional of Momenta


As [image: there is no content] is Gaussian in Q, it gives rise, as a weight function, to an infinite number of orthogonal polynomials in Q: the standard Hermite ones [44]. Furthermore, notice that neither [image: there is no content], nor [image: there is no content] can be warranted to be nonnegative in general [38,39,42]. A necessary and sufficient condition for the Wigner function associated with a wave function to be nonnegative is that the latter be a Gaussian distribution [36]. However, the domain in which [image: there is no content] may occur cannot be large and has to be consistent with the fact that the marginals of both [image: there is no content] and [image: there is no content] are nonnegative.



Let us now invoke, in outline, a mathematical framework, based on the theory of orthogonal polynomials [45], the physical interest of which will be appreciated below. For simplicity, we shall focus on the one-dimensional case, leaving out the direct extension to three dimensions. Let us consider a kernel [image: there is no content] (which could be negative), a set of functions [image: there is no content] and the following functionals [image: there is no content] determined by the kernel K: [image: there is no content]. We will assume that all integrals over y are convergent. Let [image: there is no content], [image: there is no content], and consider the set of all [image: there is no content] matrices [image: there is no content] (where [image: there is no content]) with the [image: there is no content]-th element equal to [image: there is no content] (where [image: there is no content]) and their respective determinants: [image: there is no content]. By definition, the functional [image: there is no content] is quasi-definite if [image: there is no content] for any [image: there is no content] [45]. If [image: there is no content] is a quasi-definite functional, we resort to a theorem in [45], which implies the following: (i) the existence of an infinite family of orthogonal polynomials, denoted here as [image: there is no content], for n=0,1,2,…, with weight function K (even if [image: there is no content] in some domain of y); and (ii) the [image: there is no content]’s satisfy a basic three-term linear recurrence relation, omitted here.



Let [image: there is no content]. The argument in Appendix A supports (albeit, it does not prove) that [image: there is no content] determines a quasi-definite functional of y for any x. Based on that argument, we shall assume henceforth that, regarding their [image: there is no content]-dependences, the Wigner function [image: there is no content] determines a quasi-definite functional [image: there is no content] (for any x and t). The interest of this assumption is obvious: if it holds (as we shall suppose), it implies the existence of an infinite family of orthogonal polynomials [image: there is no content] generated by [image: there is no content] (Section 2.5). It is possible, but unnecessary, to extend the assumption to [image: there is no content].




2.5. Orthogonal Polynomials [image: there is no content] Generated by [image: there is no content]


Let us define [image: there is no content], with the [image: there is no content] being non-negative integers ([image: there is no content]). Use will also be made of the additional shorthand notations: [image: there is no content], [image: there is no content], which represents a vector with a one in the α position with the rest of the components being zero, and [image: there is no content] similar to [image: there is no content], but with a two in the α position. We introduce (unnormalized) orthogonal polynomials [image: there is no content] in y determined by [image: there is no content], which acts as a (in general, non-Gaussian) weight function. We choose [image: there is no content]. We shall also employ additional useful notations, like: [image: there is no content], [image: there is no content] for [image: there is no content] and [image: there is no content]. In general, the [image: there is no content]’s are constructed recurrently as follows. We impose for [image: there is no content], and any x (left unintegrated), that:


[image: there is no content]



(16)




where:


[image: there is no content]



(17)




[image: there is no content] and [image: there is no content]. Here, [image: there is no content] are dimensionless and y-independent (though x-dependent, in general). One has [image: there is no content] if [image: there is no content] is odd, so that [image: there is no content]. The [image: there is no content]’s are given and estimated in Appendix B.



The orthonormalized polynomials are [image: there is no content], with a (x-dependent) normalization factor [image: there is no content] defined through:


[image: there is no content]



(18)







Expressing the [image: there is no content]’s as sums of products of standard Hermite polynomials is also possible, but less convenient here. The orthogonal polynomials determined by the classical relative Boltzmann distribution [image: there is no content] in (12) are proportional to products of the standard Hermite polynomials [image: there is no content] [44]. Then, for the latter, the coefficients in the (classical) counterpart of (17) can be directly obtained and are x-independent. Section 2.4 and the present one have implemented the counterpart of step 3 in [34].




2.6. Moments: Off-Equilibrium and at Equilibrium


We now turn to the non-equilibrium moments. They are defined through:


[image: there is no content]



(19)







When [image: there is no content], all equilibrium moments with [image: there is no content] vanish, except:


Weq,[0](x)=∫d3yWre,eq(x,y)=1qeq3∑jexp[-βEj]φj(x)φj*(x)=1qeq3exp-βEdφd(x)φd*(x)+Weq,CS,[0].



(20)




[image: there is no content] is the CS contribution. This justifies, a posteriori, the interest of having introduced the [image: there is no content]’s and the [image: there is no content]’s. In the t-evolution, not far from thermal equilibrium, and recalling [22,23,24,25,26,27,28,29], one expects that [image: there is no content] would be dominant and that any [image: there is no content], for any [image: there is no content], be small (the more negligible the larger t and [image: there is no content] are). The initial condition [image: there is no content] for [image: there is no content] is obtained by replacing [image: there is no content] by [image: there is no content] in Equation (19). [image: there is no content] and any [image: there is no content] have the same dimension as [image: there is no content]. This section has implemented the counterpart of step 4 in [34].





3. Hierarchy for the Non-Equilibrium Moments and Approximations


3.1. Non-Equilibrium Hierarchy


The transformation of Equations (9), (10) and (19) into an infinite linear hierarchy for the nonequilibrium moments [image: there is no content] can be carried out through direct computations and cancellations, increasingly cumbersome as [image: there is no content] grows. The equations for the lowest order moments are:


[image: there is no content]



(21)






[image: there is no content]



(22)




where:


[image: there is no content]



(23)







The general (t-reversible) hierarchy implied by Equations (9) and (10) for any [image: there is no content] is:


[image: there is no content]



(24)




with:


[image: there is no content]



(25)







Having in mind that [image: there is no content], the subscript [image: there is no content] in [image: there is no content] denotes successively [image: there is no content], [image: there is no content] and [image: there is no content], and analogously for the corresponding interpretation of the sum [image: there is no content] in (24) (which we do not make explicit to avoid unnecessary notational complications). Here, [image: there is no content], and any [image: there is no content] come from the first and the second terms on the right-hand side of Equation (9), respectively. We shall omit, for simplicity, the [image: there is no content]’s. It is simpler to give and discuss the counterparts of the [image: there is no content]’s in the one-dimensional case (see Appendix C for details). The structure of the hierarchy (24) is a genuine consequence of quantum mechanics. All coefficients in (24) are expressed in terms of V and of quantities computed out of the equilibrium solution [image: there is no content].



Let [image: there is no content]. By using the expression for [image: there is no content], given later in Equations (B1) and (B2), together with Equations (20) and (23), we obtain that:


[image: there is no content]



(26)







Moreover, [image: there is no content] and [image: there is no content] for [image: there is no content] solve the hierarchy (24), with all [image: there is no content]. We shall treat briefly the following stationary solution of Equation (24): [image: there is no content] for [image: there is no content], [image: there is no content] and [image: there is no content], with [image: there is no content]. With the [image: there is no content] (determined by [image: there is no content]) used so far, it follows that: [image: there is no content]; hence, a direct computation by recalling Equation (26) shows that, consistently, [image: there is no content]. This section has implemented the counterpart of step 5 in [34].




3.2. Order of Magnitude Estimates


From now on, we shall consider values typical of microscopic scales and phenomena. The range a of V is a few Å (for instance, 3 up to 12 Å). We shall write the reduced mass as [image: there is no content], with [image: there is no content] and n being, respectively, the neutron mass and a positive (approximate) integer (not to be confused with the n’s appearing as subscripts in polynomials and moments). If the individual quantum particles are atoms, then n is less than about one half of the largest atomic mass number (say, n is less than about 125). If the individual quantum particles are molecules, then n can be [image: there is no content]. We shall introduce the length scale [image: there is no content], where [image: there is no content], characterizing approximately the smallest scale of appreciable variations for V. For instance, [image: there is no content], so that 0.6 Å[image: there is no content] Å. Moreover, the magnitude [image: there is no content] of [image: there is no content], averaged over the domain in which [image: there is no content], lies between one and 10 electron volts. Notice that [image: there is no content] has a similar order of magnitude as the energy [image: there is no content] for the bound state (see Section 2.3). [image: there is no content] will denote the average variation of V within its range (where [image: there is no content]) in a scale [image: there is no content]. Similarly, [image: there is no content], [image: there is no content], will denote the average variation of [image: there is no content] in a scale [image: there is no content] ([image: there is no content]). For estimates, one could regard that [image: there is no content] be about one order of magnitude smaller than [image: there is no content] and that [image: there is no content] be about one order of magnitude smaller than [image: there is no content], [image: there is no content].



Let [image: there is no content] be some suitable thermal wavelength. We shall assume that n and T are such that the following conditions are fulfilled: (a) [image: there is no content] is smaller than [image: there is no content], which sets a lower limit on [image: there is no content]; and (b) [image: there is no content] is smaller than or at most [image: there is no content], which sets an upper limit on T. Both (a) and (b) correspond to the regime of typical chemical reactions (that is, a quantum regime, but with small [image: there is no content]). Thus, even if the relative particle is in the quantum regime (but not in the classical high-temperature one), [image: there is no content] is, on average, smaller than [image: there is no content] and a.



By using computations in Appendix B, and as zeroth order approximations, we shall take [image: there is no content] for [image: there is no content] (dominated by the CS and, in turn, approximated through the leading term [image: there is no content] in (11)) and [image: there is no content] for [image: there is no content] (dominated by the bound state), both of them independent of the index α and of the angular coordinates. We shall disregard [image: there is no content] and approximations for it within the hard core domain [image: there is no content] (and, more generally, contributions from the latter domain), because they will be neither required nor relevant.



All operators to be considered (namely, [image: there is no content] and [image: there is no content]) below in this section, which act on the [image: there is no content]’s in Equation (24), have dimension (time)‒1. Their orders of magnitude (denoted as [image: there is no content]) will now be estimated. Their inverses (namely, the [image: there is no content]’s) can be regarded as effective evolution times, and henceforth, we will refer to them as such.



The order of magnitude involved upon applying [image: there is no content] (that is, [image: there is no content]), is of the order of [image: there is no content]. The operator [image: there is no content] in (23) gives rise to: (i) [image: there is no content], which has an order of magnitude about [image: there is no content] for [image: there is no content] and fully negligible for [image: there is no content]; (ii) [image: there is no content], which has an order of magnitude about [image: there is no content], where, in turn, [image: there is no content] has been estimated above for [image: there is no content] and for [image: there is no content]; (iii) [image: there is no content], which has an order of magnitude of (at most) [image: there is no content] for [image: there is no content] and negligible for [image: there is no content]. In practice, the order of magnitude involved upon applying [image: there is no content] is the sum of (i) plus (ii) (since that of (iii) will be neglected). Notice that the above estimate of [image: there is no content] depends on [image: there is no content].



We now turn to the orders of magnitude involved upon applying [image: there is no content] in (24). The orders of magnitude of [image: there is no content] can be expected to be respectively similar to the various contributions of [image: there is no content]. On a similar basis, they can be justified by considering explicit expressions in Equations (C5)–(C9) for the counterparts of [image: there is no content] and of the [image: there is no content]’s in the one-dimensional case (Appendix C). On the other hand, the specific quantum contributions [image: there is no content], [image: there is no content] have structures proportional to [image: there is no content] times spatial partial derivatives of V of order [image: there is no content] (for various [image: there is no content], [image: there is no content] growing as [image: there is no content]), as exemplified through Equations (C2) and (C9). Such structures yield contributions smaller than that of [image: there is no content] by factors [image: there is no content], by virtue of Assumption (a) above. Moreover, one could expect [image: there is no content] to be smaller than unity and to decrease as n grows. We anticipate that the quantum contributions [image: there is no content], [image: there is no content], will be neglected from now on (see the analysis in Appendix C and Appendix D, in one spatial dimension). The main conclusion is that, under the above Assumption (a), the overall order of magnitude involved upon applying [image: there is no content] in (24) is about the same as for [image: there is no content]. Namely, the sum of (i) plus (ii) plus (iii).



There are two other effective evolution times respectively associated with the operator [image: there is no content] (Section 3.3 and Appendix D and Appendix E) and to the mean first passage time (Section 6). After having introduced the latter two, the estimates for all those effective evolution times will be compared and discussed a posteriori in Section 7.



The quantum contributions due to (13) and (14) in the quasiclassical regime, for [image: there is no content] outside the region where the bound state is concentrated, can be regarded as negligible compared to unity in Equation (11), as V decreases very fast there.




3.3. Approximations: Small Thermal Wavelength and Long Time


By using the assumption and the order of magnitude estimates in Section 3.2, one analyzes the non-equilibrium hierarchy (24) for the [image: there is no content]’s and proceeds to the small thermal wavelength quantum regime (STWQR). In the latter, x varies by units of order [image: there is no content]. Any [image: there is no content], with [image: there is no content], yields a contribution smaller than that from [image: there is no content], as explained in Section 3.2. Then, by neglecting all [image: there is no content]’s with [image: there is no content], Equation (24) becomes the approximate (t-reversible) three-term hierarchy:


[image: there is no content]



(27)







See Appendix D for explanations of the argument yielding (27) in the one-dimensional case. We emphasize that (27) is still a quantum hierarchy, since it contains all [image: there is no content], which are quantum-mechanical. For simplicity (and without essential loss of generality), we shall assume the initial condition [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content]. The solution of the resulting approximate non-equilibrium hierarchy (27) is given, through a Laplace transform from t to the variable s, in terms of products of certain s-dependent generalized operator continued fractions [image: there is no content], which satisfy the three-dimensional generalization of the one-dimensional Equation (D3). Next, we proceed to the long-time approximation (thus introducing irreversibility) for t longer than a certain largest effective evolution time [image: there is no content], to be estimated in Section 7, and also by following the one-dimensional case of Appendix D and Appendix E (in particular, Equation (E1)). One gets (for fixed and small [image: there is no content]) the following irreversible approximate quantum (Smoluchowski-like) equation for the lowest non-equilibrium moment [image: there is no content]:


[image: there is no content]



(28)




with [image: there is no content] being a quantum operator and assuming approximately the initial condition [image: there is no content]. Notice that [image: there is no content], which is contained in [image: there is no content], also displays quantum effects (compare with Equation (E1)). Our Equation (28) embodies stochasticity and displays a structure typical of diffusion-convection-reaction equations: it is linear; convection is determined by the V-dependent term; and external sources are absent in it. Section 3.2 and the present section have implemented the counterpart of step (6) in [34].



As a side remark, Equation (28) can be recast, by using (26), into a form in which only [image: there is no content], statistical equilibrium averages and [image: there is no content] appear:


[image: there is no content]



(29)







The computation of [image: there is no content] and [image: there is no content] in Equation (29) does require quantum mechanics.





4. Towards Kinetic Equations


In what follows, we will consider and interpret Equation (28) by replacing approximately the operator [image: there is no content] by a positive and α-independent constant D, by assuming that [image: there is no content] does not depend on α nor on the angular variables and by supposing that [image: there is no content] equals [image: there is no content] (the angular variables are absent). Such Equation (28), with the latter approximation, will be equivalent to Equation (46) in Section 6. Let [image: there is no content] be some radial coordinate just slightly larger than [image: there is no content], so that V is negligible at [image: there is no content] and, of course, for [image: there is no content]. Let [image: there is no content] be a spherical surface with center at [image: there is no content] and radius [image: there is no content]. Let [image: there is no content] be the outer normal unit vector at a generic point on [image: there is no content], and let [image: there is no content] be the sphere enclosed by [image: there is no content]. First, we shall integrate Equation (28) over [image: there is no content] (at fixed t) and apply Green’s theorem so as to transform the volume integral on the resulting right-hand side into a surface integral over [image: there is no content] (with differential surface element [image: there is no content]). The t-dependence will not be written explicitly. We have:


∂∂t∫Ω(r1)d3xW[0]=qeqDm∫S(r1)dS(r1)∑α=13nαM[1α],[0]W[0]≃-qeq2Dm2∫S(r1)dS(r1)∂∂rϵ[2],[0]W[0]r1≃-qeq2Dm2Δr∫S(r1)dS(r1)ϵ[2],[0]W[0]r1+Δr2-ϵ[2],[0]W[0]r1-Δr2,



(30)




where [image: there is no content], the subscript [image: there is no content] denotes the derivative at [image: there is no content], and we have neglected the contribution of V. In the rightmost side of Equation (30), we have replaced [image: there is no content] by [image: there is no content] with small [image: there is no content] (such that [image: there is no content]). Second, we shall integrate Equation (28) over the volume (denoted as [image: there is no content]) corresponding to [image: there is no content]. The latter volume is enclosed by [image: there is no content] and by the spherical surface (denoted as [image: there is no content]) with center at [image: there is no content] and radius [image: there is no content] (also at fixed t). We shall also apply Green’s theorem so as to transform the latter volume integral into two surface integrals over [image: there is no content] and [image: there is no content]. Furthermore, let [image: there is no content] be the outer normal unit vector at a generic point of [image: there is no content]. Then, by proceeding as in the derivation of Equation (30), we get:


[image: there is no content]



(31)






[image: there is no content]



(32)







For large Ω, by neglecting [image: there is no content] and approximating like in Equation (30), Equation (31) becomes:


[image: there is no content]



(33)







Notice that, consistently:


[image: there is no content]



(34)




which supports a posteriori disregarding [image: there is no content]. For adequately large t, equilibrium sets in and the right-hand sides of the approximate Equations (33) and (30) vanish. We shall analyze the resulting equilibrium equation in Section 5.



Next, assume for the time being that, for adequately large t and as rough approximations: (i) for x inside [image: there is no content], spatial variations of [image: there is no content] are not significant, and the latter is dominated by the contribution of the bound state; so that [image: there is no content]; (ii) for x inside [image: there is no content], spatial variations of [image: there is no content] are not important, and the latter is dominated by the contribution of the CS, so that [image: there is no content]. The volume of the sphere [image: there is no content] has been denoted as [image: there is no content], and so on, for [image: there is no content]. Then, Equations (33) and (30) become two approximate linearly-coupled kinetic equations for [image: there is no content] and [image: there is no content],


∂W[0](r1-2-1Δr)∂t≃-qeq2Dm2ΔrΩ(r1)∫S(r1)dS(r1)ϵ[2],[0]r1+Δr2W[0]r1+Δr2-ϵ[2],[0]r1-Δr2W[0]r1-Δr2,



(35)




and:


[image: there is no content]



(36)







For illustrative purposes, let us compare the above expressions with standard chemical kinetics [11]. Let us suppose that particles 1 and 2 are similar (or identical, ignoring possible effects due to quantum-mechanical symmetrization). For a chemical reaction involving two chemical species [image: there is no content], [image: there is no content] and [image: there is no content]: [image: there is no content], and its inverse reaction [image: there is no content], the phenomenological kinetic equations read as [11]:


[image: there is no content]



(37)






[image: there is no content]



(38)




where [image: there is no content] and [image: there is no content] are the t-dependent concentrations of [image: there is no content] and [image: there is no content], with [image: there is no content] and [image: there is no content] being suitable forward and backward rate constants. We stress that (37)–(38) are non-linearly-coupled equations for [image: there is no content] and [image: there is no content]. In principle, the [image: there is no content]’s in different regions arising in the approximate linear Equations (35) and (36) (with the CM evolution factored out) do not appear to coincide with the concentrations in (37) and (38), so that, strictly speaking, there should be no essential contradiction or problem of principle in the simultaneous approximate validity of both pairs of equations. In spite of that, one could still ask whether there could be some analogy pointing out towards the approximate compatibility between the linear (35) and (36) and the non-linear (37) and (38). We shall outline an argument indicating that such a consistency appears to hold, at least in a semi-quantitative sense and adequately close to equilibrium. Recall that the [image: there is no content]’s have the same dimension as [image: there is no content]. We shall introduce the t-dependent quantities [image: there is no content] and [image: there is no content] through [image: there is no content] and [image: there is no content]. Here, [image: there is no content] is an arbitrary constant, to be fixed from the outset, while [image: there is no content] is another constant to be determined below. The underlying physical purpose is to interpret [image: there is no content] and [image: there is no content] as proportional to concentrations inside [image: there is no content] and [image: there is no content], respectively. For large t, we argue that [image: there is no content] equals the constant equilibrium value [image: there is no content] plus a smaller (decreasing) t-dependent contribution, so that: [image: there is no content]. Then, Equations (35) and (36) become:


[image: there is no content]



(39)






∂aCS∂t≃qeq2Dm2Δr(2k′′aCS,eq)(Ω-Ω(r1))∫S(r1)dS(r1)ϵ[2],[0]r1+Δr2k′′aCS2-ϵ[2],[0]r1-Δr2ad.



(40)







Notice that [image: there is no content] has factored out. Next, we compare the phenomenological Equations (37)–(38) to Equations (39) and (40), interpreting [image: there is no content] as [image: there is no content] and [image: there is no content] as [image: there is no content]. The two sets are compatible with each other if [image: there is no content] fulfills: [image: there is no content]. The latter equation and the restriction of [image: there is no content] at equilibrium determine [image: there is no content] and [image: there is no content] (once [image: there is no content] has been fixed). Then, for large t, the non-linear Equations (37) and (38) and the linear Equations (39) and (40) would be compatible.




5. Thermal and Chemical Equilibria


Let us now return to Equations (15) and (20). Upon integration over the large finite volume Ω:


[image: there is no content]



(41)







Then, the right-hand side of Equation (41) contains the contribution of the discrete spectrum plus the one due to the whole, almost continuous spectrum, which is finite (as long as Ω is finite, but diverging like Ω if [image: there is no content]). If, for a finite (adequately large) Ω, T decreases within the range specified in Section 3.2, then the discrete contribution to [image: there is no content] dominates: the two particles remain bound to each other. As T increases (for fixed large Ω), the almost continuous spectrum contribution to [image: there is no content] dominates. Those two extreme situations and the intermediate ones could correspond to thermal equilibrium, but there may be, in general, an imbalance between the discrete and the CS contributions to (41), unless some further condition be fulfilled. To grasp the latter, notice that there exist key ranges of intermediate T and [image: there is no content], such that the orders of magnitude of the discrete and the CS contributions are not significantly different from each other. From Equation (20), the discrete contribution to (41) is:


[image: there is no content]



(42)







The order of magnitude of the CS contribution in Equation (41) can be estimated by disregarding the bound state term and approximating [image: there is no content] (recall (20)) through (11) and (12) (disregarding [image: there is no content] and [image: there is no content]). Therefore, with [image: there is no content], a zeroth-order approximation to the CS contribution in (41) is:


[image: there is no content]



(43)







There would be a comparative similarity of the orders of magnitude of (42) and (43) provided that [image: there is no content] be about [image: there is no content], which holds for suitable Ω, n and T. We shall now discuss the size of the microscopically large Ω. One could argue physically that our two-particle system is contained in some macroscopic gaseous system at T, containing a very large number N of similarly interacting pairs. The gaseous system occupies a macroscopically large volume [image: there is no content]. Then, one could choose [image: there is no content]. For typical diatomic gases at adequately low pressures and T’s not smaller than room temperature, one has that Ω is about [image: there is no content]–[image: there is no content] Å3 per pair. Such an order of magnitude for Ω could allow for the compatibility between (42) and (43).



Based on the above comparison, we now turn to the possibility of another kind of equilibrium for large t, namely chemical equilibrium. In fact, at equilibrium, the vanishing of the right-hand sides of the approximate Equations (33) and (30) can be recast as:


[image: there is no content]



(44)







At equilibrium, we approximate [image: there is no content] by [image: there is no content] and [image: there is no content] by [image: there is no content], consistently with (42) and (43), and we replace the [image: there is no content]’s by their zeroth order approximations in Section 3.2. Then, (44) becomes:


[image: there is no content]



(45)




where [image: there is no content] is of order [image: there is no content] (see Section 3.2). Equation (44) is, within our rough approximations (say, about one order of magnitude more or less), compatible with the approximate similarity of the orders of magnitude of Equations (42) and (43) when the latter occurs (which, in turn, holds if [image: there is no content] is about [image: there is no content]). Hence, there is a simultaneous coexistence of thermal and chemical equilibria in the actual simple framework. Moreover, it appears adequate to regard Equation (44) (in which no chemical potentials have been introduced) as a counterpart of the law of mass action for equilibrium chemical reactions. Notice also that [image: there is no content] is then smaller than [image: there is no content] by a factor of about [image: there is no content]: as a side remark, this justifies the neglect of the CS contribution compared to the bound state one, when estimating [image: there is no content] for [image: there is no content] in Appendix B.




6. Transitions among a Bound and Continuous Spectrum: Mean First Passage Time


In a similar fashion as in Section 4, let us replace approximately the quantum operator [image: there is no content] by a positive and both α- and x-independent constant D, and suppose that [image: there is no content] depends solely on the radial coordinate r and that it is negative. Let us restrict to [image: there is no content], independent by assumption on the angular coordinates. Implicitly, we are accepting that [image: there is no content] is an adequate (not to say, dominant) approximation to the full [image: there is no content]. Then, Equation (28) becomes:


[image: there is no content]



(46)







It will be useful to replace [image: there is no content] by a new distribution [image: there is no content] defined through [image: there is no content]. Then, Equation (46) reduces to:


[image: there is no content]



(47)







We are interested in finding approximately the time required for the relative particle to proceed from the domain in which the bound state is concentrated to a continuous spectrum configuration (that is, large r). For that purpose, we shall apply the mean first passage time formalism (MFPT) [16,17,35]. We shall extend the treatment in [34]. An MFPT [image: there is no content] (which can be regarded as another effective evolution time) is the solution of the so-called adjoint equation associated with Equation (47), namely of:


[image: there is no content]



(48)







Given that [image: there is no content] is an adequately small radius, such that [image: there is no content] for [image: there is no content] (i.e., the hard core), and that for the appreciably larger interval [image: there is no content], [image: there is no content] and [image: there is no content] takes on its largest values, let [image: there is no content] be considerably larger than [image: there is no content] (and so, than the [image: there is no content] in Section 4 and Section 5), so that V is negligible at [image: there is no content]. Since [image: there is no content] is smaller than [image: there is no content], we shall look for the solution [image: there is no content] of Equation (48), such that [image: there is no content] at [image: there is no content] (“reflecting boundary condition”) and [image: there is no content] at [image: there is no content] (“absorbing boundary condition”). One finds readily for [image: there is no content] that:


[image: there is no content]



(49)






[image: there is no content]



(50)







In Section 7 and Appendix F, we shall be able to approximate the operator [image: there is no content] by a positive and α-independent function [image: there is no content], instead of by a constant D directly. One would like to be able to control the further approximation of the function [image: there is no content] by a suitable constant D upon evaluating the MFPT, so as to perform estimates with Equation (49). For that purpose, the following remark regarding Equation (49) will be useful. Let us come back to Equation (28), replace in it the operator [image: there is no content] by a function [image: there is no content] and rewrite the resulting Equation (28) as [image: there is no content]. Here, [image: there is no content] is the operator defined by the right-hand side of Equation (28) when the operator [image: there is no content] is replaced by the function [image: there is no content]. Let [image: there is no content] be the adjoint of [image: there is no content]. An MFPT [image: there is no content] for [image: there is no content] can be introduced, by extending [16,17,35], as the solution of the differential equation [image: there is no content] in [image: there is no content], with similar boundary conditions [image: there is no content] at [image: there is no content] (“reflecting boundary condition”) and [image: there is no content] at [image: there is no content] (“absorbing boundary condition”). A calculation similar to that yielding Equation (49) leads to:


[image: there is no content]



(51)




with the same [image: there is no content] as in Equation (49). The interest of Equation (51) is two-fold: either [image: there is no content] inside the integral could now be approximated by some constant D (some average of [image: there is no content] in [image: there is no content]) and, so, allow for the use of [image: there is no content] and Equation (49) (as done below in this section) or variations of [image: there is no content] inside the integral could be considered in certain cases (see Section 7). We rewrite Equation (50) as:


J(r′)=∫r0r0+adr′′r′′2(-ϵ[2],[0](r′′))expβ2∫r′′a+r0dr′′′(∂V/∂r′′′)(-ϵ[2],[0](r′′′))+β2∫r0+ar′dr′′′(∂V/∂r′′′)(-ϵ[2],[0](r′′′))+∫r0+ar′dr′′r′′2(-ϵ[2],[0](r′′))expβ2∫r′′r′dr′′′(∂V/∂r′′′)(-ϵ[2],[0](r′′′)).



(52)







Recall that it was supposed that [image: there is no content] has no discontinuities and that it becomes negligible as [image: there is no content]. As stated in Section 3.2, [image: there is no content] lies between 1 and 10 eV, and T satisfies Assumptions (a) and (b) there. Let r be larger than [image: there is no content] (with [image: there is no content]). Then, it is permissible to replace [image: there is no content] by its zeroth order approximation, given in Section 3.2. Notice that [image: there is no content] for [image: there is no content] is not needed. After that approximation, one performs the three integrations over [image: there is no content] in (52). We take [image: there is no content] for [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content]. Hence, Equation (52) simplifies to:


[image: there is no content]



(53)







Then, approximating [image: there is no content] by some (average) constant D and using [image: there is no content] together with Equation (49), we get:


τ(r)≃m2qeq2D(δx)2(λth)2expβV01r-1r2J1+23r22-r22-(r0+a)31r-1r2≃m2qeq2D(δx)2(λth)2expβV01r-1r2J1,



(54)






[image: there is no content]



(55)







The last contribution in the rightmost side of (54) has been neglected by invoking that [image: there is no content] is adequately larger than unity (unless [image: there is no content] is about [image: there is no content]) and the approximate relationships in Section 5. As a rough approximation, we replace [image: there is no content] for any [image: there is no content] inside the integral in (the β- independent) [image: there is no content] by some ([image: there is no content] and T independent) κ. The magnitudes of [image: there is no content], the constant κ and related quantities will be discussed briefly in Section 8. Then, Equation (54) reduces to:


[image: there is no content]



(56)







Consistently with the assumptions in Section 2.3 and to fix the ideas, the shape of V resembles that of the Morse potential. Moreover, [image: there is no content] could be interpreted as some sort of rate constant for the transition between the bound state and the continuous spectrum states. At this point, we recall the exponential-like features of the rate constant in the classical Arrhenius formula and in the transition state theory [35,46]. We see that our quantum-mechanical approach has led approximately to the exponential Arrhenius factor, namely [image: there is no content]. Notice that Equation (51), by extending the approximations for [image: there is no content], also leads to the exponential Arrhenius factor for [image: there is no content]. However, our approach fails so far to predict [image: there is no content] (or [image: there is no content]) strictly, as long as it involves an unknown prefactor, namely either the function [image: there is no content] or the average constant D (approximating roughly the unknown operator [image: there is no content]). Through further approximations, estimates of D and of [image: there is no content] will be provided in Section 7.




7. Estimating Effective Evolution Times


We disregard the fact that [image: there is no content] is an operator and approximate it by the function [image: there is no content]. The latter can be estimated by extending directly to three dimensions the one-dimensional analysis in Appendix F. This yields the following rough estimate for [image: there is no content] (in seconds):


[image: there is no content]



(57)







In turn, by recalling Section 3.2, we shall interpret [image: there is no content] as the product of the constant [image: there is no content] (associated with [image: there is no content], that is with [image: there is no content]) times the overall order of magnitude estimate for [image: there is no content] (namely, the sum of the estimates (i) plus (ii) in Section 3.2, for [image: there is no content] and [image: there is no content], respectively), which depends on [image: there is no content]. Then, Equation (57) does depend on r. For [image: there is no content], the dominant contributions give ([image: there is no content] in eV, [image: there is no content], n and [image: there is no content] being discussed in Section 3.2):


[image: there is no content]



(58)




which is T-independent.



For [image: there is no content], the overall order of magnitude estimate for [image: there is no content] is about [image: there is no content]. Then:


[image: there is no content]



(59)




which depends on T like [image: there is no content].



Therefore, for adequately small [image: there is no content] (fulfilling Assumptions (a) and (b) in Section 3.2, the estimate in (59) would decrease and become closer to that in (58). Then, provided that the orders of magnitude of the latter two are not too different from each other, the constant D considered in Section 6 and, in particular, in Equations (49), (54) and (56) is some average of (58) and (59). Recall that the average time for ironing out local thermal inhomogeneities over one nanometer in a gas under normal conditions is about [image: there is no content] s [3].



Then, returning to Section 3.3 and as in Appendix F, it is reasonable to interpret [image: there is no content] and to expect that the long-time approximation be adequate for [image: there is no content].



Turning to the estimate for [image: there is no content] in the rightmost side of (56), we get ([image: there is no content]):


[image: there is no content]



(60)




in which D is an average of (58) and (59) when they do not differ much.



Notice that if (58) is appreciably smaller than (59), then the use of Equation (51) would be more adequate than that of Equation (49). For [image: there is no content], the integral in (51) could then be restricted to [image: there is no content], where [image: there is no content] should be replaced by (58). For [image: there is no content], [image: there is no content] should be replaced by (59) in the integral in (51). Both resulting integrals could be estimated as in Section 6, so as to yield further values of the MFPT. This section and the preceding one have implemented the counterparts of step 7 in [34].




8. Comparison with Other Approaches: Recombination and Possible Extensions


Notice that, through Condition 1 in Section 2.3, we have restricted to a potential [image: there is no content], which, in particular, is attractive ([image: there is no content]) in the interval [image: there is no content] (say, with a global structure resembling that of a Morse-like one). From the conditions in Section 2.3 and through the developments and approximations up to and including Section 3, we have arrived at the quantum Equation (28), which, in particular, provided the basis for the MFPT analysis in Section 6. Such a study can be compared to that in Subsection VII.C.4 in [35] for a radial classical Smoluchowski equation with a damping or friction parameter ([image: there is no content], given from the outset) and a similar spherically-symmetric potential (Morse-like), in connection with diffusive problems and, specifically, with a recombination chemical reaction (see, in particular, Equation (7.30) and Figure 24 in [35]). The corresponding MFPT analysis yields Equations (7.31)–(7.33) in [35]. One key difference between the classical Equations (7.30)–(7.31) in [35] and our Equations (46)–(48) is that the latter contain the quantum contribution [image: there is no content]. Another difference is that our approach allows one to estimate, after a number of approximations, the quantum counterpart of [image: there is no content], namely the values of [image: there is no content] (or D): see Appendix F and Section 7. Notice that the values of [image: there is no content] in [image: there is no content] (dominated by the bound state), estimated in Section 3.2, are responsible for the Arrhenius factor [image: there is no content] in (56). Our (quantum) solution (49) and (50) is also applicable to similar diffusive problems and is the counterpart of (with the same boundary conditions as) the classical solution in Equation (7.33) in [35].



It is worth emphasizing that the MFPT solution in Equation (7.32) in [35] corresponds to the opposite boundary conditions (absorption at [image: there is no content] and reflection far outside the range of the potential), and it has been applied to recombination processes in chemical reactions: see [35] and the references therein for generalizations. This suggests the interest of extending succinctly our study in Section 6 above so as to find the MFPT solution [image: there is no content] for Equations (47) and (48) for boundary conditions [image: there is no content] at [image: there is no content] (reflection) and [image: there is no content] at [image: there is no content] (absorption boundary) and to compare it with [35]. The operator [image: there is no content] is approximated by the same positive and α-independent function [image: there is no content] as in Section 6. A new computation, similar to that yielding Equations (50) and (51), gives readily for [image: there is no content]:


[image: there is no content]



(61)






[image: there is no content]



(62)




which are the actual quantum counterparts of Equations (7.32), (7.34) and (7.35) in [35]. Here, Equations (61) and (62) would give approximately the (recombination) time required for the relative particle to proceed from the domain corresponding to the continuous spectrum configuration ([image: there is no content]) to the one in which the bound state is concentrated (that is, [image: there is no content]). Equations (61) and (62) can be estimated, by approximating [image: there is no content] by a constant (D) and extending readily the approximations leading from (49) and (50) to (54). One finds:


[image: there is no content]



(63)




where:


[image: there is no content]



(64)






[image: there is no content]



(65)




with [image: there is no content] being an Arrhenius-like factor with a negative exponent, decreasing as T decreases. Notice that [image: there is no content] depends on temperature only through [image: there is no content], while [image: there is no content] is temperature-independent. The possible magnitudes of the exponentials [image: there is no content] for various [image: there is no content] and [image: there is no content], which appear in [image: there is no content] in Equation (55) (and so, the related constant κ in Equation (56)), in [image: there is no content] and in [image: there is no content] depend rather strongly on whether V varies rapidly or smoothly and on the sign of [image: there is no content]. Let [image: there is no content] (as, otherwise, those exponentials could be neglected). For suitably smooth V (say, rather small [image: there is no content]), those exponentials would not be much greater than unity (for instance, κ could not exceed [image: there is no content] or [image: there is no content]), but they could be certainly large for rapidly-varying V. In any case, regardless of the magnitudes of those exponentials, we stress that [image: there is no content] (and hence, κ), together with the integrals in [image: there is no content] and [image: there is no content] are temperature independent. A numerical study of those integrals lies outside our scope here. The quantum Equations (63)–(65) can be compared with the classical Equations (74) and (75) in [35], which appear to yield a different temperature dependence. Recall that our methods rely on Assumption (a) in Section 3.2, imposing a lower limit on temperature.



The activated barrier crossing problem (say, for transitions from a bound state to continuous state configurations) has attracted enormous research attention in connection with chemical reactions [17,35,46]: in one simple version, it corresponds to a potential [image: there is no content], which presents a “hard core” for [image: there is no content]; it is attractive in the interval [image: there is no content], repulsive in the interval [image: there is no content] and vanishes fast as [image: there is no content]. Our Equation (28) and the arguments up to and including Section 3 would also hold if Condition 1 in Section 2.3 is replaced by: 1*. [image: there is no content] is repulsive ([image: there is no content]) for [image: there is no content] (“hard core”, with adequately small [image: there is no content]), attractive ([image: there is no content]) in the interval [image: there is no content], repulsive ([image: there is no content]) in the interval [image: there is no content] and vanishes fast as [image: there is no content]. The estimate of [image: there is no content] in [image: there is no content] (dominated by the bound state) in Section 3.2 should now be revised, but it would not appear to spoil the validity of the corresponding Equation (28). The MFPT analysis in Section 6 up to and including Equations (46)–(51) would also apply (as would that leading to Equations (61) and (62)). However, the analysis in Section 4 and Section 5 and the approximate estimates in Section 6 beyond (51) should be revised. Therefore, in order to apply our methods to the activated barrier crossing problem, those parts of our analysis should have to be extended, which lie outside our scope here.




9. Conclusions and Discussions


In this work, we have put forward a nontrivial generalization of the methods previously used in the study of non-equilibrium DNA thermal denaturation, presented in [34], to provide a simple model for a binary chemical reaction starting from a quantum mechanical framework. The close correspondence between the methods and successive steps in [34] and the present work, as well as the main differences between them, have been highlighted. We have treated a quantum two-particle system in three spatial dimensions, subject to an attractive potential V and to a “heat bath” (HB) at thermal equilibrium at absolute temperature [image: there is no content]. We have focused on a quantum regime typical of chemical reactions, such that: (a) the thermal wavelength [image: there is no content] is shorter than the range of the attractive potential; (b) the energy for the discrete bound state [image: there is no content] (about the magnitude of the attractive potential within the negative region) is, in magnitude, [image: there is no content]. Our starting point has been the non-equilibrium time-reversible Wigner equation without explicit dissipation (as justified in Appendix G). We have separated the overall center of mass (CM) of the relative motion. We have focused on the dynamics of the non-equilibrium Wigner function [image: there is no content] for the relative particle motion. We have considered an infinite family of orthogonal polynomials [image: there is no content] (depending on the relative momentum), generated by the relative equilibrium Wigner function [image: there is no content] (non-Gaussian and non-positive, in general). These orthogonal polynomials have generated (by integrating over the relative momentum) non-equilibrium moments [image: there is no content] of [image: there is no content]. In turn, the general non-equilibrium Wigner equation for [image: there is no content] has implied a linear nonequilibrium hierarchy for the [image: there is no content]’s (time-reversible, as well, and depending on the relative position). Under the above Assumptions (a) and (b), and for sufficiently long times [image: there is no content], the linear nonequilibrium hierarchy has been approximated by the irreversible Smoluchowski-like Equation (28) for the lowest moment [image: there is no content]. Our Equation (28) contains quantum effects; namely the operator [image: there is no content] and, in particular, the function [image: there is no content]. At a later stage, the operator [image: there is no content] has been approximated by the constant D, so that [image: there is no content]. This has led to effective linear kinetic equations allowing, in turn, for approximate comparisons (with standard phenomenological non-linear kinetic equations for large t) and between thermal versus chemical equilibria. Then, we proceed to the simpler Equation (46), which depends only on t and on the radial separation r between both particles and still preserves a quantum signature via the term [image: there is no content]. The order of magnitude of D has been estimated. Equation (46) has allowed us to apply the mean first passage time (MFPT) formalism [16,17,35] which, in turn, has given rise to an explicit representation for the time [image: there is no content] required for the two particles to proceed from the bound state to the continuous spectrum configurations, as a function of r. An explicit formula for [image: there is no content], in terms of D and displaying the genuine Arrhenius exponential factor [image: there is no content], has been obtained and discussed briefly. A consistent extension, in which the operator [image: there is no content] is replaced by a suitable function of the radial distance, has also been outlined. The MFPT has also been applied briefly to chemical recombination. Our MFPT studies are compared also briefly to other MFPT studies by other authors [35]. For the sake of a simpler presentation without loss of generality, the various approximations leading to the Smoluchowski-like equation for [image: there is no content] have been carried out in detail for a one-dimensional case in Appendix C, Appendix D, Appendix E and Appendix F. We point out that no use of non-equilibrium Wigner functions, moments and hierarchies was made in the works [22,23,24,25,26,27,28,29]. Among several open problems (and hence, possible future uses of the methods in the present paper), we quote: (a2) extensions to include more than one bound state between the two particles, thereby allowing for transitions among those states (eventually, for instance, transitions resembling vibrational ones approximately) and (b2) generalizations to more general two-particle chemical reactions (like [image: there is no content]).







Acknowledgments


Ramon F. Álvarez-Estrada acknowledges the financial support of Projects FIS2015-65078-C2-1-P (Ministerio de Economía y Competitividad, Spain) and CHRX-CT94-0423 (E.U.). Ramon F. Álvarez-Estrada is an associate member of BIFI (Instituto de Biocomputación y Física de los Sistemas Complejos), Universidad de Zaragoza, Zaragoza, Spain. Gabriel F. Calvo acknowledges the financial support of Projects MTM2012-31073 and MTM2015-71200-R, from Ministerio de Economía y Competitividad/FEDER, Spain, and Project PEII-2014-031-P from Consejería de Educación Cultura y Deporte from Junta de Comunidades de Castilla-La Mancha, Spain. We are grateful to the Guest Editor (Giorgio Sonnino) for allowing the inclusion of the present work in the Special Issue of Entropy entitled “Recent Advance in Non-Equilibrium Statistical Mechanics and Its Application”. We are grateful to J. Santamaría for interesting and useful information and discussions. We acknowledge the anonymous referees for their constructive criticisms and for having posed several key questions and the Academic Editor for valuable comments, all of which have led to the improvement of this work.




Author Contributions


As a non-trivial generalization of their precedent published article in [34], both authors contributed substantially and collaboratively to the different stages ( conception and strategy, development and writing) of the present work. Both authors have read and approved the final manuscript.




Conflicts of Interest


The authors declare no conflict of interest.





Appendix A. Behavior of Wre,eq for Large q


We shall show that, for the V’s considered in Section 2.3, all [image: there is no content], [image: there is no content], [image: there is no content], are finite. We shall restrict, for simplicity, to [image: there is no content] for [image: there is no content] and use Equation (15). We exchange [image: there is no content] and [image: there is no content], perform first [image: there is no content] to generate Dirac delta functions and use the latter to carry out [image: there is no content]. Then,


[image: there is no content]



(A1)







The finiteness of [image: there is no content] and its derivatives follows from the V’s considered in Assumption (3) in Section 2.3. For the discrete spectrum, (A1) gives an obviously finite contribution. Regarding the continuous spectrum (with three-fold integration over k and [image: there is no content]), the infinite series in (A1) converges for any x and any [image: there is no content]. This supports (albeit does not prove) that [image: there is no content] determines a quasi-definite functional of y (for any x).




Appendix B. Various Quantities Related to Wre,eq


Various quantities related to [image: there is no content] are:


ϵ[2α],[0]=-⟨yα2⟩eq,⟨yαn⟩eq=∫d3yWre,eqyαn∫d3yWre,eq,



(B1)






[image: there is no content]



(B2)






[image: there is no content]



(B3)







By recalling Equation (20), one finds formally: [image: there is no content]. In turn, [image: there is no content] appears in the quantum theory of the second virial coefficient (see, for instance, Section 14.3 of [3]): it is the sum of the discrete spectrum contribution (finite) plus that of the continuous one divergent as [image: there is no content]). A sum of two terms with similar properties occurs for (3).



In principle, it is unclear whether the left-hand side of (B2) is [image: there is no content] for any x. However, by using Equation (1) and [image: there is no content] for both the discrete and the continuous spectra, and by integrating (B2) with [image: there is no content], the [image: there is no content] term in (B2) equals [image: there is no content]. One finds the right-hand side of (B3), as it stands. Recall that the contribution of the almost continuous spectrum is finite, as Ω is finite. Then, one can assert that, for finite Ω, the right-hand side of (B3) is well defined and [image: there is no content].



A useful zeroth-order approximation for [image: there is no content] proceeds as follows. For [image: there is no content], we take [image: there is no content] in (11) and (12) (disregarding the discrete spectrum contribution, which decays exponentially). For [image: there is no content], we disregard the CS contribution, keeping only the bound state (a justification of that neglection being given in Section 5). By recalling the exact argument in the precedent paragraph (where [image: there is no content] had been taken), in the actual case (without taking [image: there is no content]) we approximate the [image: there is no content] term in (B2) by [image: there is no content] and, in turn, the latter by [image: there is no content]. The resulting practical approximate formulae for [image: there is no content] are given in Section 3.2.




Appendix C. One-Dimensional Non-Equilibrium Hierarchy (1)


We shall now study the counterpart of the model in Section 2, Section 3, Section 4, Section 5 and Section 6 in one spatial dimension (x), by omitting unnecessary details. There is just one particle, subject to a real potential [image: there is no content], with [image: there is no content] and [image: there is no content] in [image: there is no content], and to a HB at T, in the large finite interval [image: there is no content] ([image: there is no content]). The Hamiltonian is [image: there is no content]. Now, there are a discrete spectrum ([image: there is no content]) and an almost continuous one ([image: there is no content]), with energies [image: there is no content] and eigenfunctions [image: there is no content] and spanning the Hilbert subspaces [image: there is no content] and [image: there is no content]. Correspondingly, [image: there is no content] denotes sums over all eigenfunctions in [image: there is no content] and [image: there is no content]. For [image: there is no content], the exact (t-reversible) dissipationless quantum master equation for the general off-equilibrium Wigner function W [38,39] is:


[image: there is no content]



(C1)






MQW=∫dq′W(x,q′;t)∫idx′πℏ2V(x+x′)-V(x-x′)expi2(q-q′)x′ℏ=dVdx∂W∂q-ℏ23!22d3Vdx3∂3W∂q3+ℏ45!24d5Vdx5∂5W∂q5-⋯,



(C2)




with initial condition [image: there is no content]. The equilibrium density operator [image: there is no content] determines the equilibrium Wigner function [image: there is no content]:


[image: there is no content]



(C3)







As in Section 2.2 and without further discussion, as L is large and unless otherwise stated, we shall approximate spatial integrals by those in [image: there is no content] and series over momenta by integrations over them in [image: there is no content].



We shall introduce the (unnormalized) polynomials in y ([image: there is no content]) [image: there is no content] (n=0,1,2,3,…), orthogonalized in y (for fixed x) by using the equilibrium distribution [image: there is no content] as the weight function. One has: [image: there is no content], with coefficients [image: there is no content]. The actual [image: there is no content]’s lead to the non-equilibrium moments ([image: there is no content]):


[image: there is no content]



(C4)







The initial condition [image: there is no content] for [image: there is no content] is obtained by replacing W by [image: there is no content] in Equation (C4). For [image: there is no content], Equation (C4) yields [image: there is no content] if [image: there is no content], while [image: there is no content]. The transformation of the one-dimensional Equations (C1) and (C2) into a linear hierarchy for the nonequilibrium moments [image: there is no content] can be carried out through computations and cancellations, increasingly cumbersome as n grows. We have obtained the first five equations in that quantum hierarchy:


[image: there is no content]



(C5)






[image: there is no content]



(C6)






[image: there is no content]



(C7)






[image: there is no content]



(C8)






∂W4∂t=-qeqm∂W5∂x+qeqm∂∂x(ϵ5,3-ϵ4,2)W3+qeqm∂ϵ4,2∂xW3-4qeq∂V∂xW3+ℏ222qeq3∂3V∂x3-6+ϵ4,2ϵ2,0W1,



(C9)




with [image: there is no content], [image: there is no content]. The [image: there is no content]’s in the first four Equations (C5)–(C8) contain quantum effects. On the other hand, Equation (C9) (for [image: there is no content]) acquires an additional term of quantum origin multiplying [image: there is no content], and so, it differs from (C5)–(C8). The reason for that difference is that the quantum corrections in Equations (C1) and (C2) manifest themselves only at order [image: there is no content] and, then, in turn, in the equations in the hierarchy at orders [image: there is no content].



The very fact that the full quantum equation for [image: there is no content] does contain a term of order [image: there is no content] in [image: there is no content] implies that the quantum hierarchy is not a three-term hierarchy. The general (t-reversible) hierarchy implied by Equations (C1) and (C2) for any n is:


[image: there is no content]



(C10)






[image: there is no content]



(C11)






[image: there is no content]



(C12)







The [image: there is no content]’s for [image: there is no content] are identified upon comparing Equation (C10) and Equations (C5)–(C9). [image: there is no content] for any n, except for [image: there is no content] and [image: there is no content] if [image: there is no content] is even. In the exact nonequilibrium quantum hierarchy (C10), the contributions from [image: there is no content] always have the same structures ([image: there is no content], with n-independent coefficients). On the other hand, the contributions from [image: there is no content] ([image: there is no content]) do carry n-dependent coefficients, which increase with n. In particular (and leaving aside other contributions) the equation for [image: there is no content] can be shown to contain, in its right-hand side, [image: there is no content] as the highest spatial derivative of V, while that for [image: there is no content] contains [image: there is no content] and [image: there is no content], and so on. In turn, the nonvanishing [image: there is no content] for low order [image: there is no content] are:


ϵ2,0=-⟨y2⟩,ϵ3,1=-⟨y4⟩⟨y2⟩,



(C13)






ϵ4,2=⟨y2⟩⟨y4⟩-⟨y6⟩⟨y4⟩-⟨y2⟩2,ϵ4,0=⟨y2⟩⟨y6⟩-⟨y4⟩2⟨y4⟩-⟨y2⟩2



(C14)






[image: there is no content]



(C15)






[image: there is no content]



(C16)







A key feature of the non-equilibrium hierarchy (C10) is that all coefficients in it are expressed in terms of V and of quantities computed out of the equilibrium solution [image: there is no content]. The complicated structure of the hierarchy (C10) is a genuine consequence of quantum mechanics. By invoking [22,23,24,25,26,27,28,29], (C10) should simplify necessarily for very long t, with [image: there is no content] for [image: there is no content], while [image: there is no content] with [image: there is no content] and [image: there is no content]. One expects that, for adequate t and by solving the hierarchy (C10) for [image: there is no content], all [image: there is no content] for [image: there is no content] can be expressed, through suitable linear operators, in terms of [image: there is no content] and of suitable initial conditions [image: there is no content], for [image: there is no content]. In particular, one would get [image: there is no content] as a linear functional of [image: there is no content] (and of all [image: there is no content], [image: there is no content]): [image: there is no content], in short. Then, the hierarchy (C10) boils down to [image: there is no content] (linear in [image: there is no content]), plus the initial condition [image: there is no content]. These remarks could be directly generalized to the hierarchy (24). We shall not undertake the latter very complicated problem, in general. Rather, we shall concentrate on an approximate version of it in the following Appendices, under conditions relevant for chemical reactions.




Appendix D. One-Dimensional Non-Equilibrium Hierarchy (2): Small Thermal Wavelength


We use quantities, notations and assumptions similar to those in Section 3.2: in particular [image: there is no content] ([image: there is no content]), which hold for suitable T and m. We apply the estimates obtained in Section 3.2. In Equation (C9), [image: there is no content] appears to be smaller than [image: there is no content] by a factor [image: there is no content] times a contribution smaller than unity. This suggests neglecting the quantum correction [image: there is no content] compared to [image: there is no content] in Equation (C9). Similar approximations can be carried out in the equation for [image: there is no content] (by neglecting [image: there is no content] and in the equation for [image: there is no content] (by neglecting [image: there is no content] and [image: there is no content]), and so on. In general, we shall accept that in Equation (C10) in the STWQR, one can neglect on average all contributions due to all [image: there is no content] with [image: there is no content] compared to [image: there is no content]. Then, Equation (C10) becomes the approximate (t-reversible) three-term hierarchy:


[image: there is no content]



(D1)







We shall assume the initial condition [image: there is no content], [image: there is no content] and [image: there is no content] for [image: there is no content], for simplicity.



The following remark could be regarded as a gratifying check of consistency. At a very high temperature, practically in the classical regime, and based on [38], we shall approximate the one-dimensional equilibrium quantum distribution to leading order by the classical distribution: [image: there is no content] with [image: there is no content], thereby neglecting the corrections computed in [38]. Then, the computations of all [image: there is no content] boil down to compute Gaussian integrals. From (C13) and (C14), one easily finds: [image: there is no content] and [image: there is no content]. Then, under that approximation corresponding to the classical regime, one finds [image: there is no content] in Equation (C9), and consequently, the hierarchy Equations (C5)–(C9) reduce to a three-term one. We shall assume that the same reduction of Equation (C10) to a three-term hierarchy would occur for any n.



We perform a Laplace transform (denoted here as [image: there is no content]), which leads from (D1) to:


[image: there is no content]



(D2)







Infinite three-term hierarchies similar to (D2), with [image: there is no content] and [image: there is no content] replaced by matrices, have been studied and solved in [16] in terms of continued fractions involving matrices. The latter techniques can be directly extended if, in turn, matrices become operators. Then, by a direct generalization of [16], the solution of (D2) can be obtained, after suitable iterations for [image: there is no content], and is given in terms of products of the s-dependent generalized operator continued fractions [image: there is no content]. The latter are defined recurrently, for [image: there is no content], through:


[image: there is no content]



(D3)




where I is the unit operator. We shall omit calculation details (to be filled in comparing with [16]). By iteration of Equation (D3), [image: there is no content] becomes a formal generalized infinite continued fraction of nonconmuting operators ([image: there is no content]). One gets for [image: there is no content]:


[image: there is no content]



(D4)







Then, in the STWQR and with the above initial condition, the approximate non-equilibrium hierarchy (D1) can be replaced by the (still t-reversible) system formed by (C5) for [image: there is no content] together with the inverse Laplace transforms of all (D4) for [image: there is no content].




Appendix E. One-Dimensional Non-Equilibrium Hierarchy (3): Long-Time Approximation


The operators [image: there is no content] and [image: there is no content] in (27) have dimension (time)‒1. Their orders of magnitude [image: there is no content] can be estimated as in Section 3.2 and Section 7. Thus, the [image: there is no content] associated with [image: there is no content] is about [image: there is no content], and so on, for the various terms contributing to [image: there is no content] (the estimates of which are depending on x). Notice that the inverse Laplace transforms of all [image: there is no content] have effective evolution times of the corresponding orders.



We shall consider t’s larger than the largest effective evolution time. Then, as large t corresponds to small s, the simplest (long-time) approximation can be formally conjectured for each [image: there is no content] as follows: we replace [image: there is no content] by the s-independent operator [image: there is no content] (with fixed and small [image: there is no content]), and then, Equation (D4) is approximated by: [image: there is no content] (short-memory approximation). The system formed by the inverse Laplace transform of [image: there is no content] together with Equation (C5) complete the approximation scheme. This amounts to arguing that the t-dependence of [image: there is no content], [image: there is no content], would be slaved approximately by that of [image: there is no content]. That yields immediately the following quantum equation:


[image: there is no content]



(E1)




with the above initial condition [image: there is no content]. Providing a suitable approximation method or ansatz yielding [image: there is no content] is a difficult open problem. For rough estimates of it, see Appendix F, which, in turn, is employed in Section 7, for the three-dimensional case. The diffusion-like Equation (E1) would seem t-irreversible. However, at the present stage, it is not warranted that all eigenvalues of [image: there is no content] be nonnegative.




Appendix F. One-Dimensional Non-Equilibrium Hierarchy (4): Remarks


We shall disregard the fact that [image: there is no content], with [image: there is no content], are operators and approximate them tentatively by some ordinary function, denoted as [image: there is no content]. This amounts to regarding (more properly, to replacing approximately) the non-commuting operators [image: there is no content] and [image: there is no content] by their estimates (constants or ordinary functions and indicated with the same notation), as indicated in Appendix E and to interpret Equation (D3) as an ordinary continued fraction. Such estimates: (i) should have the order of magnitude involved upon applying the corresponding operator to [image: there is no content]’s, in the same spirit as in Section 3.2 and Appendix E, and (ii) change very slowly with n, which, in turn, would enable one to approximate [image: there is no content]. Then, the interpretation of Equation (D3) for [image: there is no content] as an ordinary continued fraction (without operators) will enable some rough estimate of the function [image: there is no content] as follows:


[image: there is no content]



(F1)




where the estimates [image: there is no content] and [image: there is no content] denote now a constant and a function of x, respectively. We solve the quadratic equation (F1) for [image: there is no content]:


[image: there is no content]



(F2)




where we have supposed that [image: there is no content] (as it seemingly happens, so as to be consistent with classical Brownian motion and, hopefully, in the case of interest here), taken the [image: there is no content] root upon solving for [image: there is no content] (so [image: there is no content]), assuming that [image: there is no content], and finally, used (ii) above. The rightmost side of (F2) provides the rough estimate for the function [image: there is no content] and, hence, for the order of magnitude of the contribution of the operator [image: there is no content]. At a later stage, one could approximate the function [image: there is no content] by some average constant, D. Then, the long-time approximation could be expected to hold for [image: there is no content]. This sort of estimate is used directly in Section 7, for the three-dimensional case.



For the sake of a complementary understanding, with [image: there is no content] understood as a constant, we introduce [image: there is no content] through:


[image: there is no content]



(F3)






[image: there is no content]



(F4)







Then, Equation (E1) becomes:


[image: there is no content]



(F5)







It is unclear whether [image: there is no content] is nonnegative for any x. Equations (C13) and (C16) provide [image: there is no content] as a ratio. The denominator in (C13) is nonnegative, while the integral over x of the numerator in (C13) is nonnegative, [image: there is no content] (through the same argument as in Appendix B). Based on the latter, it is not unreasonable to take one step further and to assume that [image: there is no content] can be nonnegative for any x. Moreover, we shall also accept that [image: there is no content]. Then, all eigenvalues of [image: there is no content] are nonnegative, and the solution of Equation (F5) tends towards [image: there is no content] for [image: there is no content], for any [image: there is no content] (thermalization).



We now assume that [image: there is no content] for any x and that the operator [image: there is no content] is approximated by the function [image: there is no content]. In order to connect with Brownian motion, we shall introduce the following non-equilibrium quantum (Helmholtz) free energy in terms of [image: there is no content]:


[image: there is no content]



(F6)




by integrating in the large finite interval [image: there is no content]. [image: there is no content] is a suitable constant, while [image: there is no content] is x-dependent, but t-independent. Both [image: there is no content] and c will be determined below suitably. This definition of A in Equation (F6) generalizes the non-equilibrium classical (Helmholtz) free energy treated in [47] for classical Brownian motion. We consider [image: there is no content], use Equation (E1) and perform a partial integration over x. Then:


∂A∂t=-∫dxkBTD[1;ϵ,x](qeq/m)2(-ϵ2,0)W0×∂W0∂x+W0∂ln(-ϵ2,0)∂x+mqeq2(-ϵ2,0)∂V∂x∂W0∂x+W0kBT∂c∂x.



(F7)




At this stage, we shall choose c, such that:


[image: there is no content]



(F8)







Upon comparing Equation (F8) with [image: there is no content], we find:


[image: there is no content]



(F9)




having chosen, for simplicity, a vanishing integration constant. As [image: there is no content] and [image: there is no content] and with the choice for c in Equations (F9), one gets the expectedly consistent behavior of A: [image: there is no content], which expresses irreversibility. The constant [image: there is no content] will be determined with the additional requirement that, at thermal equilibrium, A, as defined by Equation (F6), coincides with the equilibrium quantum (Helmholtz) free energy, which reads:


[image: there is no content]



(F10)




Therefore, Equation (F6), when [image: there is no content], should become (F10). For that to be true, it is necessary that:


[image: there is no content]



(F11)








Appendix G. Alternative Starting Point: A Master Equation with Ab Initio Dissipation


We shall outline here the reasons for having based our analysis on the non-equilibrium Wigner Equations (6) and (7) (or (9) and (10)) without explicit dissipation. One first reason is that the research in [22,23,24,25,26,27,28,29] yielded an approach to the equilibrium canonical quantum distribution, independently both on the HB and, essentially, also on the initial state. Therefore, our starting point has been independent of the interactions and mechanisms determined by external sources (except on temperature, imposed by the HB). Two further supporting requirements are: (a1) the existence of bound states should be allowed and their role displayed explicitly in formulations and in approximations; (b1) if one tries a master equation displaying dissipation from the very outset, the corresponding equilibrium quantum distribution should be independent of the dissipation mechanism built in that master equation. We shall explore succinctly the compatibility of several Wigner function master equations containing explicit ab initio dissipation with (a1) and (b1). For simplicity, we shall treat directly the evolution of the relative particle in the one-dimensional case. The evolution of the CM can be factored out as in Section 2.2 and will be disregarded (in particular, it is trivially independent of bound states). Accordingly, we shall modify Equation (C1) for the relative particle by adding the dissipation term [image: there is no content] so as to deal with the master equation:


[image: there is no content]



(G1)







[image: there is no content] is the same as in (C2). [image: there is no content] is the dissipation term, D being a suitable operator considered below. In all possibilities, [image: there is no content] will denote a positive friction constant.



Possibility (1) (a standard one, considered by several authors [16,17,18,41]):


[image: there is no content]



(G2)







The equilibrium distribution (C3) for (C1) is such that, in general, [image: there is no content] (related to the fact that the actual D is V-independent). Accordingly, no quantum effects are displayed in Equation (G2). Consequently, Equation (G2) yields a master equation unable to satisfy (a1) and (b1), in general.



Possibility (2) [41,48]:


[image: there is no content]



(G3)




to first non-leading order in the high temperature or small β (quasiclassical) regime. The equilibrium distribution obtained by Wigner [38] in such a regime for the one-dimensional case is indeed the equilibrium distribution for (C1), and it also satisfies: [image: there is no content] to the same order [41] (allowed by the fact that the actual D is V-dependent). Therefore, (G3) fulfills (b1) in the first non-leading order in the quasiclassical regime. The interest of (b1) was stressed, in particular, in [41]. However, (G3) does not satisfy (a1): even if V is attractive, the contribution of the bound states is not explicitly displayed in the small β regime.



Possibility (3):


[image: there is no content]



(G4)




where [image: there is no content] is a constant. Equation (G4) with [image: there is no content] is the Caldeira–Leggett model for quantum Brownian motion [13,49]. Notice that Equation (G4) with a suitable [image: there is no content] is regarded in [13] as an extension of [49], enabling the latter to belong to the dissipative dynamics theories in [14,15]. Furthermore, Equation (G4) with either [image: there is no content] or [image: there is no content] fails to fulfill (a1) and (b1), for similar reasons as above. There could still exist perhaps an open possibility in the dissipative dynamics framework in [14,15], namely when the corresponding equilibrium distribution (C3) fulfills [image: there is no content] (thereby satisfying (b1). Such theories have been treated succinctly in [13], without providing any explicitly manageable expression for D, thereby precluding extending our analysis in this paper. Moreover, it is fully open whether the procedure yielding such an operator D [13] would hold for attractive potentials, so as to be consistent with (a1).



To conclude: we have been unable to find Wigner function master equations with explicit ab initio dissipation that could fulfil (a1) and (b1) in general (although we have not excluded completely that they could exist, at least formally, in the framework of [14,15]). For the above reasons, our study has relied on the non-equilibrium Wigner Equations (6) and (7) (or (9) and (10)) without explicit dissipation.
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