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Abstract: We generalize the point information gain (PIG) and derived quantities, i.e., point
information gain entropy (PIE) and point information gain entropy density (PIED), for the case
of the Rényi entropy and simulate the behavior of PIG for typical distributions. We also use these
methods for the analysis of multidimensional datasets. We demonstrate the main properties of
PIE/PIED spectra for the real data with the examples of several images and discuss further possible
utilizations in other fields of data processing.
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1. Introduction

Measurement of relative information between two probability distributions is one of the most
important goals of information theory. Among many other concepts, there are two that are widely used.
By far, the most widespread concept is called the relative Shannon entropy or the Kullback–Leibler
divergence. In this work, we use an alternative approach based on a simple concept of entropy
difference instead. By generalization of both concepts from Shannon’s approach to Rényi’s approach,
we obtain the whole class of information variables that enable aiming for different parts of probability
distributions and interpret it as an investigation of different parts of multifractal systems.

Despite the mathematical precision of the concept of the Shannon/Rényi divergence, we use
another concept, the (Rényi) entropy difference, for introduction of a value which locally determines
an information contribution of a given element in a discrete set. Even though there is no substantial
restriction on the usage of a standard divergence for calculation of the information difference upon
elimination of one element from a set, for practical reasons, we used the simple concept of entropy
difference between sets with and without a given element. The resulted value has been called a point
information gain Γ(i)

α [1,2]. The goal of this article is to examine and demonstrate some properties of
this variable and derive another quantities, namely a point information gain entropy Hα and a point
information gain entropy density Ξα. We also introduce the relation of all these variables to global and
local information in multidimensional data analysis.
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2. Mathematical Description and Properties of Point Information Gain

2.1. Point Information Gain and Its Relation to Other Information Entropies

An important problem in the information theory is to estimate the amount of information gained
or lost by refining, and approximate the probability distribution P by the distribution Q. The most
popular measure used in the theory is the Kullback–Leibler (KL) divergence, defined as

DKL(P||Q) = ∑
j

pj ln
pj

qj
= Ep [ln P]− Ep [ln Q] = SP(Q)− S(P), (1)

where SP(Q) is so-called cross-entropy [3] and S(P) is the Shannon entropy of distribution P. If P is
similar to Q, this measure can be approximated by entropy difference

∆S(P, Q) = S(Q)− S(P). (2)

Indeed, this measure does not obey as many theoretic-measure axioms as the KL-divergence.
For instance, for P 6= Q, we can still obtain ∆S(P, Q) = 0. Nevertheless, if P ≈ Q and P 6= Q, this value
can be still a suitable quantity revealing some important information aspects of a system. The situation,
when the distributions are approximative histograms of some underlying distributions P for n and
(n + 1) measurements, respectively, is particularly interesting. In this case, the entropy difference

∆S(Pn, Pn+1) = S(Pn+1)− S(Pn) (3)

can be interpreted as an information gained by the (n + 1)-th measurement. Naturally, Pn → P.
When dealing with real complex systems, it is sometimes advantageous to introduce new information
variables and entropies that capture the complexity of the system better, e.g., Hellinger’s distance,
Jeffrey’s distance or J-divergence. There are also some specific information measures that have special
interpretations and are widely used in various applications [4,5]. Two of the most important quantities
are the Tsallis–Havrda–Charvát (THC) entropy [6], which is the entropy of non-extensive systems,
and the Rényi entropy, the entropy of multifractal systems [7,8]. The latter is tightly connected to the
theory of multifractal systems and generalized dimensions [9]. It is defined as

Hα(P) =
1

1− α
ln ∑

j
pα

j , α ≥ 0, (4)

where α is the Rényi coefficient and pj is the probability of occurrence of a phenomenon j in the discrete
distribution. Limit α → 1 recovers the Shannon entropy. Similar to the Shannon entropy, the Rényi
entropy also has an operational meaning. Actually, it can be interpreted as the average information
cost, when the cost of an elementary piece of information is an exponential function of its length [10].
Thus, changing the parameter α changes the cost of the information and therefore accentuates some
parts of the probability distributions while suppressing the others. Thus, by taking into account the
whole class of Rényi entropies, we get a new generalized class of information quantities.

The point information gain Γ(i)
α of the i-th point was developed as a practical tool for assessment

of the information contribution of an element to a given discrete distribution [11]. Similar to the
Shannon entropy difference, it is defined as a difference of two Rényi entropies—with and without
the examined element of a discrete phenomenon. Let us consider a discrete distribution of k distinct
possible outcomes (e.g., different colors of pixels). Let us have a discrete distribution

P = {pj}k
j=1 =

{n1

n
, . . . ,

ni
n

, . . . ,
nk
n

}
, (5)
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where n denotes the total number of elements in the discrete distribution and ni the number of
elements of i-th phenomenon, i ∈ {1, 2, ..., k− 1, k}, respectively. Let us denote n(i)

j = nj for j 6= i and

n(i)
i = ni − 1. Then, the distribution with the omitted i-th phenomenon can be written as

P(i) =
{

p(i)j

}k

j=1
=

{
n(i)

1
n− 1

, . . . ,
n(i)

i
n− 1

, . . . ,
n(i)

k
n− 1

}
. (6)

Hence, we may write the point information gain Γ(i)
α as

Γ(i)
α = Hα

(
P(i)
)
−Hα(P) =

1
1− α

ln

(
k

∑
j=1

(
p(i)j

)α
)
− 1

1− α
ln

(
k

∑
j=1

(pj)
α

)

=
1

1− α
ln

∑k
j=1

(
p(i)j

)α

∑k
j=1 pα

j

 , (7)

where k is the total number of the phenomena in the discrete distribution. In the rest of the text, we use
the natural logarithm to simplify calculations. However, all computations have been performed with
the usage of binary logarithm which, for the Rényi entropy and its derivatives, yields values in bits.
In contrast to the commonly used Rényi divergence [12–18], we use Γ(i)

α for its relative simplicity and
practical interpretation. Unlike the KL divergence, the Rényi divergence cannot be interpreted as
a difference of cross-entropy and entropy of the underling distribution and computation becomes
intractable. As discussed above, for similar distributions, it still preserves its information values.

After the substitution for the probabilities, one gets that

Γ(i)
α =

1
1− α

ln
∑k

j=1

(
n(i)

j

)α

(n−1)α

∑k
j=1

nα
j

nα

= Cα(n) +
1

1− α
ln

∑k
j=1

(
n(i)

j

)α

∑k
j=1 nα

j

, (8)

where Cα(n) = ln
( n

n−1
) α

1−α depends only on n. For n→ ∞ and Γ(i)
α → 0, the whole entropy remains

finite (contrary to unconditional entropy, which has to be renormalized for continuous case (for details,
see Reference [7]). Therefore, we examine only the second term. When the argument of the logarithm
is close to 1, i.e.,

k

∑
j=1

(
n(i)

j

)α
≈

k

∑
j=1

nα
j , (9)

which leads to the condition that (
n(i)

i
ni

)α

=

(
ni − 1

ni

)α

≈ 1, (10)

for given α, one can then approximate the logarithm by the Taylor expansion of the first order.
After denoting

D(i)
α =

∑k
j=1

(
n(i)

j

)α

∑k
j=1 nα

j

, (11)

the second term of Γ(i)
α can be approximated as

1
1− α

lnD(i)
α =

1
1− α

(
D(i)

α − 1
)
+O

((
D(i)

α − 1
)2
)

, (12)
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where we used the big O asymptotic notation. Let us note that the last term in Equation (8) is nothing
else than the THC entropy [6,19]. Naturally, for very similar distributions, these two quantities are
practically the same. This is due to the fact that, for large n, the omission of the point has no large
impact on the whole distribution. Consequently, an actual value of parameter α, which leads to
rescaling of probabilities, is more important than a particular form of entropy.

We shall continue by utilizing the Rényi entropy due to its relation to the generalized dimension
of multifractal systems [20,21]. Let us concentrate again to the term D(i)

α . We can rewrite it as

D(i)
α =

∑k
j=1

(
n(i)

j

)α

∑k
j=1 nα

j

=
∑k

j=1,j 6=i nα
j + (ni − 1)α

∑k
j=1 nα

j

= 1− α
nα−1

i

∑k
j=1 nα

j

+
1

∑k
j=1 nα

j

ω
(

nα−2
i

)
, (13)

where we use the small ω asymptotic notation. Specifically, provided α = 2, we obtain

Γ(i)
2 ≈ C2(n) +

1
1− 2

∑k
j=1,j 6=i n2

j + (ni − 1)2

∑k
j=1 n2

j

− 1

 ≈ C2(n) +
2ni − 1

∑k
j=1 n2

j

, (14)

which explains why the dependency ni on Γ(i)
2 is approximately linear. In general, point information

gain is a monotone function of ni, respectively pi, for all possible discrete distributions. Thus, it may
be used as a quantity of information gain between two discrete distributions, which in the occurrence
of one particular feature, differ.

Let us discuss an interpretation of the point information gain. We can rewrite Equation (8) as

Γ(i)
α = ln

(
n

n− 1

) α
1−α

+ ln

1 +
(ni − 1)α − nα

i

∑k
j=1 nα

j

 1
1−α

= − ln
[(

1− 1
n

)α] 1
1−α

+ ln

1 + nα
i

(
1− 1

ni

)α
− 1

∑k
j=1 nα

j


1

1−α

. (15)

We are interested in the situation when Γ(i)
α = 0. After straightforward manipulations, we can get

rid of ln and 1
1−α power, so (

1− 1
n

)α

= 1 + nα
i

(
1− 1

ni

)α
− 1

∑k
j=1 nα

j

. (16)

If n� 1 and ni � 1, we can approximate both sides with the rule (1 + x)α ≈ 1 + αx for x close to
zero which gives

1− α

n
= 1−

αnα−1
i

∑k
j=1 nα

j

. (17)

Thus, we end with

ni =
α−1

√
∑k

j=1 nα
j

n
. (18)

This shows that Γ(i)
α = 0 holds for events with average frequency. Γ(i)

α < 0 corresponds to rare
events, while Γ(i)

α > 0 corresponds to frequent events. Thus, in addition to the definition of the quantity
of the contribution of each event to the examined distribution, we also obtain the discrimination
between points which contribute to the total information of the given distribution under the statistical
assumption represented by a particular α. This opens the question on existence of the “optimal”
distribution for the given α.
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Then, the possible variants of such optimality arise subsequently: the first one can be defined as a
distribution for which exactly half of the value ni produces Γ(i)

α > 0 and the other half yields Γ(i)
α < 0.

The second one requires values Γ(i)
α to be spaced equally. Existence of such a distribution could be

understood as another generalization of the concept of the entropy power [22,23], and we refer this
question to our future research.

With respect to the previous discussion and practical utilization of this notion, we emphasize
that for real systems with large n, values Γ(i)

α are relatively small numbers for current numerical
precision of common computers. Their further computer averaging and numerical representation lead
to significant errors such as underflow and overflow (e.g., Figure 1c). At lower values α, the values
Γ(i)

α are broadly separated for rare points, while, at higher values α, the resolution is higher for more
frequent data points. Therefore, spectrum Γ(i)

α vs. α is more advisable to compute rather than a single
Γ(i)

α value at a chosen α.

Figure 1. Γα,i-transformations of the discretized Lévy (a), Cauchy (b), and Gauss (c) distribution
at α = 0.99. The deviation from the monotone dependency in the Gauss distribution is due to the
digital rounding.

2.2. Point Information Gain for Typical Distributions

In Figure 1, we demonstrate Γ(i)
α -transformations of three thoroughly studied distributions—the

Lévy, Cauchy, and Gauss distribution (specified in Section 4.1). Mainly, Figure 1c shows averaging of
digital levels, which results in multiple appearance of unique points. This phenomenon is reduced
with the increasing number of the points in the distribution. Nevertheless, it does not disappear in
any real case. Thus, the monotone dependencies of ni, respectively pi, on the Γ(i)

α are valid only at the
approximation to an infinite resolution in levels of values.

Figure 2 shows distribution changes of the values Γ(i)
α with the increasing α-parameter. For each

parameter α, the elements Γ(i)
α are enveloped by monotone increasing curves. For instance, as devised

in Equation (14), the near linearity of the dependency of the number of elements on the values Γ(i)
α at

α = 2 is seen in Figure 2d. The differences between the distributions are expressed by the distributions
of the values Γ(i)

α along the horizontal axes.
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Figure 2. Γ(i)
α -transformations of the discretized Lévy distribution at α = {0.5, 0.99, 1.5, 2.0, 2.5, 4.0}

(from (a) to (f)).

2.3. Point Information Gain Entropy and Point Information Gain Entropy Density

In the previous sections, we showed that Γ(i)
α is different for any ni and the dependency of these

two variables is a monotone increasing function for all α > 0. Here, we propose new variables—a point
information gain entropy (Hα) and point information gain entropy density (Ξα) defined by formulas

Hα =
k

∑
j=1

njΓ
(j)
α (19)

and

Ξα =
k

∑
j=1

Γ(j)
α . (20)

They can be understood as a multiple of the average point information gain and—under linear
averaging—an average gain of the phenomenon j, respectively.

The information content is generally measured by the entropy. The famous Shannon source coding
theorem [24] refers to a specific process of transmission of a discretized signal and introduction of the
noise. The Rényi entropy is one of the class of one-parametric entropies and offers numerous additional
features over the Shannon entropy [7,12,25] such as the determination of a generalized dimension of
a strange attractor [20,21]. The universality of the generalized dimension for characterization of any
distribution, whose regularity may be only coincidental, is still under dispute. However, the values Hα

and Ξα characterize a given distribution for any α. Differences between distributions are expressed
in counts along the axes Γα. Therefore, independently of the mechanisms of the generation of the
distributions, the values Hα/Ξα can serve for the comparison of these distributions. It holds for any
both parametric and non-parametric distributions.
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The next question is whether the Ξα has some expected properties. In this aspect, we mention the
facts observed upon examination of Equation (12), which enable us to rewrite it as

Ξα =
k

∑
j=1

Γ(j)
α =

k
1− α

ln
(

nα

(n− 1)α

)
+

1
1− α

k

∑
i=1

ln

∑k
j=1,j 6=i nα

j + (ni − 1)α

∑k
j=1 nα

j

 =

= Cα(n) · k +
1

1− α
ln

(
k

∏
j=1
D(j)

α

)
, (21)

where the product in the argument of the logarithm in the second term is a product of functions upper
limited by 1 and thus again a function upper limited by 1. From the previous analysis done for the D(i)

α ,
we may conclude that the point information gain entropy density (Ξα) inherits properties of Rényi
entropy, i.e., zooming properties, etc.

Similar to Equation (21), the point information gain entropy (Hα) can be rewritten as

Hα =
k

∑
j=1

njΓ
(j)
α =

∑k
j=1 nj

1− α
ln
(

nα

(n− 1)α

)
+

k

∑
i=1

ni ln

 (∑k
j=1,j 6=i nα

j + (ni − 1)α)

∑k
j=1 nα

j

 =

= Cα(n) ·
k

∑
j=1

nj + ln

(
k

∏
j=1

(
D(j)

α

)nj

)
. (22)

Again, the argument of the logarithm in the second term is upper limited by 1. The Hα also has
properties inherited from Rényi entropy, although their mutual relation is more complicated.

3. Estimation of Point Information Gain in Multidimensional Datasets

3.1. Point Information Gain in the Context of Whole Image

Point information gain Γα,i introduced in Equation (7) was originally applied to the image
enhancement [1,2]. A typical digital image is a matrix of x× y× n values, where x and y are dimensions
of the image and n corresponds to the number of color channels (e.g., n is 1 and 3 for a monochrome
and RGB image, respectively). In most cases, the intensity values are in the range from 0 to 255
(a 8-bit image) or from 0 to 4095 (a 12-bit image) for each color channel. For any size and bit depth of
an image, we can compute the global information (Algorithm 1) provided by the occupied intensity
bin i and evaluate as a change of a probability intensity histogram after removing a point from this bin.

For each parameter α, the calculation of Γ(i)
α helps to find values of the intensities with the identical

occurrences and determine their distribution in (a structural part of) the image. Thus, in general,
the recalculations to Γ(i)

α can be considered as Look-Up Tables—intensities with the highest probabilities
of occurrences in an image correspond to the highest (positive) values Γ(i)

α and the brightest intensities
in a Γ(i)

α -transformed image and vice versa. Sometimes, mainly in the case of local information, due to
the transformation of the original values Γ(i)

α into an 8-bit resolution, some levels Γ(i)
α are merged into

one intensity level of the transformed image.
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Algorithm 1: Point information gain vector (Γα), point information gain entropy (Hα), and point
information gain entropy density (Ξα) calculations for global (Whole image) information and
typical histograms.

Input: n-bin histogram h; α, where α ≥ 0 ∧ α 6= 1
Output: Γα; Hα; Ξα

1 p = h/sum(h); % explain the frequency histogram h as a probability histogram p
2 Γα = zeros(h); % create a zero matrix Γα of the size of the histogram h

3 for i = 1 to n do
4 h2 = h; % create a vector h2 identical to the histogram h

5 if h2(i) 6= 0 then
6 h2(i) = h2(i)− 1;

% if the bin i of the histogram h2 is occupied, remove an element at the position i
7 end

8 p2 = h2/sum(h2); % calculate a probability histogram p2 without the examined element

9 Γ
(i)
α = 1

1−α log2(sum(p2.∧α)/sum(p.∧α));

% calculate Γ(i)
α as a difference of two Rényi entropies – with and without the examined element,

respectively Equation (7))
10 end

11 Hα = sum(h.∗Γα);
% calculate Hα as a sum of the element-by-element multiplication of h and Γα(Equation (19))

12 Ξα = sum(Γα); % calculate Ξα as a sum of all unique values in Γα (Equation (20));

Everything is best visualized in Figures 3 and 4, which show the Γ(i)
α -transformations of the

texmos2.s512 image. The intention was probably to create an image with a uniform distribution of
intensities. Provided the uniform intensity distribution, the output of the global Γ(i)

α -calculation would
be only one value Γ(i)

α , i.e., Figure 3b would be unicolor. However, eight original intensities (Figure 3a)
resulted in five values Γ(i)

0.99 (i.e., local parts) (Figure 4b,d). The detailed image analysis showed that
the number of occurrences is only identical for intensities 32-224 and 96-128-192, i.e., there are five
unique values of frequencies of intensity occurrences (Figure 4a). For a change, in the 4.1.07 image,
the global Γ(i)

0.99-recalculation emphasizes the unevenness of the background and shadows around a
group of the jelly beans (Figure 5b). In conformity with the statement in the next-to-last paragraph
in Section 2.1, this principle also enables highlighting of rare points in images with rich spectrum of
intensities, mainly at low α-values. The calculations using higher values α do not point highlight rare
points so intensively and the resulting image is more smooth.
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Figure 3. Γ(i)
0.99-transformations of the texmos2.s512 image [26]. Original image (a) and information

images calculated from the whole image (b), a cross around each pixel (c), and squares of the side of 5,
15, and 29 px, respectively, with the centered examined pixel (d–f).

Figure 4. Histograms of Γ(i)
0.99-transformations of the texmos2.s512 image [26]. Original image (a),

original values Γ(i)
0.99 calculated from the whole image (b), original values Γ(i)

0.99 calculated from a cross

whose shanks intersect in the examined pixel (c), Γ(i)
0.99-transformed images calculated from the whole

image (d), and Γ(i)
0.99-transformed images calculated from a cross around each pixel (e). Colors in the

original and globally (whole image) transformed histograms correspond to the intensity levels with
the identical frequencies of occurrences in the original image.
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Figure 5. Γ(i)
0.99-transformations of the 4.1.07 image [26]. Original image (a) and information images

calculated from the whole image (b), a cross around each pixel (c), and circles of the diameter of 5, 17,
and 30 px, respectively, with the centered examined pixel (d–f).

3.2. Local Point Information Gain

Since multidimensional datasets, as e.g., images, consist of special structures given by the pixel
lattice, it can be also beneficial to calculate not only global information gain, but also local information
gain in some defined surroundings (Algorithm 2). The local information is defined after removing
an element from the bin i where the element lies in the center of the surroundings, which creates the
intensity histogram. The choice of the local surroundings around pixels is specific for each image.
However, we do not have any systematic method for comparison of suitability of different surroundings
around the pixels. The suitability of the chosen surroundings depends obviously on the process
by which the observed pattern or other distribution was generated. According to our knowledge,
the choice of the appropriate surroundings on the basis of known image generation was studied only
for cellular automata [27–29]. This makes the study of the local information very interesting because it
outlines another method for recognition of the processes of self-organization/pattern formation [30].
In this article, we confine ourselves to the usage of the local information for better understanding of
both the limitation of the method of the Γ(i)

α -calculation and the local information itself. The cross,
square, and circular surroundings around each pixel are demonstrated on three different standard
images—texmos2.s512 (monochrome, computer-generated, unifractal), 4.1.07 (RGB, photograph,
unifractal) [26], and wd950112 (monochrome version, computer-generated, multifractal) [31].

The cross from the intensity values, whose shanks meet in the examined point of the original
image [1], was chosen as the first local surroundings. In contrast to the global recalculation, such a
transformation of the texmos2.s512 image produces a substantially much richer intensity Γ(i)

α -image.
One can see that relatively simple global information consists of more complex local information
(Figure 4a,c,e).

However, the cross-local type of the image transformation is the least suitable approach for
the analysis of the photograph of the jelly beans (Figure 5c). In this case, a circular local element is
recommended to be used instead. As seen in Figure 5d–f, the increase of the diameter up to the size
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of the jelly beans reduces the background gradually. The next increase enables grouping the jelly
beans into higher-order assemblies. A similar grouping is observable for the smallest squares in the
transformed texmos2.s512 using the 29 px square surroundings (Figure 3f). In contrast, lower values
of square surroundings (Figure 3d) highlight only the border intensities.

Algorithm 2: Point information gain matrix (Γα), point information gain entropy (Hα), and point
information gain entropy density (Ξα) calculations for local kinds of information. Parameters a
and b are semiaxes of the ellipse surroundings and a half-width of the rectangle surroundings,
respectively, a = 0 and b = 0 for the cross surroundings.

Input: 2D discrete data Im×n; α, where α ≥ 0 ∧ α 6= 1; parameters of surroundings a, b
Output: Γ

(i)
α ; Hα; Ξα

1 Γα = zeros(I); % create a zero matrix Γα of the size of the Im×n matrix
2 hashMap = containers.Map; % declare an empty hash-map (the key-value array)

3 for i = (a + 1) to (m− a− 1) do
4 for j = (b + 1) to (n− b− 1) do
5 h = getHist(I(i, j));

% create a histogram h from the elements around the pixel (i,j) of Im×n

6 p = h/sum(h); % explain the histogram h as a probability histogram p
7 h(I(i, j)) = h(I(i, j))− 1; % remove the examined point (i,j) from the histogram h
8 p2 = h/sum(h); % explain the histogram h as a probability histogram p2

9 Γ
(i,j)
α = 1

1−α log2(sum(p2.∧α)/sum(p.∧α));

% calculate Γ(i,j)
α as a difference of two Rényi entropies – with and without the examined element

(i, j) (Equation (7))

10 v = I(i, j); % read a value of the element (intensity) at the position I(i, j)
11 checkSum = calcCheckSum(h, v);

% calculate checkSum using a hash-function effective enough (MD4, MD5, SHA1,...)

12 if not hashMap.isKey(checkSum) then
13 hashMap(checkSum) = Γα(i, j);

% if the hash-map does not contain the key, insert a new element with the key checkSum,
where the inserted value is the Γα for the element I(i, j)

14 end
15 end
16 end

17 Hα = sum(sum(Γα)); % calculate Hα as a sum of all elements in the matrix Γα (Equation (19))
18 Ξα = sum(values(hashMap)); % calculate Ξα as a sum of all elements in the matrix

hashMap (Equation (20))

3.3. Point Information Gain Entropy and Point Information Gain Entropy Density

From the point of view of thermodynamics, the Hα and Ξα can be considered as additive,
homological state variables whose knowledge can be helpful in analysis of multidimensional (image)
data as well [32]. Despite the relative familiarity of their formulas (Section 2.3), the Hα can be defined
as a sum of all information contributions to the data distribution, either the global or partial one,
i.e., all Γ(i)

α , whereas the Ξα is a sum of all information microstates of the distribution. Even in case
of the local information, each two (collision) histograms with the same proportional representation
of frequencies of elements, which were obtained from distributions around two pixels at different
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positions and only differing in the positions of frequencies in the histogram, are considered to be
unique microstates and produce unique values Γ(i)

α (see Algorithm 2). Thus, in agreement with the
predictions arising from Equations (19) and (20), the Ξα-calculation does not suppress contributions
of elements with low probabilities of occurrences (rare points) and is more robust and stable against
changes in the local surroundings. This phenomenon manifests itself in the lower differences in
dependencies Ξα(α) for four square surroundings in comparison to the dependencies Hα(α) in Figure 6.
Nevertheless, it is worth noting that, during the calculation with the usage of the local geometrical
surroundings, the surroundings touch the edges of the image at most and only an interior part of the
image is processed. This fact—technical limitation—negatively influences values Hα and Ξα for square
surroundings in Figure 6 and also leads to the lower sizes of Γ(i)

α -transformed images (e.g., Figures 3d–f
and 5d–f).

Figure 6. Spectra Hα and Ξα for global information and different local surroundings of a
unifractal (texmos2.s512 [26], column (a)) and multifracal (wd950112 [31], column (b)) image at
α = {0.1, 0.2, ..., 0.9, 0.99, 1.1, 1.2, ..., 4.0}.
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Plotting the Hα and Ξα vs. α in Figure 6 is not random. As mentioned for Γ(i)
α calculations

(Section 2.1), multidimensional discrete (image) data is suitable to be characterized not only by one
discrete value, either Hα or Ξα, at a particular α, but also by their α-dependent spectra. The reason
is not only to avoid digital rounding, but also to possibly to characterize the type and the origin
of geometrical structures in the image (cf. Section 3.1). Another application has been found in the
statistical evaluation (clustering) of the time-lapse multidimensional datasets [32,33]. This calculation
method was originally developed for study of multifractal self-organizing biological images [34];
however, it enables description of any types of images. Since parts of an image are forms of
complex structures, the best way to interpret the image is to use a combination of its global and
local kinds of information. We demonstrate this fact on an example of a unifractal (almost non-fractal)
Euclidian image and a computer-generated multifractal image (Figure 6). Whereas the Euclidian image
gives monotone spectra Hα/Ξα(α) (for the global and cross-local kinds of information, even linear
dependencies at the particular discrete interval of values α), the recalculation of the multifractal image
shows extremes at values of α close to 1. Analogous dependences were also plotted for the image sets
of the course of the self-organizing Belousov–Zhabotinsky reaction [32].

4. Materials and Methods

4.1. Processing of Images and Typical Histograms

The values of Γ(i)
α , Hα, and Ξα for all typical histograms and images were computed using

Equations (7), (19), and (20). Algorithms are described in Section 4.2. The software and scripts,
as well as results of all calculations, are available via ftp (Appendix).

For the Cauchy, Lévy, and Gauss distributions, histograms of dependencies of the number of
elements on the Γ(i)

α were calculated for α = {0.1, 0.3, 0.5, 0.7, 0.99, 1.3, 1.5, 1.7, 2.0, 2.5, 3.0, 3.5, 4.0}
using a Matlabr script (Mathworks, Natick, MA, USA). The following probability density functions
f (x) were studied:

(a) Lévy distribution:

f (x) = round
[

10c exp(− 1
2x )√

2πx3

]
, x ∈ 〈1, 256〉, x ∈ N, c ∈ {3, 5, 7}, (23)

(b) Cauchy distribution:

f (x) = round
[

10c 1
π(1 + x2)

]
, x ∈ 〈0, 255〉, x ∈ Z, c ∈ {3.5, 7}, (24)

(c) Gauss distribution:

f (x) = round

[
10c exp(− x2

2σ2 )

σ
√

2π

]
, x ∈ 〈0, 255〉, x ∈ Z, c ∈ {4, 300} ∧ σ = 1, c ∈ {3, 4} ∧ σ = 10. (25)

In Figures 1 and 2, the Cauchy and Lévy distributions with c = 7 and the Gauss distribution with
parameters c = 4 and σ = 10 are depicted.

Multidimensional image analysis based on calculation of Γ(i)
α , Hα, and Ξα was tested on 5 standard

8-bpc images (Table 1). Before the computations, original images wd950112.gif and 6ASCP011.gif
obtained from [31] were transformed into monochrome *.png formats in Matlabr software. All images
were processed using an Image Info Extractor Professional software (Institute of Complex System,
University of South Bohemia, Nové Hrady, Czech Republic) for α = {0.1, 0.2, ..., 0.9, 0.99, 1.1, 1.2, ..., 4.0}.
The global information was extracted using (the italics refer to parameters which are set in the Image
Info Extractor Professional software.) Whole Image calculation. The vertical–horizontal cross, square
(a side of 5, 11, 15, and 29 px, respectively), and circle (a radius of 2, 5, and 8 px, respectively) for
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local information were set as special cases of a Cross, Rectangle, and Ellipse calculation at the rotation
angle Phi of 0◦. Into the Image Info Extractor Professional software, a side of the square and radius
of the circle surroundings was input as width/2 and height/2 of 2, 5, and 14 px and a and b of 2, 5,
and 8 px, respectively.

Table 1. Specifications of images.

Image Source Colors Resolution Geometry Origin

texmos2.s512.png [26] mono 512 × 512 unifractal computer-based
4.1.07.tiff [26] RGB 256 × 256 unifractal photograph

wash-ir.tiff [26] RGB 2250 × 2250 unifractal computer-based
wd950112.png [31] mono 1024 × 768 multifractal computer-based
6ASCP011.png [35] mono 1600 × 1200 multifractal computer-based

4.2. Calculation Algorithms

The algorithms implemented into the Image Info Extractor Professional are described in
Algorithms 1 and 2. In the case of RGB images, the algorithms were applied to each color channel.
The values Γ(i)

α were visualized by a full rescaling into 8-bit resolution. Let us note that, for α = 1,
the equations in lines 9 of both algorithms switch to the calculation of the Shannon entropy.

5. Conclusions

In this article, we propose novel information quantities—a point information gain (Γ(i)
α ), a point

information gain entropy (Hα), and a point information gain entropy density (Ξα). We found a
monotone dependency of the number of the elements of a given property in the set on Γ(i)

α . The variables
Hα and Ξα can be used as quantities in multidimensional datasets for the definition of the information
context. Examination of local information in the distribution shows a potential for in-depth insight into
formation of observed structures and patterns. This option can be practically utilized in acquisition of
differently resolved variables in the dataset. The method enables avoiding cases where the number
of occurrences of a certain event is the same, but ,in distribution in time, space or along any other
variable, differ. In principle, the variables Hα and Ξα are unique for each distribution but suffer from
problems with digital precision of the computation. Therefore, we propose their α-dependent spectra
as proper characteristics of any discrete distribution, e.g., for clustering of multidimensional datasets.
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Appendix

All processed data are available at [36] (for more details, see Section 4):

1. Folder “Figures” contains subfolders with results of Γ(i)
α , Hα, and Ξα calculations for “RGB”

(4.1.07.tiff, wash-ir.tiff) and “gray” (texmos2.s512.png, wd950112.png, 6ASCP011.png) standard
images calculated for 40 values α. The results are separated into subfolders according to the type
of extracted information.
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2. Folder “H_Xi” stores the PIE_PIED.xlsx and PIE_PIED2.xlsx files with dependencies of Hα and
Ξα on α as exported from the PIE.mat files (in folder “Figures”). Titles of the graphs, which are
in agreement with the computed variables and extracted kinds of information, are written in
the sheets.

3. Folder “Histograms” stores the histograms of the occurrences of Γ(i)
α values for the Cauchy

(two types), Lévy (three types), and Gauss (four types) distributions. The parameters of the
original distributions are saved in the equation.txt files. All histograms were recalculated using
13 values α.

4. Folder “Software” contains a 32- and 64-bit version of an Image Info Extractor Professional v. b9
software (ImageExtractor_b9_xxbit.zip; supported by OS Win7) and a pig_histograms.m Matlabr

script for recalculation of the typical probability density functions. A script pie_ec.m serves for
the extraction of Hα and Ξα from the folders (outputs from the Image Info Extractor Professional)
over α. In the software and script, the variables Γ(i)

α , Hα, and Ξα are called PIG, PIE, and PIED,
respectively. Manuals for the software and scripts are also attached.
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34. Štys, D.; Vaněk, J.; Náhlík, T.; Urban, J.; Císař, P. The cell monolayer trajectory from the system state point of
view. Mol. BioSyst. 2011, 42, 2824–2833.

35. Available online: http://cims.nyu.edu/ kiryl/Photos/Fractals1/ascp011et.html (accessed on 17 October 2016).
36. Point Information Gain Supplementary Data. Available online: ftp://160.217.215.251/pig (accessed on

17 October 2016).

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://sipi.usc.edu/database/database.php?volume=textures &image=61#top
http://sipi.usc.edu/database/database.php?volume=textures &image=61#top
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Description and Properties of Point Information Gain
	Point Information Gain and Its Relation to Other Information Entropies
	Point Information Gain for Typical Distributions
	Point Information Gain Entropy and Point Information Gain Entropy Density

	Estimation of Point Information Gain in Multidimensional Datasets
	Point Information Gain in the Context of Whole Image
	Local Point Information Gain
	Point Information Gain Entropy and Point Information Gain Entropy Density

	Materials and Methods
	Processing of Images and Typical Histograms
	Calculation Algorithms

	Conclusions
	

