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Abstract: This paper is concerned with consensus problem of a class of second-order multi-agent
systems subjecting to external disturbance generated from some unknown exosystems. In comparison
with the case where the disturbance is generated from some known exosystems, we need to combine
adaptive control and internal model design to deal with the external disturbance generated from
the unknown exosystems. With the help of the internal model, an adaptive protocol is proposed for
the consensus problem of the multi-agent systems. Finally, one numerical example is provided to
demonstrate the effectiveness of the control design.
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1. Introduction

The consensus problem of multi-agent systems has received increasing attention in recent years
due to its broad applications in such areas as cooperative control of unmanned aircrafts and underwater
vehicles, flocking of mobile vehicles, communication among wireless sensor networks, rendezvous,
formation control, and so on, see [1–15]. In the past years, many researches have been firstly concerned
with consensus problems of first order multi-agent systems [16–20]. In [16], the authors proposed
a systematic framework to study the consensus problem of first-order multi-agent systems and showed
that the consensus can be achieved if the diagraph is strongly connected. In [17], the authors extended
the results obtained in [16] and further presented some improved conditions for state agreement under
dynamically changing directed topology. In [18], the authors discussed average consensus problem
by using a linear matrix inequality method in undirected networks of dynamic agents with fixed and
switching topologies as well as multiple time-varying communication delays.

Recently, the consensus problem of second order multi-agent systems has received increasing
attention due to the fact that second order dynamics can be used to model more complicated processes
in reality [21–26]. In reality, many practical individual systems, especially mechanical systems, can be
presented as second-order multi-agent systems; for instance, networks of mass-spring systems[27],
coupled pendulum systems[28], harmonic oscillators [29] and frequency control of power systems [30].
In [21], the authors pointed out that the existence of a directed spanning tree is a necessary rather
than a sufficient condition to reach the second order consensus. In [22], the authors discussed the
consensus problems for undirected networks of point mass dynamic agents with fixed or switching
topology. In [23], the authors proposed a Lyapunov-based approach to consider multi-agent systems
with switching jointly connected interconnection. In [24], the authors presented some necessary and
sufficient conditions for second order consensus in multi-agent dynamical systems. In [25], the authors
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studied the exponential second order consensus problem of a network of inertial agents using passive
decomposition approach with time-varying coupling delays and variable balanced topologies.

However, there are few results that have considered the second order consensus problem for
multi-agent systems with exogenous disturbance [31,32]. In [31], by using linear matrix inequality
method, the authors studied the consensus problem of second order multi-agent systems with
exogenous disturbances generated from linear exogenous system under the assumption that the
coefficient matrix of the exogenous system can be used for designing a disturbance observer,
and a disturbance observer based protocol was proposed to achieve consensus for the second order
multi-agent systems. In [32], by using the input-to-state stability and dynamic gain technique,
Zhang et al. further investigated the consensus problem of second order multi-agent systems
with exogenous disturbances generated from linear exogenous system and nonlinear exogenous
system, respectively.

Nevertheless, the case when consensus problem of multi-agent systems with exogenous
disturbance generated from linear unknown exogenous system seems more realistic and has greater
practical significance [33–35]. In this paper, we will consider the consensus problem of second order
multi-agent systems with exogenous disturbance generated from linear unknown exogenous system.
It is worth noting that, unlike [31,32], since the disturbances are generated from some linear unknown
exogenous systems and the information of the coefficient matrix of the exogenous system can not be
used for designing of disturbance observer and feedback control, we cannot apply the approaches
developed in [31,32] to solve the present problem. Meanwhile, the method that used in [34] to solve
the problem of asymptotic rejection of unknown sinusoidal disturbances can not be used directly to
tackle the consensus problem of multi-agent system, because the multi-agent system is multi-input
and multi-output. Therefore, to overcome this difficulty, we need to develop a different technique.

The remainder of this paper is organized as follows. In Section 2, some preliminaries are briefly
reviewed and the problem formulation is presented. Some internal models, which are used to deal
with the disturbances generated from some linear unknown exosystems, are designed in Section 3.
Based on the internal models proposed in Section 3, an adaptive consensus protocol is presented for
the second order multi-agent systems in Section 4. In Section 5, an example will be given to illustrate
our design. Finally, the conclusions are drawn in Section 6.

2. Preliminaries and Problem Formulation

Assuming that each agent can be viewed as a node, and the interaction topology of information
exchange between n nodes can be described by a graph G = (V , E , A ), where V = {1, · · · , n}
be an index set of n nodes with i representing the ith node, E ⊆ V × V is the set of edges of
paired nodes and A = [aij] ∈ RN×N with non-negative adjacency elements aij is the weighted
adjacency matrix of the graph G . An edge of G is denoted by (i, j), representing that node i can
get information from node j. The adjacency elements associated with the edges are positive, i.e.,
(i, j) ∈ E if and only if aij > 0. Moreover, it is assumed that aii = 0 for all i ∈ V . A graph is called
an undirected graph if the graph has the property that aij = aji for any i, j ∈ V . The neighborhood
of node i is denoted by Ni = {j ∈ V : (j, i) ∈ E }. A path on G from node i1 to node in is a
sequence of ordered edges of the form (ik, ik+1) ∈ E , k = 1, · · · , n− 1, and ik’s are distinct. A graph
G is said to be connected if there exists a path from node i to node j for any two nodes i, j ∈ E .
A diagonal matrix D = diag{d1, · · · , dn} is a degree matrix of graph G , whose diagonal matrix
elements di = ∑j∈Ni

aij, i ∈ V . Then, the Laplacian matrix of a weighted graph can be defined as
L = D −A , which is a symmetric positive semi-definite matrix.

Considering a group of agents, the dynamics of the ith agent is given by

ẋi = vi,
v̇i = −∑j∈Ni

aij[(xi − xj) + γ(vi − vj)] + ui + gidi, i ∈ V ,
(1)
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where xi ∈ Rm and vi ∈ Rm are the position and velocity of agent i, respectively. aij is the (i, j)th entry
of the adjacency matrix, and γ > 0 denotes a scaling factor. ui ∈ Rm and gi ∈ Rm denote the control
input and a coefficient matrix, respectively. di ∈ R is the external disturbance, which is generated from
the following unknown exosystem

ξ̇i = Aiξi,

di = Ciξi,
(2)

where ξi ∈ Rmi , Ai ∈ Rmi×mi and Ci ∈ R1×mi are the coefficient matrices.
As in [31] and [32], we assume that the desired state is described by

˙̄x = v̄, (3)

where x̄ ∈ Rm and v̄ ∈ Rm are the position and velocity of the leader agent, respectively.

Definition 1. The consensus problem of the multi-agent systems (1) is formulated as follows: For the
multi-agent systems (1), design an adaptive consensus protocol such that the states of the close-loop system exist
and are bounded, and the states of agents satisfy

lim
t→∞
‖xi − x̄‖ = 0, lim

t→∞
‖vi − v̄‖ = 0, (4)

for any initial values xi(0) and vi(0), i ∈ V .

Remark 1. Note that, unlike the cases in [31,32], we allow that the disturbance di, i ∈ V is generated from
different unknown exosystems, which makes our problem more challenging and realistic.

3. Designing of Internal Models

In this section, in order to deal with the external disturbances, we will design some internal
models. To this end, let

si(t) = [xT
i (t), vT

i (t)]
T ,

s(t) = [xT
1 (t), · · · , xT

n (t), vT
1 (t), · · · , vT

n (t)]
T .

Then, it follows from system (1) that

ṡi = Lis(t) + Hiui + Gidi (5)

where Hi = [0m×m, Im]T ∈ R2m×m, Gi = [0T
m×1, gT

i ]
T ∈ R2m×1, Li is a matrix with its rows are chosen

from rows (i− 1)m + 1 to im and from rows mn + (i− 1)m + 1 to mn + im of the following matrix[
0mn×mn In ⊗ Im

−L ⊗ Im −γL ⊗ Im

]
.

Before proceeding further, some standard assumptions are introduced as follows:

Assumption 1. The matrix pair (Ai, Ci), i ∈ V is observable, and the eigenvalues of Ai, i ∈ V are with zero
real parts and are distinct.

Assumption 2. There exists a function hi(si) : R2m → Rmi , i ∈ V , such that ∂hi(si)
∂si

Gi = Ni, i ∈ V , where
Ni, i ∈ V is a nonzero constant vector in Rmi .
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Under the Assumptions 1 and 2, for any nonzero vector Ni, i ∈ V , there exists a Hurwitz matrix
Mi, i ∈ V such that (Mi, Ni), i ∈ V is controllable.

Now, we can define a dynamic system of the following form

żi = Mizi + Mihi(si)−
∂hi(si)

∂si
(Lis + Hiui), i ∈ V , (6)

which is called an internal model and can be used to handle the disturbance di generated from (2).
Furthermore, there exists a nonsingular matrix Ti, i ∈ V satisfying the following Sylvester equation

Ti Ai −MiTi = NiCi, i ∈ V , (7)

because the pair (Mi, Ni), i ∈ V , is controllable with Mi being Hurwitz, and the pair (Mi, Ni), i ∈ V ,
is observable.

With the internal model (6) and Sylvester Equation (7) ready, the biased error can be defined by

ei = Tiξi − zi − hi(si), i ∈ V . (8)

Then, it can be verified that the internal model (6) and the biased error (8) have a nice property as
described in the following lemma.

Lemma 1. There exist some positive constants dei and λei such that the biased error defined by (8) satisfies the
following inequality

‖ei‖ ≤ dei e
−λei t, i ∈ V , (9)

which implies that ei is exponentially stable.

Proof. Firstly, by Equations (2), (5) and (6), a straightforward computation shows that

ėi = Ti ξ̇i − żi −
∂hi(si)

∂si
ṡi

= Ti Aiξi − [Mizi + Mihi(si)−
∂hi(si)

∂si
(Lis + Hiui)]

− ∂hi(si)

∂si
[Lis(t) + Hiui + Gidi].

Then, under the Assumption 2, by the Sylvester Equation (7), one has

ėi = (MiTi + NiCi)ξi − [Mizi + Mihi(si)− ∂hi(si)
∂si

(Lis + Hiui)]

− ∂hi(si)
∂si

[Lis(t) + Hiui + Gidi]

= (MiTi + NiCi)ξi − [Mizi + Mihi(si)]− Nidi
= Miei.

(10)

Next, using the Lyapunov stability theory of [36], it is easy to verify that the solution of ei
system (10) can be given as

ei(t) = ei(0)eMit.

Furthermore, owing to Mi is a Hurwitz matrix, it follows that there exist some positive constants
di0 and λi0 such that

‖eMit‖ ≤ di0e−λi0t,

which implies that
‖ei(t)‖ ≤ deie−λeit,
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where dei = di0‖ei(0)‖ and λei = λi0.

Remark 2. Based on Lemma 1, it can be shown that, for the following first-order system

˙̄ei = −λei ēi, ēi(0) = dei, i ∈ V , (11)

where dei and λei are the same positive constants given in Lemma 1, the following nice property

‖ei(t)‖ ≤ ēi(t), i ∈ V , (12)

is hold, which is very useful for managing the disturbances caused by the unknown exosystems (2).

4. Main Result

In this section, we will present an adaptive protocol for solving the consensus problem of the
multi-agent systems (1). To do this, we further make one more standard assumption and recall one
lemma which can be found in [31,32,37].

Assumption 3. The graph G describing the interaction topology is connected.

Lemma 2. Under Assumption 3, suppose that γ > 0 is a positive real number, then the following matrix[
0 In

−(L +B) −γ(L +B)

]

is Hurwitz, where B = diag{b1, · · · , bn} with bi is the control gain of control law (16), and bi > 0 if agent is
pinned, otherwise, bi = 0.

In order to make the problem more tractable, let

ηi = Tiξi, (13)

where Ti is the nonsingular matrix satisfying the Sylvester Equation (7). Then, we have

η̇i = Ti Aiξi. (14)

By (7) and (13), one can obtain that

η̇i = Miηi + Niψiηi,

di = ψiηi, i ∈ V ,
(15)

where ψi = CiT−1
i is unknown vector since Ci and Ti are unknown matrices.

Remark 3. It is worth pointing out that, after the linear transformation (13), the external disturbance di, i ∈ V ,
can be generated from the system (13), in which Mi is a known Hurwitz matrix and only the
matrix ψi, i ∈ V , is unknown. Thus, one can estimate the disturbance di through estimating the unknown
constant vector ψi, i ∈ V .

Now, we are ready to state our main result.
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Theorem 1. Under Assumptions 1–3, with the help of the internal model presented in (6), the adaptive
protocol given by

ui = −bi[(xi − x̄) + γ(vi − v̄)]− giψ̂i(zi + hi(si)),
˙̂ψi = $iω

TPn+igi(zi + hi(si))
T, i ∈ V ,

(16)

where the control gain bi > 0 if agent is pinned, otherwise, bi = 0, ψ̂i is the estimation of the unknown vector
ψi, $i is a positive constant which is used to modify the update rate, ω and Pn+i are defined by (18) and (22),
respectively, solves the consensus problem of second order multi-agent systems (1) with external disturbance
generated from linear unknown exosystem (2).

Proof. let

x̃i(t) = xi(t)− x̄,

ṽi(t) = vi(t)− v̄, i ∈ V ,
(17)

and

x̃(t) = [x̃T
1 (t), · · · , x̃T

n (t)]
T,

ṽ(t) = [ṽT
1 (t), · · · , ṽT

n (t)]
T,

w = [x̃T, ṽT]T,

η = [ηT
1 , · · · , ηT

n ]
T,

z = [zT
1 , · · · , zT

n ]
T,

h = [hT
1 , · · · , hT

n ]
T,

ψ = diag(ψ1, · · · , ψn),

ψ̂ = diag(ψ̂1, · · · , ψ̂n).

(18)

Then, by combining Equations (1), (2), (15) and (16), the following system can be derived

ω̇ = L̄ ω + Ψ[ψη− ψ̂(z + h)], (19)

where

L̄ =

[
0 In ⊗ Im

−(L +B)⊗ Im −γ(L +B)⊗ Im

]
,

Ψ =

[
In ⊗ 0m×1

g

]
,

g = blockdiag(g1, · · · , gn).

Furthermore, as noted in [32], according to the Lemma 2 and Theorem 4.2.12 of [38], it follows
that the matrix L̄ is Hurwitz.

Next, consider the following Lyapunov function candidate

V = ωTPω +
2
$i

n

∑
i=1

ψ̃iψ̃
T
i +

1
2

n

∑
i=1

ci ē2
i , (20)

where ψ̃i = ψi − ψ̂i, ci, i ∈ V , is a positive real constant number which will be specified later, ēi is the
state defined by (11), and P is a positive definite matrix satisfying the following Lyapunov equation

PL̄ + L̄ TP = −I.



Entropy 2016, 18, 423 7 of 11

The existence of the matrix P is due to the Hurwitzness of L̄ .
Then, taking the derivative of V along the system composed of (11), (16) and (19) gives

V̇ = ω̇TPω + ωTPω̇ + 2
$i

∑n
i=1 ψ̃i

˙̃ψT
i + ∑n

i=1 ci ēi ˙̄ei

= −‖ω‖2 + 2ωTPΨ[ψη− ψ̂(z + h)]

− 2
$i

∑n
i=1 ψ̃i

˙̂ψT
i −∑n

i=1 ciλei ē
2
i .

(21)

Now, in order to overcome the difficulties caused by the unknown vectors ψi, i ∈ V , let us split
the matrix P as

P = [P1, · · · , Pn, Pn+1, · · · , P2n], (22)

where Pi, i = 1, 2, · · · , 2n, are 2mn×m blocks.
Then, in light of (8) and (22), it follows from (21) that

V̇ = −‖ω‖2 + 2 ∑n
i=1 ωTPn+igiψ̃i(zi + hi)

+ 2 ∑n
i=1 ωTPn+igiψiei − 2

$i
∑n

i=1 ψ̃i
˙̂ψT

i −∑n
i=1 ciλei ē

2
i .

(23)

Furthermore, substituting the adaptive law ˙̂ψi proposed by (16) into (23) yields that

V̇ = −‖ω‖2 + 2 ∑n
i=1 ωTPn+igiψiei −∑n

i=1 ciλei ē
2
i

≤ −‖ω‖2 + ∑n
i=1[εi‖ω‖2 + 1

εi
‖Pn+igiψi‖2‖ei‖2]−∑n

i=1 ciλei ē
2
i ,

(24)

where εi, i = 1, 2, · · · , n, are any positive real constants.
From the inequality (12), we obtain that

V̇ ≤ −(1− ε)‖ω‖2 +
n

∑
i=1

(
1
εi
‖Pn+igiψi‖2 − ciλei)ē

2
i , (25)

where ε = ∑n
i=1 εi.

Next, choosing ε ≤ 1
2 , and ci =

2
λei εi
‖Pn+igiψi‖2, which will lead to

V̇ ≤ −1
2
‖w‖2. (26)

Hence, we can conclude that all the variables are bounded. Finally, by invoking the Barbalat’s
Lemma, one can obtain that

lim
t→∞

x̃(t) = 0,

lim
t→∞

ṽ(t) = 0,

which complete this proof.

Remark 4. It is worth pointing out that, distributed proportional-integral control law was also studied in [30]
for second-order multi-agent systems with constant disturbances. Unlike the results in [30], the disturbances in
this paper are assumed to be generated from some unknown exosystems, which include the constant disturbance
as special case. In addition, the results in this paper are proved by combining Lyapunov-based method and
adaptive control technique, which are totally different proof techniques from that used in [30].
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5. Illustrative Example

In this section, an example will be provided to illustrate our design. The model parameters are
taken from [31,32] with some adjustments. We assume that there are ten agents with an undirected
communication graph G shown in Figure 1. The gain γ is set to 1 and the coefficient matrix of system (1)
is gi = 1, respectively. The desired consensus state is described by ˙̄x = 0.08. However, unlike [31,32],
we assume the disturbance di is generated from

ξ̇i =

[
0 σi
−σi 0

]
ξi,

di =
[
1 0

]
ξ, i ∈ V .

Then, we have

Ai =

[
0 σi
−σi 0

]
, Ci =

[
1 0

]
, Gi =

[
0
1

]
. (27)

Let hi(si) = si, one has
∂hi(si)

si
Gi =

[
0
1

]
.

Therefore, Assumptions 1–3 are satisfied.
Furthermore, select

Mi =

[
0 1
−9 −8

]
, i ∈ V ,

such that (Mi, Ni) is controllable with Mi being Hurwitz.

Figure 1. Communication graph G .

Then, based on the proposed approach, the internal model (6) and adaptive protocol (16) can be
designed. Numerical simulations are conducted to show the performance of the presented control
law. Some of the results are depicted in Figures 2 and 3 with initial conditions of states and initial
velocities of agents are chosen randomly from [0, 4] and [0, 5], respectively. The unknown parameters
of the exosystems are set as σ1 = 0.1, σ2 = 0.2, σ3 = 0.3, σ4 = 0.4, σ5 = 0.5, σ6 = 0.6, σ7 = 0.7, σ8 = 0.8,
σ9 = 0.9, σ10 = 1, and the initial conditions of the exosystem are all set as ξi(0) = [0.5 sin 1, 0.5 cos 1]T .
The pining control gains are selected as b2 = b4 = 1. All the other initial conditions in the controller
are set to zero. From Figures 2 and 3, it can be seen that the consensus protocol proposed in this paper
allows the agents to reach consensus, in the presence of external disturbance generated from some
unknown exosystems.
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Figure 2. States of the agents.
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Figure 3. Velocities of the agents.

6. Conclusions

This paper address a consensus problem of second order multi-agent systems with exogenous
disturbance generated by unknown exosystems. A class of internal model was proposed for deal
with the disturbance caused by the unknown exosystems. Based on the internal model, an adaptive
consensus protocol was presented for the second order multi-agent systems. Finally, the effectiveness
of our results is validated by numerical simulations.
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