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Abstract: A characteristic feature of complex systems is their deep structure, meaning that the
definition of their states and observables depends on the level, or the scale, at which the system
is considered. This scale dependence is reflected in the distinction of micro- and macro-states,
referring to lower and higher levels of description. There are several conceptual and formal
frameworks to address the relation between them. Here, we focus on an approach in which
macrostates are contextually emergent from (rather than fully reducible to) microstates and can
be constructed by contextual partitions of the space of microstates. We discuss criteria for the stability
of such partitions, in particular under the microstate dynamics, and outline some examples. Finally,
we address the question of how macrostates arising from stable partitions can be identified as relevant
or meaningful.

Keywords: complexity; contextual emergence; information; macrostates; multi-scale systems;
partitions; stability

1. Introduction

1.1. Complex Systems

The concepts of complexity and the study of complex systems represent some of the most
important challenges for research in contemporary science. Although one might say that its formal
core lies in mathematics and physics, complexity in a broad sense is certainly one of the most
interdisciplinary issues scientists of many backgrounds have to face today. Beyond the traditional
disciplines of the natural sciences, the concept of complexity has even crossed the border to areas
like psychology, sociology, economics and others. It is impossible to address all approaches and
applications that are presently known comprehensively here; overviews from different eras and areas
of complexity studies are due to Cowan et al. [1], Cohen and Stewart [2], Auyang [3], Scott [4],
Shalizi [5], Gershenson et al. [6], Nicolis and Nicolis [7], Mitchell [8] and Hooker [9].

The study of complex systems includes a whole series of other interdisciplinary approaches:
system theory (Bertalanffy [10]), cybernetics (Wiener [11]), self-organization (Foerster [12]), fractals
(Mandelbrot [13]), synergetics (Haken [14]), dissipative (Nicolis and Prigogine [15]) and autopoietic
systems (Maturana and Varela [16]), automata theory (Hopcroft and Ullmann [17], Wolfram [18]),
network theory (Albert and Barabási [19], Boccaletti et al. [20], Newman et al. [21]), information
geometry (Ali et al. [22], Cafaro and Mancini [23]), and more. In all of these approaches, the concept
of information plays a significant role in one or another way, first due to Shannon and Weaver [24]
and later also in other contexts (for overviews, see Zurek [25], Atmanspacher and Scheingraber [26],
Kornwachs and Jacoby [27], Marijuàn and Conrad [28], Boffetta et al. [29], Crutchfield and Machta [30]).

An important predecessor of complexity theory is the theory of nonlinear dynamical systems,
which originated from the early work of Poincaré and was further developed by Lyapunov, Hopf,
Krylov, Kolmogorov, Smale and Ruelle, to mention just a few outstanding names. Prominent areas in
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the study of complex systems as far as it has evolved from nonlinear dynamics are deterministic chaos
(Stewart [31], Lasota and Mackey [32]), coupled map lattices (Kaneko [33], Kaneko and Tsuda [34]),
symbolic dynamics (Lind and Marcus [35]), self-organized criticality (Bak [36]) and computational
mechanics (Shalizi and Crutchfield [37]).

This ample (and incomplete) list notwithstanding, it is fair to say that one important open question
is the question for a fundamental theory with a universal range of applicability, e.g., in the sense of
an axiomatic basis, of nonlinear dynamical systems. Although much progress has been achieved in
understanding a large corpus of phenomenological features of dynamical systems, we do not have any
compact set of basic equations (like Newton’s, Maxwell’s or Schrödinger’s equations) or postulates
(like those of relativity theory) for a comprehensive, full-fledged, formal theory of nonlinear dynamical
systems, and this applies to the concept of complexity, as well.

Which criteria does a system have to satisfy in order to be complex? This question is not yet
answered comprehensively, either, but quite a few essential issues can be indicated. From a physical
point of view, complex behavior typically (but not always) arises in situations far from thermal
equilibrium. This is to say that one usually does not speak of a complex system if its behavior
can be described by the laws of linear thermodynamics. The thermodynamic branch of a system
typically becomes unstable before complex behavior emerges. In this manner the concepts of stability
and instability become indispensable elements of any proper understanding of complex systems.
Recent work by Cafaro et al. [38] emphasizes other intriguing links between complexity, information
and thermodynamics.

In addition, complex systems usually are open systems, exchanging energy and/or matter
(and/or information) with their environment. Other essential features are internal self-reference,
leading to self-organized cooperative behavior, and external constraints, such as control parameters.
Moreover, complex systems are often multi-scale systems, meaning that the definition of their states
and observables differs on different spatial and temporal scales (which are often used to define different
levels of description). Corresponding microstates and macrostates and their associated observables are
in general non-trivially related to one another.

1.2. Defining Complexity

Subsequent to algorithmic complexity measures (Solomonoff [39], Kolmogorov [40], Chaitin [41],
Martin-Löf [42]), a remarkable number of different definitions of complexity have been suggested
over the decades. Classic overviews are due to Lindgren and Nordahl [43], Grassberger [44,45],
Wackerbauer et al. [46] or Lloyd [47]. Though some complexity measures are more popular than others,
there are no rigorous criteria to select a “correct” definition and reject the rest.

It appears that for a proper characterization of complexity, one of the fundaments of scientific
methodology, the search for universality, must be complemented by an unavoidable context
dependence or contextuality. An important example for such contexts is the role of the environment,
including measuring instruments (see Remark A1). Another case in point is the model class an observer
has in mind when modeling a complex system (Crutchfield [48]). For a more detailed account of some
epistemological background for these topics, compare Atmanspacher [49].

A systematic orientation in the jungle of definitions of complexity is impossible unless a reasonable
classification is at hand. Again, several approaches can be found in the literature: two of them are
(1) the distinction of structural and dynamical measures (Wackerbauer et al. [46]) and (2) the distinction
of deterministic and statistical measures (Crutchfield and Young [50]) (see Remark A2). Another,
epistemologically-inspired scheme (Scheibe [51]), scheme (3) assigns ontic and epistemic levels of
description to deterministic and statistical measures, respectively (Atmanspacher [52]).

A phenomenological criterion for classification refers to the way in which a complexity measure is
related to randomness, as illustrated in Figure 1 (for an early reference in this regard, see Weaver [53])
(see Remark A3). This perspective again gives rise to two classes of complexity measures: (4) those
for which complexity increases monotonically with randomness and those with a globally convex
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behavior as a function of randomness. Classifications according to (2) and (3) distinguish measures
of complexity precisely in the same manner as (4) does: deterministic or ontic measures behave
monotonically, while statistical or epistemic measures are convex. In other words, deterministic (ontic)
measures are essentially measures of randomness, whereas statistical (epistemic) measures capture the
idea of complexity in an intuitively-appealing fashion.
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Figure 1. Three patterns used to demonstrate the notion of complexity. Typically, the pattern in the
middle is intuitively judged as most complex. The left pattern is a periodic sequence of black and white
pixels, whereas the pattern on the right is constructed as a random sequence of black and white pixels
(reproduced from Grassberger [54] with permission).

Examples for monotonic measures are algorithmic complexity (Kolmogorov [40]) and various
kinds of Rényi information (Balatoni and Rényi [55]), among them Shannon information (Shannon and
Weaver [24]), multifractal scaling indices (Halsey et al. [56]) or dynamical entropies (Kolmogorov [57]).
Examples for convex measures are effective measure complexity (Grassberger [54]), ε-machine
complexity (Young and Crutchfield [48]), fluctuation complexity (Bates and Shepard [58]), neural
complexity (Tononi et al. [59]) and variance complexity (Atmanspacher et al. [60]).

An intriguing difference (5) between monotonic and convex measures can be recognized if one
focuses on the way statistics is implemented in each of them. The crucial point is that convex measures,
in contrast to monotonic measures, are formalized meta-statistically: they are effectively based on
second-order statistics in the sense of “statistics over statistics.” Fluctuation complexity is the standard
deviation (second order) of a net mean information flow (first order); effective measure complexity is
the convergence rate (second order) of a difference of entropies (first order); ε-machine complexity
is the Shannon information with respect to machine states (second order) that are constructed as a
compressed description of a data stream (first order); and variance complexity is based on the global
variance (second order) of local variances (first order) of a distribution of data. Monotonic complexity
measures provide no such two-level statistical structures.

While monotonic complexity measures are essentially measures of randomness, intuitively-appropriate
measures of complexity are convex as a function of randomness. Corresponding definitions of
complexity are highly context dependent; hence, it is nonsensical to ascribe an amount of complexity
to a system without precisely specifying the actual context under which it is considered.

1.3. Organization of the Article

It follows from the preceding subsections that it is impossible for a single contribution to address
all of the challenging issues with complex systems comprehensively. The present contribution focuses
on the problem of how macrostates can be defined in relation to microstates in complex multi-scale
systems. This problem touches a number of additional issues in complex systems theory, such as
top-down versus bottom-up descriptions, reduction and emergence, the different ways to define
complexity, (structurally and dynamically, monotonically and convex) and the ways in which the
notion of information is understood and utilized (syntactic, semantic, pragmatic).

Section 2 addresses how macrostates can be defined based on partitions on spaces of microstates
and how such partitions are suitably generated. A widely-applicable methodology of defining
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macrostates and associated observables in this way, called “contextual emergence” (Bishop and
Atmanspacher [61]), will be briefly recalled (Section 2.1). Two examples of how contextual observables
arise are the emergence of temperature in equilibrium thermodynamics (Section 2.2) and the emergent
behavior of laser systems far from thermal equilibrium (Section 2.3).

Section 3 is devoted to the way in which proper partitions can be constructed if the time
dependence of states, i.e., their dynamics, needs to be taken into account. Evidently, this introduces
additional knowledge about a system over and above distributions of states as discussed in Section 2.
It becomes possible to utilize the dynamics of the system to find dynamically-stable partitions,
so-called “generating partitions”, so that a “symbolic dynamics” of macrostates (symbols) emerges
from the original dynamics of microstates (Section 3.1) This will be applied to numerical simulations
of multi-stable systems with coexisting attractors (Section 3.2) and to the emergence of mental states
from the dynamics of neural microstates (Section 3.3).

Section 4 reflects on how the relevance, or meaningfulness, of macrostates emergent from
partitions of the space of microstates can be assessed. First, the stability of a contextually-chosen
partition will be related to its relevance for the chosen context (Section 4.1) Then, it will be shown how
the issue of meaning is connected to convex measures of complexity and to a pragmatic concept of
information (Section 4.2). This will be illustrated for the example of instabilities far from equilibrium
in continuous-wave multimode lasers (Section 4.3).

2. Partitions of State Spaces

2.1. Contextual Emergence of Macrostates

The sciences know various types of relationships among different descriptions of multi-level
systems; most common are versions of reduction and of emergence (see Remark A4). However,
strictly-reductive or radically-emergent versions have turned out either to be too rigid or too
diffuse to make sense for concrete examples (see, e.g., Primas [62,63]). For this reason, Bishop and
Atmanspacher [61] proposed an inter-level relation called “contextual emergence”, utilizing lower-level
(micro) features as necessary, but not sufficient conditions for the description of higher-level (macro)
features. In this framework, the lacking sufficient conditions can be formulated if contingent contexts
at the higher-level description can be implemented at the lower level.

Contextual emergence is more flexible than strict reduction, on the one hand, where a fundamental
description is assumed to “fix everything”, and not as arbitrary as a radical emergence where “anything
goes”. Quite a number of alternative approaches in this spirit have been suggested to implement
inter-level relations between micro- and macro-features. Such proposals include center manifold
theory (Carr [64]), synergetics (Haken [14]), symbolic dynamics (Lind and Marcus [35]), computational
mechanics (Shalizi and Crutchfield [37]), observable representations (Gaveau and Schulman [65]), the
theory of almost-invariant subsets (Froyland [66]) and various kinds of cluster analyses (Kaufman and
Rousseeuw [67]). A basic feature of them, expressed in different ways, is the identification of stable
partitions on the space of microstates. Such partitions depend on the chosen context, and their cells
essentially represent statistical states giving rise to macrostates and their emergent properties.

As in all of these approaches, the basic idea of contextual emergence is to establish a well-defined
inter-level relation between a lower level L and a higher level H of a system. This is done by a two-step
procedure that leads in a systematic and formal way (1) from an individual description Li to a statistical
description Ls and (2) from Ls to an individual description Hi. This scheme can in principle be iterated
across any connected set of descriptions, so that it is applicable to any situation that can be formulated
precisely enough to be a sensible subject of scientific investigation.

The essential goal of Step (1) is the identification of equivalence classes of individual microstates
that are indistinguishable with respect to a particular ensemble property (see Remark A5). This step
implements the multiple realizability of statistical states in Ls by individual states in Li. The equivalence
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classes at L can be regarded as cells of a partition. Each cell is the support of a (probability) distribution
representing a statistical state, encoding limited knowledge about individual states (see Remark A6).

The essential goal of Step (2) is the assignment of individual macrostates at level Hi to statistical
states at level Ls. This is impossible without additional information about the desired level-H
description. In other words, it requires the choice of a context setting the framework for the set
of observables at level H that is to be constructed from L. The chosen context provides constraints
that can be implemented as stability criteria at level L (see Remark A7). It is crucial that such stability
conditions cannot be specified without knowledge about the context of level H. This context yields a
top-down constraint, or downward confinement (sometimes misleadingly called downward causation),
upon the level-L description.

Stability criteria guarantee that the statistical states of Ls are based on a robust partition so that
the emergent observables associated with macrostates in Hi are well defined. This partition endows
the lower-level state space with a new, contextual topology. From a slightly different perspective,
the context selected at level H decides which details in Li are relevant and which are irrelevant for
individual macrostates in Hi. Differences among all of those individual microstates at Li that fall
into the same equivalence class at Ls are irrelevant for the chosen context. In this sense, the stability
condition determining the contextual partition at Ls is also a relevance condition.

The interplay of context and stability across levels of description is the core of contextual
emergence. Its proper implementation requires an appropriate definition of individual and statistical
states at these levels. This means in particular that it would not be possible to construct macrostates
and emergent observables in Hi from Li directly, without the intermediate step to Ls. Additionally,
it would be equally impossible to construct macrostates and their emergent observables without the
downward confinement arising from higher-level contextual constraints (see Remark A8).

In this spirit, bottom-up and top-down strategies are interlocked with one another in such
a way that the construction of contextually-emergent observables is self-consistent. Higher-level
contexts are required to implement lower-level stability conditions leading to proper lower-level
partitions, which in turn are needed to define those lower-level statistical states that are co-extensive
(not necessarily identical!) with higher-level individual states and associated observables.

2.2. Equilibrium Macrostates: Temperature

The procedure of contextual emergence has been shown to be applicable to a number of examples
from the sciences. A paradigmatic case study is the emergence of thermodynamic observables such as
temperature from a mechanical description (Bishop and Atmanspacher [61]). This case is of particular
interest because it was not precisely understood for a long time, and its influential philosophical
interpretations (such as Nagel [68]) as a case for strong reduction have been pretty much misleading.

Step (1) in the discussion of Section 2.1 is here the step from point mechanics to statistical
mechanics, essentially based on the formation of an ensemble distribution. Particular properties of a
many-particle system are defined in terms of a statistical ensemble description (e.g., as moments of
a many-particle distribution function), which refers to the statistical state of an ensemble (Ls) rather
than the individual states of single particles (Li). An example for an observable associated with the
statistical state of a many-particle system is its mean kinetic energy. The expectation value of kinetic
energy is defined as the limit of its mean value for infinite N.

Step (2) is the step from statistical mechanics to thermodynamics. Concerning observables, this is
the step from the expectation value of a momentum distribution of a particle ensemble (Ls) to the
temperature macrostate of the system as a whole (Hi). In many standard philosophical discussions,
this step is mischaracterized by the false claim that the thermodynamic temperature of a gas is identical
with the mean kinetic energy of the molecules that constitute the gas.

In Nagel’s [68] distinction of homogeneous and heterogeneous reduction, the relation between
mechanics and (equilibrium) thermodynamics is heterogeneous because the descriptive terms at the
two levels are different, and a “bridge law” is needed to relate them to one another. A crucial bridge
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law in this respect, first derived from the canonical Maxwell–Boltzmann distribution of velocities in
the kinetic theory of gases in the mid-19th century, relates temperature T to the mean kinetic energy
Ekin of gas particles,

Ekin =
3
2

kT , (1)

where k is Boltzmann’s constant. Note that the numerical equality of both sides of the equation only
implies the co-extensivity of the variables, not their identity! As is well known today, the algebras of
mechanical and thermodynamic observables are very different in nature.

A deeper understanding of Equation (1) was obtained a century later, when Haag and colleagues
formulated statistical mechanics in the framework of algebraic quantum field theory (Haag et al. [69]).
Temperature relies on the context of thermal equilibrium through the zeroth law of thermodynamics,
which does not exist in statistical mechanics. However, thermal equilibrium states can be related to
statistical mechanical states by a stability condition implemented onto the mechanical state space
(Haag et al. [70], Kossakowski et al. [71]). This condition is the so-called KMS condition (due to Kubo,
Martin and Schwinger), which can be defined by the following three points:

• A KMS state µ is stationary (or invariant) with respect to a subset A of the state space X and
with respect to a flow Φ on X, µ(Φ−1(A)) = µ(A). Then, the continuous functions assigned to µ,
representing its observables, have stationary expectation values and higher statistical moments.

• A KMS state µ is structurally stable under small perturbations of relevant parameters if it is ergodic
under the flow Φ if an invariant set A has either measure oor one: µ(A) ∈ {0, 1} (Haag et al. [70]).
Otherwise, if 0 < µ(A) < 1, then µ is non-ergodic and generally not structurally stable.

• A KMS state µ has no memory of temporal correlations, i.e., it is mixing: |µ(A) ∩ Φ−t(B) −
µ(A)µ(B)| → 0 for t→ ∞ for all measurable subsets A and B. This can be rephrased in terms of
vanishing correlations between observables (Luzzatto [72]).

The relation between a thermal equilibrium state and the KMS state provides the sound foundation
for the bridge law (1) (see Remark A9).

The KMS condition induces a contextual topology, which is basically a coarse-graining of the
microstate space (Li) that serves the definition of the states (distributions) of statistical mechanics (Ls).
This means nothing else than a partitioning of the state space into cells, leading to statistical states
(Ls) that represent equivalence classes of individual states (Li). They form ensembles of states that are
indistinguishable with respect to their mean kinetic energy and can be assigned the same temperature
(Hi). Differences between individual microstates at Li falling into the same equivalence class at Ls are
irrelevant with respect to emergent macrostates with a particular temperature. Figure 2 illustrates the
overall construction as a self-consistent procedure.

6

?
statistical state (Ekin) KMS condition

macrostate (T) thermal equilibrium

T ∝ Ekin
contextual
constraint

topology

0th law

Figure 2. Schematic diagram of the contextual emergence of thermal macrostates from mechanical
microstates. For the definition of temperature via the zeroth law of thermodynamics, the concept of
thermal equilibrium is mandatory. As a contextual constraint, it serves the implementation of the
Kubo–Martin–Schwinger (KMS) condition at the mechanical level, where it defines a topology of
equivalence classes of individual microstates yielding robust statistical states. Their mean kinetic
energy provides the bridge law (1) for temperature. Note the interplay of top-down and bottom-up
arrows that emphasizes the self-consistency of the picture as a whole.
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2.3. Non-Equilibrium Macrostates: Laser

For systems outside or even far from thermal equilibrium, the formal framework of classical
thermodynamics breaks down, and thermodynamic observables typically become ill-defined.
However, as has been shown in many examples, it is possible to use the mathematical structure
of thermal macrostates and emergent observables as a guideline to construct analogous macrostates
and emergent observables for non-equilibrium situations. A historic example, first worked out by
Graham and Haken [73] and Hepp and Lieb [74], was the study of light amplification by stimulated
emission of radiation (laser).

A laser is an open dissipative system consisting of a gain medium put into a cavity. As long as
no external energy is pumped into the gain medium, it is simply a many-particle system in thermal
equilibrium with its environment, and the randomly excited states of the particles emit radiation
spontaneously. If the gain medium is pumped to a degree at which the pump power exceeds the
internal cavity losses, stimulated emission of radiation kicks in, and the system establishes a highly
coherent and intense radiation field within the cavity.

Below this pump threshold, the energy distribution of the microstates of the particles of the gain
medium is a Boltzmann distribution, and higher-energy states stochastically relax to lower-energy
states by spontaneously emitting incoherent radiation. Beyond the threshold, the relaxation becomes
stimulated, to the effect that higher energy levels are more populated than lower levels (gain inversion).
This drives the system away from equilibrium, and the emitted radiation is phase-correlated
and coherent.

In simple cases (such as single-mode lasers), the resulting nonlinear dynamics of a radiation
field coupled to a gain medium within a cavity can be described fully quantum theoretically (Ali and
Sewell [75]; see also Chapter 11 in [76]). A key result is that the laser dynamics beyond the threshold
instability enters an attractor, meaning that the emergent emission of coherent monochromatic radiation
is stable. This stable attractor is the macrostate of the system, and its associated emergent observable is
the intensity of the radiation field.

Macrostate attractors of open dissipative systems far from thermal equilibrium can be
characterized by their stability against perturbations. A basic condition to be satisfied in this respect is
that the sum of all Lyapunov exponents of the system is negative or, alternatively, that the divergence
of the flow operator of the system is negative. If, in addition, at least one Lyapunov exponent is
positive, the notion of an SRB measure (according to Sinai, Ruelle and Bowen) expresses a dynamical
kind of stability analogous to KMS states. An SRB state (for hyperbolic systems) is invariant under the
flow of the system for all t, and it is ergodic and mixing.

The behavior of mode intensity (or spectral power density for multimode systems) as a function
of external pump power is more or less linear up to saturation (if there are no further instabilities).
It can be understood as the efficiency of the lasing activity, which is analogous to specific heat in
thermal equilibrium. In the same sense, the laser threshold instability is analogous to a second-order
phase transition, where radiation intensity grows continuously, but its derivative, efficiency, does not.

Further increase of the pump power, particularly in multimode lasers, may lead to further
instabilities, such as higher-dimensional chaotic attractors (Haken [77]). Experimental work by
Atmanspacher and Scheingraber [78] demonstrated a sequence of such instabilities in multimode
lasers. These results will be discussed in more detail in Section 4.3, where the different behavioral
regimes of multimode lasers will be related to the concept of pragmatic information.

3. Partitions Based on Dynamics

3.1. Generating Partitions

The concept of a generating partition is of utmost significance in the ergodic theory of dynamical
systems (Cornfeld et al. [79]) and in the field of symbolic dynamics (Lind and Marcus [35]). It is tightly
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related to the dynamical entropy of a system with respect to both its dynamics Φ : X → X and a
partition P (Cornfeld et al. [80]):

H(Φ,P) = lim
n→∞

1
n

H(P ∨Φ−1(P) ∨ ...∨Φ−n(P)) . (2)

In other words, this is the limit of the entropy of the product of partitions of increasing
dynamical refinement.

A special case of a dynamical entropy of the system with dynamics Φ is the Kolmogorov–Sinai
entropy (Kolmogorov [57], Sinai [81]):

HKS = sup
P

H(Φ,P) . (3)

This supremum over all partitions P is assumed if P is a generating partition Pg, otherwise
H(Φ,P) < HKS. Pg minimizes correlations among partition cells Ai, so that only correlations due to Φ
itself contribute to H(Φ,Pg), and the partition is stable under Φ. Boundaries of Ai are (approximately)
mapped onto one another. Spurious correlations due to blurring cells are excluded, so that the
dynamical entropy takes on its supremum.

The Kolmogorov–Sinai entropy is a key property of chaotic systems, whose behavior depends
sensitively on initial conditions. This dependence is due to an intrinsic instability that is formally
reflected by the existence of positive Lyapunov exponents. The KS-entropy is essentially given by the
sum of those positive Lyapunov. A positive (finite) KS-entropy is a necessary and sufficient condition
for chaos in conservative, as well as in dissipative systems (with a finite number of degrees of freedom).
Chaos in this sense covers the range between totally unpredictable random processes, such as white
noise (HKS → ∞), and regular (e.g., periodic, etc.) processes with HKS = 0.

The concept of a generating partition in the ergodic theory of deterministic systems is related
to the concept of a Markov chain in the theory of stochastic systems. Every deterministic system
of first order gives rise to a Markov chain, which is generally neither ergodic, nor irreducible.
Such Markov chains can be obtained by so-called Markov partitions that exist for hyperbolic dynamical
systems (Sinai [82], Bowen [83], Ruelle [84]). For non-hyperbolic systems, no corresponding existence
theorem is available, and the construction can be even more tedious than for hyperbolic systems
(Viana et al. [85]). For instance, both Markov and generating partitions for nonlinear systems are
generally non-homogeneous, i.e., their cells are typically of different sizes and forms (see Remark A10).

Since the cells of a generating partition are dynamically stable, they can be used to define
dynamically-stable symbolic macrostates s (see Remark A11), whose sequence provides a symbolic
dynamics σ (Lind and Marcus [35]). This dynamics of macrostates is a faithful representation of the
underlying dynamics Φ of microstates x only for generating partitions. More formally, the dynamics
Φ and σ are related to each other by:

π ◦Φ = σ ◦ π , (4)

where π acts as an intertwiner, which can be represented diagrammatically as:

? ?

-

-s σ(s)

x Φ(x)

π π

σ

Φ

If π is continuous and invertible and its inverse π−1 is also continuous, the maps Φ and σ

are topologically equivalent. For generating partitions, the correspondence between the space of
microstates and its macrostate representation is one-to-one: each point in the space of microstates is
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uniquely represented by a bi-infinite symbolic sequence and vice versa. In addition, all topological
information is preserved.

3.2. Almost Invariant Sets as Macrostates

Macrostates correspond to the “almost invariant sets” (Froyland [66]) of a dynamical system, i.e.,
subsets of the state space that are approximately invariant under the system’s dynamics. For a given
dynamics, these subsets can be identified by a partitioning procedure developed by Allefeld et al. [86],
which relies on work by Deuflhard and Weber [87], Gaveau and Schulman [65] and Froyland [66].
The present subsection sketches how this procedure works for numerically-simulated data, while the
next subsection addresses its application to empirical data (see Remark A12).

The simulated system is a discrete-time stochastic process in two dimensions, (x1, x2), where the
change at each time step is given by:

∆xi = a
(

xi − 2x3
i

)
+ biξi , i = 1, 2 . (5)

The first term describes an overdamped motion within a double-well potential along each
dimension, leading to four attracting points at (x1, x2) = (±

√
2,±
√

2). The second, stochastic term
generates a random walk, so that the system occasionally moves from one into another point’s basin
of attraction. These switches occur more frequently along the second dimension because the noise
amplitude is larger in that direction, b2 > b1. Figure 3 shows the state space of this multistable system
and a suitable microstate partition (see Allefeld et al. [86] for details).

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

Figure 3. Data points (green) from a simulation run of the four-macrostate system (5) and a section of its
trajectory (blue). Lines indicate a partition into microstates resulting from a fine-grained discretization
of the state space (reproduced from Allefeld et al. [86] with permission).

Counting the transition between microstates leads to an estimate of the transition matrix R.
Since the existence of q almost invariant sets leads to q largest eigenvalues λk, gaps in the eigenvalue
spectrum are a natural candidate to estimate the number of macrostates directly from the given
data. However, the concrete eigenvalues in the spectrum of R depend on the timescales. Therefore,
the eigenvalues are transformed into associated characteristic timescales,

T(k) = − 1
log |λk|

, (6)
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and a timescale separation factor can be introduced as the ratio of subsequent timescales:

F(k) =
T(k)

T(k + 1)
=

log |λk+1|
log |λk|

. (7)

F(k) provides a measure of the spectral gap between eigenvalues λk and λk+1 that is independent
of the timescale.

The largest eigenvalues of R are plotted in Figure 4a, revealing a group of four leading eigenvalues
(>0.995), which is subdivided into two groups of two eigenvalues each. This becomes clearer after the
transformation into timescales T(k). In Figure 4b, they are displayed on a logarithmic scale, such that
the magnitude of timescale separation factors F(k) is directly apparent in the vertical distances between
subsequent data points. The largest separation factors indicate that a partitioning of the state space
into four macrostates is optimal, while two different macrostates may also be meaningful.

1 2 3 4 5 6 7 8 9 101112131415
0.96

0.97

0.98

0.99

1

|λ
k|

k

a)           

1 2 3 4 5 6 7 8 9 101112131415

50
100

500
1000

T
(k

)

k

 ← F(2) = 4.55

 ← F(4) = 5.02

b)           

Figure 4. Eigenvalue spectrum of the transition matrix R of the four-macrostate system: (a) largest
eigenvalues |λk|; (b) timescales Tk shown on a logarithmic scale; the location and value of the two largest
timescale separation factors F are indicated (reproduced from Allefeld et al. [86] with permission).

The identification of almost invariant sets of microstates defining macrostates is performed within
the three-dimensional eigenvector space (o1, o2, o3). Figure 5 reveals that the points representing
microstates are located on a saddle-shaped surface stretched out within a four-simplex. Identifying the
vertices of the simplex, one can attribute each microstate to that macrostate whose defining vertex is
closest, resulting in the depicted separation into four sets.

In Figure 6, this result is re-translated into the original state space of Figure 3, by coloring the data
points of each microstate according to the macrostate to which it is assigned. The identified macrostates
coincide with the basins of attraction of the four attracting points of the system given in (5).

From Figure 5, one can also assess which macrostate definitions would be obtained by choosing
q = 2, the next-best choice for the number of macrostates according to the timescale separation criterion.
In this case, the eigenvector space is spanned by the single dimension o1, along which the two vertices
of the four-simplex on the left and right side, respectively, coincide. This means that the two resulting
macrostates each consist of the union of two of the macrostates obtained for q = 4. With respect to the
state space, these two macrostates correspond to the domains x1 > 0 and x1 < 0.
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This can be easily understood since, because of the smaller probability of transitions along x1

(b2 > b1), these two areas of the state space form almost invariant sets, as well. As can be seen
from this example, the possibility to select different q-values of comparably good rating allows us to
identify different dynamical levels of a system, which give rise to a hierarchical structure of potential
macrostate definitions.

−2 −1 0 1 2
−1

0
1

−1

−0.5

0

0.5

1

o
1

o
2

o 3

Figure 5. Eigenvector space (o1, o2, o3) of the four-macrostate system for q = 4. Each dot representing
a microstate is colored according to which vertex of the enclosing four-simplex is closest, thus defining
the four macrostates (reproduced from Allefeld et al. [86] with permission).

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5
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x 2

Figure 6. Micro- and macro-states of the four-macrostate system in its original state space. Lines
indicate the partition into microstates, while the colored data points show the attribution of microstates
to the four macrostates from Figure 5 (reproduced from Allefeld et al. [86] with permission).

3.3. Mental Macrostates from Neurodynamics

In this subsection, we give an example, where the described procedure has been established
for empirical data. The descriptive levels studied here are those of neural microstates and mental
macrostates, far less precisely defined than micro-and macrostates in physical situations. Nevertheless,
it will be demonstrated that stable and relevant macrostates can be identified along the lines
sketched above.

Let us assume a (lower level) neural state space X with fine-grained states x, ideally represented
pointwise in X and with observables Xi, i = 1, ..., n, for n degrees of freedom. Typical examples for
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neural observables are electroencephalogram (EEG) potentials, local field potentials or even spike
trains of neurons. These observables are usually obtained with higher resolution than can be expected
for observables at a mental level of description.

The construction of a (higher level) mental state space Y from X requires some coarse-graining of
X. That is, the state space X must be partitioned, such that cells of finite volume in X emerge, which
eventually can be used to represent mental states in Y. Such discrete macrostates can be denoted by
symbols A, B, C, ..., where each symbol represents an equivalence class of neural states. In contrast to
the (quasi-)continuous dynamics of states x in a state space X, the symbolic dynamics in Y is a discrete
sequence of macrostates as a function of time.

A coarse-grained partition on X implies neighborhood relations between statistical states in
X (which can then be identified as mental macrostates in Y) that are different from those between
individual microstates in X; in this sense, it implies a change in topology. Moreover, the observables
Yi for Y belong to an algebra of mental observables that is different from that of neural observables.
Obviously, these two differences depend essentially on the choice of the partition of X.

First of all, it should be required that a proper partition leads to mental states in Y that are
empirically plausible. For instance, one plausible formation of basic equivalence classes of neural
states is due to the distinction between wakefulness and sleep; two evidently different mental states.
However, an important second demand is that these equivalence classes be stable under the dynamics
in X. If this cannot be guaranteed, the boundaries between cells in X become blurred as time proceeds,
thus rendering the concept of a mental state ill-defined. Atmanspacher and beim Graben [88] showed
in detail that generating partitions are needed for a proper definition of stable states in Y based on
cells in X.

A pertinent example for the successful application of this idea to experimental data was worked
out by Allefeld et al. [86], using EEG data from subjects with sporadic epileptic seizures. This means
that the neural level is characterized by brain states recorded via EEG. The context of normal versus
epileptic mental states essentially requires a bipartition of the neural state space in order to identify
the corresponding mental macrostates.

The data analytic procedure is the same as described in Section 3.2 for the numerically study of a
multistable system with four macrostates. It starts with a 20-channel EEG recording, giving rise to
a state space of dimension 20, which can be reduced to a lower number by restricting to principal
components. On the resulting low-dimensional state space, a homogeneous grid of cells is imposed in
order to set up a Markov transition matrix R reflecting the EEG dynamics on a fine-grained auxiliary
microstate partition.

The eigenvalues of this matrix yield characteristic timescales T for the dynamics, which can
be ordered by size. Gaps between successive timescales indicate groups of eigenvectors defining
partitions of increasing refinement; usually, the largest timescales can be regarded most significant for
the analysis. The corresponding eigenvectors together with the data points belonging to them define
the neural state space partition relevant for the identification of mental macrostates.

Finally, the result of the partitioning can be inspected in the originally recorded time series to check
whether mental states are reliably assigned to the correct episodes in the EEG dynamics. The study
by Allefeld et al. [86] shows good agreement between the distinction of macrostates pertaining to
normal and epileptic episodes and the bipartition resulting from the spectral analysis of the neural
transition matrix.

As mentioned in Section 3.1, an important feature of dynamically-stable (i.e., generating) partitions
is the topological equivalence of representations at lower and higher levels. Metzinger [89] (p. 619)
and Fell [90] gave empirically-based examples for neural and mental state spaces in this respect.
Non-generating partitions provide representations in Y that are topologically inequivalent and,
hence, incompatible with the underlying representation in X. Conversely, compatible mental
models that are topologically equivalent with their neural basis emerge if they are constructed from
generating partitions.
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In this spirit, mental macrostates constructed from generating partitions were recently shown
to contribute to a better understanding of a long-standing puzzle in the philosophy of mind: mental
causation. The resulting contextual emergence of mental states dissolves the alleged conflict between
the horizontal (mental-mental) and vertical (neural-mental) determination of mental events as
ill-conceived (Harbecke and Atmanspacher [91]). The key point is a construction of a properly-defined
mental dynamics topologically equivalent with the dynamics of underlying neural states. The statistical
neural states based on a proper partition are then coextensive (but not identical) with individual
mental states.

As a consequence: (i) mental states can be horizontally-causally related to other mental states;
and (ii) they are neither causally related to their neural determiners, nor to the neural determiners of
their horizontal effects. This makes a strong case against a conflict between a horizontal and a vertical
determination of mental events and resolves the problem of mental causation in a deflationary manner.
Vertical and horizontal determination do not compete, but complement one another in a cooperative
fashion (see Remark A13).

4. Meaningful Macrostates

4.1. Stability and Relevance

As repeatedly emphasized above, not every arbitrarily-chosen partition of a microstate space
provides macrostates that make sense for the system at higher levels of description. Stability criteria
can be exploited to distinguish proper from improper partitions, such as the KMS condition for thermal
systems or the concept of generating partitions for nonlinear dynamical systems, especially if they
are hyperbolic.

Insofar as the required stability criteria derive from a higher level context, they implement
information about cooperative higher level features of the system at its lower descriptive level. This,
in turn, endows the lower level with a new contextual topology defined by a partition into equivalence
classes of microstates. Differences between microstates in the same equivalence class are irrelevant with
respect to the higher level context, at which macrostates are to be identified. In this sense, the stability
criterion applied is at the same time a relevance criterion.

Yet, groups of macrostates of different degrees of coarseness may result from the spectral analysis.
As discussed in Section 3.2, the four coexisting basins of attraction of the system considered yield
two partitions, one of which is a refinement of the other. The relevance of the corresponding levels,
or scales, of macrostates in this example is known by construction, i.e., due to different amounts of
noise causing different transition probabilities between the basins.

A similar feature was found in the example of EEG data discussed in Section 3.3. The distinction
of epileptic seizures versus normal states clearly sets the context for a bipartition of the space of
microstates. However, it would be surprising if the “normal” state, extending over long periods
of time, would not show additional fine structure. Indeed, the timescale analysis (see details in
Allefeld et al. [86]) shows a second plateau after the first two eigenvalues, indicating such a fine
structure within the normal state. Since, in this example, no information about the context of this fine
structure is available, the relevance of the corresponding “mesoscopic” states remains unclarified.

At a more general level, the relevance problem pervades any kind of pattern detection procedure,
and it is not easy to solve. This is particularly visible in the trendy field of “data mining and knowledge
discovery” (Fayyad et al. [92], Aggarwal [93]), a branch of the equally trendy area of “big-data
science”, with its promises to uncover new science purely inductively from very large databases.
Pure induction in this sense is equivalent to the construction of macrostates (patterns) from microstates
(data points) without any guiding context. Of course, this is possible, but questions concerning
the stability and relevance of such macrostates cannot be reasonably addressed without additional
knowledge or assumptions.
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Without contextual constraints, most macrostates constructed this way will be spurious in
the sense that they are not meaningful. A nice illustration of the risk of misleading ideas of
context-free pattern detection is due to Calude and Longo [94]. Using Ramsey theory, they show
that in very large databases, most of the patterns (correlations) identified must be expected to be
spurious. The same problem has recently been emphasized by the distinction between statistical
and substantive significance in multivariate statistics. Even an extremely low probability (p-value)
for a null hypothesis to be found by chance does not imply that the tested alternative hypothesis is
meaningful (see Miller [95]).

In a very timely and concrete sense, meaningful information over and above pure syntax plays a
key role in a number of approaches in the rapidly developing field of semantic information retrieval
as used in semantic search algorithms for databases (see Remark A14). Many such approaches try
to consider the context of lexical items by similarity relations, e.g., based on the topology of these
items (see, e.g., Cilibrasi and Vitànyi [96]). This pragmatic aspect of meaning is also central in situation
semantics on which some approaches of understanding meaning in computational linguistics are
based (e.g., Rieger [97]).

4.2. Meaningful Information and Statistical Complexity

Grassberger [54] and Atlan [98] were the first to emphasize a close relationship between the
concepts of complexity and meaning. For instance, Grassberger (his italics) wrote [44]:

Complexity in a very broad sense is a difficulty of a meaningful task. More precisely,
the complexity of a pattern, a machine, an algorithm, etc. is the difficulty of the most
important task related to it. . . . As a consequence of our insistence on meaningful tasks,
the concept of complexity becomes subjective. We really cannot speak of the complexity of
a pattern without reference to the observer. . . . A unique definition (of complexity) with
a universal range of applications does not exist. Indeed, one of the most obvious properties
of a complex object is that there is no unique most important task related to it.

Although this remarkable statement by one of the pioneers of complexity research in physics
dates almost 30 years back from now, it is still a challenge to understand the relation between the
complexity of a pattern or a symbol sequence and the meaning that it can be assigned in detail.

Already Weaver’s contribution in the seminal work by Shannon and Weaver [24] indicated that the
purely syntactic component of information today known as Shannon information requires extension
into semantic and pragmatic domains. If the meaning of some input into a system is understood, then
it triggers action and changes the structure or behavior of the system. In this spirit, Weizsäcker [99]
introduced a way of dealing with the use a system makes of some understood meaning of an input
(e.g., a message) in terms of pragmatic information.

Pragmatic information is based on the notions of novelty and confirmation. Weizsäcker argued
that a message that does nothing but confirm the prior knowledge of a system will not change
its structure or behavior. On the other hand, a message providing (novel) material completely
unrelated to any prior knowledge of the system will not change its structure or behavior either,
simply because it cannot be understood. In both cases, the pragmatic information of the message
vanishes. A maximum of pragmatic information is acquired if an optimal combination of novelty and
confirmation is transferred to the system.

Based on pragmatic information, an important connection between meaning and complexity can
be established (cf. Atmanspacher [52]). A checkerboard-like period-two pattern, which is recurrent
after the first two steps (compare Figure 1 left), is a regular pattern of small complexity, for both
monotonic (deterministic) and convex (statistical) definitions of complexity as introduced in Section 1.2.
Such a pattern does not yield additional meaning as soon as the initial transient phase is completed.

For a maximally random pattern, monotonic (deterministic) complexity and convex (statistical)
complexity lead to different assessments. Deterministically, a random pattern can only be represented
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by an incompressible algorithm with as many steps as the pattern has elements. A representation of
the pattern has no recurrence at all within the length of the representing algorithm. This means that it
never ceases to produce elements that are unpredictable. Hence, the representation of a random pattern
can be interpreted as completely lacking confirmation and consequently with vanishing meaning.

If the statistical notion of complexity is focused on, the pattern representation is no longer
related to the sequence of individually distinct elements. A statistical representation of the pattern is
not unique with respect to its local properties; it is characterized by a global statistical distribution
(see Remark A15). This entails a significant shift in perspective. While monotonic complexity relates to
syntactic information as a measure of randomness, the convexity of statistical complexity coincides
with the convexity of pragmatic information as a measure of meaning (see Figure 7).
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Figure 7. Two classes of complexity measures and their relation to information: monotonic
complexity measures essentially are measures of randomness, typically based on syntactic information.
Convex complexity measures vanish for complete randomness and can be related to the concept of
pragmatic information.

4.3. Pragmatic Information in Non-Equilibrium Systems

Although the notions of meaning and its understanding are usually employed in the study of
cognitive systems, also physical systems allow (though not require) a description in terms of pragmatic
information. This has been shown by Atmanspacher and Scheingraber [100] for the example discussed
in Section 2.3: laser systems far from thermal equilibrium. Instabilities in such laser systems can be
considered as meaningful in the sense of positive pragmatic information if they are accompanied by a
structural change of the system’s self-organized behavior. We conclude this paper with a brief review
of the results of this work (for details, see the original publication).

As mentioned in Section 2.3, key macro-quantities for laser systems are the input power Ppump,
the output power Pout and (for multimode lasers with bandwidth ∆λ) its spectral density Pout/∆λ.
The gradient of output versus input power is the collective efficiency:

ηcoll = dPout/dPpump , (8)

and the spectral output yields a specific efficiency according to:

ηspec = dPout/dPpump∆λ . (9)

The efficiencies are crucial for a first and rough definition of the pragmatic information that is
released during instabilities at critical values of Ppump. For an initial efficiency ηi below an instability
and a final efficiency η f beyond an instability, one can define a normalized pragmatic information PI
for the system by:

PI =
η f − ηi

η f
(10)

Figure 8 shows these properties as a function of input (pump) power. Below the laser threshold,
where Pout = 0, the system is in thermal equilibrium with a temperature that can be estimated by the
population density in the energy levels of the gain medium. Hence, the thermodynamic entropy is



Entropy 2016, 18, 426 16 of 22

maximal and the efficiencies according to (8) and (9) are zero. Above the threshold, the laser is in
a non-equilibrium state (gain inversion), and its efficiency after the threshold instability is η f > 0.
Consequently, the pragmatic information (10) released at the threshold instability is PI = η f /η f = 1.

CAN. J .  PHYS. VOL. 68. 1990 

FIG. 3. Nontemporal quantities characterizing the behavior of the 
investigated system around instabilities as a function of Ppump; (a) .  
total output power Pout; (b), spectral-power density Pout/Ah, where 
Ah is the emission bandwidth; (c) ,  correlation dimension D of the 
attractor representing the dynamics of the system; (d) specific effi- 
ciency qspe, ( 0 )  and collective efficiency ~,,II ( x )  according to [8] 
and [9]. They are determined as slopes over three adjacent data points. 

creases (analogous to a second-order equilibrium phase tran- 
sition) at Pthr and at P2. However, the behavior of the specific 
efficiency is different. It increases at P b r ,  decreases by the 
same amount at P I ,  then grows to a value larger than be- 
fore, and vanishes again beyond P3 .  The ratio ~ l c o l l l ~ l s p e c  in 
the ranges between Prhr and P I  and between P2 and P3 is 
approximately the same. 

The pragmatic information according to [ lo]  provides the 
same behavior as shown for q in Fig. 3d. Collective as well 
as specific pragmatic information changes at those values of 
Ppump where the corresponding efficiencies change. 

We propose to interpret the changes in pragmatic informa- 
tion as indicating structural changes of the system. This in- 
terpretation is strongly motivated by the features in Fig. 3 ,  in 
particular Figs. 3c and 3d. In Sect. 3.2 we have already given 
a description of the instability at Pthr in terms of pragmatic in- 
formation. An intuitive picture modelling the structural change 
at PI can be obtained by relating D to the number of de- 
grees of freedom of the system. Since D is surprisingly small 
compared with the total number of oscillating modes (lo2- 
lo4), it is tempting to consider this small value as an indicator 
for a strong coupling between individual modes into mode 
packets (i.e., packets of cooperatively oscillating modes), thus 
enormously reducing the number of degrees of freedom. For 
different power regimes and different types of lasers, differ- 
ent coupling mechanisms have been discussed, e.g., stimulated 
Brillouin scattering (8, 9), spatial hole burning, b r  four wave 
mixing processes ( 10). 

Under the condition of strong mode coupling, the structural 
change associated with the instability at P2 could be interpreted 
as a splitting of existing mode packets. This would imply that 
the number of degrees of freedom of the system were related to 
the number of mode packets, such that a change in D indicates 
a change in the number of mode packets. Such a view proba- 
bly simplifies a more complicated situation since the variables 
of the system cannot be expected to coincide with the "princi- 
pal axes" of the reconstructed attractor. There is also no clear 
evidence as to whether the behavior of the system can be rep- 
resented by one single attractor. Such a representation is ten- 
tatively suggested by the various mode-coupling mechanisms 
mentioned above and by corresponding numerical calculations 
(9, 10). 

The interpretation of a structural change according to mode 
packets is particularly interesting with respect to the self- 
organization of the radiation field and gain medium, consid- 
ered as coupled subsystems of the laser. The aspects of self- 
organization at the laser threshold have already been discussed 
in much detail (2). Here self-organization provides the coor- 
dinated action of gain medium and radiation field, where each 
subsystem simultaneously transmits and receives information 
from its counterpart. At a threshold value Pthr. the circular 
information flow between the gain medium and the radiation 
field initiates a coordinated action of both. At this threshold 
pragmatic information is generated, indicating that the onset 
of self-organization is related to a self-generation of meaning. 
Using the terminology of cognitive systems, one could say that 
the radiation field "understands" what the threshold conditions 
in the gain medium (sufficiently high inversion) "mean". It 
"feels" an urge for action, which is released as coordinated 
(stimulated) emission of radiation. 

In our example, the coordinated behavior beyond Pthr is 
described by chaotic behavior of very low dimension. As 
mentioned above, let us assume that the individual actions 
of all particular modes of the radiation field are coupled 
into mode packets (groups of modes). Then these packets 
would constitute subsystems within the radiation field (hence 
sub-subsystems of the laser), which are coupled to the gain 
medium. There is a coordinated information flow between the 
gain medium and each individual mode packet, and there is 
an additional coordinated information flow among modes be- 
longing to the same packet. At the critical pump power P I  
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Figure 8. Key quantities characterizing the behavior of a continuous-wave multimode laser system
around instabilities as a function of pump power Ppump: (a) total output power Pout; (b) spectral power
density Pout/∆λ; (c) correlation dimension D of the attractor representing the system’s dynamics;
and (d) specific efficiency ηspec (•) and collective efficiency ηcoll (×) (reproduced from Atmanspacher
and Scheingraber [100] with permission).

Figure 8b shows that the spectral power density increases up to P1 and, in contrast to Pout in
Figure 8a, stays more or less constant between P1 and P2. Beyond P2, it rises again, and beyond
P3, it stays constant again. The two plateaus arise due a simultaneous growth of Pout and emission
bandwidth ∆λ. Figure 8c shows the so-called correlation dimension D, a measure of the number
of macroscopic degrees of freedom of the system (see Remark A16). It changes between P1 and P2,
indicating a structural change of the attractor of the system dynamics and, thus, a switch between two
types of stable self-organized behavior that can be understood by mode coupling mechanisms within
the intracavity radiation field (for details, see Atmanspacher and Scheingraber [100]).
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This structural change is related to changes of the efficiencies (Equations (8) and (9)) in Figure 8d,
which are derived as the local gradients of output power and spectral output power versus pump
power. Collective efficiency increases at the laser threshold and between P1 and P2, as it should for the
analog of second-order phase transitions (cf. Section 2.3). However, the behavior of specific efficiency
is different: it increases at the threshold, decreases by the same amount at P1, then grows to a larger
value at P2 and drops again at about P3. Pragmatic information according to (10) behaves qualitatively
the same way.

At the laser threshold, where self-organized behavior far from equilibrium in terms of stimulated
emission of coherent light emerges, pragmatic information is released. The system “understands” the
onset of self-organized cooperative behavior and adapts to it by acting according to new constraints.
At input powers between P1 and P2, another structural change occurs, which essentially effects the
phase relations between individual laser modes. Since D increases by about one between P1 and P2,
it is tempting to assume that these modes, coherently oscillating as one group below P1, split up into
two decoupled groups of coupled modes beyond P2. If the input power is further increased, the system
can show more instabilities. For very high pump powers, D falls back to values between two and three
as between the laser threshold and P1.

A final remark: talking about a physical system releasing and understanding meaning, which then
turns into an urge for action to re-organize its behavior, does not imply that such systems have mental
capacities, such as perception, cognition, intention, or the like. However, models of mental activity,
such as small-world or scale-free networks, which are currently popular tools in cognitive neuroscience,
offer themselves to employ interpretations in terms of pragmatic information in a more direct fashion
(see Remark A17).
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Appendix A

Remark A1. This is evident in measurements of quantum systems. A key feature of quantum measurement
is that successive measurements generally do not commute. This is due to a backreaction of the measurement
process on the state of the system, which has also been discussed for complex systems outside quantum physics,
in particular for cognitive systems (Busemeyer and Bruza [101]).

Remark A2. Note that deterministic measures are not free from statistical elements. The point of this distinction
is that individual accounts are delineated from ensemble accounts.

Remark A3. It should be emphasized that randomness itself is a concept that is anything else than finally
clarified. Here, we use the notion of randomness in the broad sense of entropy.

Remark A4. Informative discussions of various types of emergent versus reductive inter-level relations are due
to Beckermann et al. [102], Gillett [103], Butterfield [104] and Chibbaro et al. [105].

Remark A5. Mathematically, an equivalence class with respect to an element a of a set X is the subset [a] of all
elements x ∈ X satisfying an equivalence relation “∼”: [a] = {x ∈ X| a ∼ x}. A property F(x) defines an
equivalence relation if and only if F(xi) = F(xj) for xi ∼ xj.

Remark A6. Note that this step (1) is also crucial for the so-called GNS-representation (due to Gel’fand,
Naimark and Segal) of states in algebraic quantum theory. This representation requires the (contextual) choice
of a reference state in the space of individual states (the dual A∗ of the basic C*-algebra A of observables),
which entails a contextual topology giving rise to statistical states (in the predual M∗ of the corresponding
W*-algebraM of observables. If the algebra is purely non-commutative (as in traditional quantum mechanics),
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A∗ is isomorphic toM∗, so that there is a one-to-one correspondence between individual states and (extremal)
statistical states. In the general case of an algebra containing both commuting and non-commuting observables,
the statistical states inM∗ are equivalence classes of individual states in A∗. For details, see the illuminating
discussion by Primas [106].

Remark A7. As an alternative to stability considerations, it is possible to use a general principle of maximum
information (Haken [14]) to find stable states in complex systems under particular constraints. In equilibrium
thermodynamics, this principle reduces to the maximum entropy condition for thermal equilibrium states. In the
present contribution, we will mostly restrict ourselves to stability issues as criteria for proper partitions.

Remark A8. In the terminology of synergetics (Haken [14]), the contextually-emergent observables are called
order parameters, and the downward constraint that they enforce upon the microstates is called slaving. Order
parameters need to be identified contextually, depending on the higher-level description looked for, and cannot be
uniquely derived from the lower-level description that they constrain.

Remark A9. For a good overview and more details see Sewell (Chapters 5 and 6) [76]. Alternatively, KMS
states can be interpreted as local restrictions of the global vacuum state of quantum field theory within the
Tomita–Takesaki modular approach, as Schroer [107] pointed out; see also Primas (Chapter 7) [108] for
further commentary. This viewpoint beautifully catches the spirit of the role of downward confinement in
contextual emergence.

Remark A10. Every Markov partition is generating, but the converse is not necessarily true (Crutchfield
and Packard [109]). For the construction of “optimal” partitions from empirical data, it is often convenient to
approximate them by Markov partitions (Froyland [66]); see the following subsections.

Remark A11. There are possibilities to construct stable partitions in information theoretical terms, as well.
For instance, in computational mechanics (Shalizi and Crutchfield [37]), all past microstates leading to the same
prediction (up to deviations of size ε) about the future of a process form an equivalence class called a causal state.
These states are macrostates. Together with the dynamics, they can be used to construct a so-called ε-machine,
which is an optimal, minimal and unique predictor of the system’s behavior.

Remark A12. A number of technical details will be omitted in this presentation. Interested readers should
consult the original paper by Allefeld et al. [86].

Remark A13. This argument was less formally put forward by Yablo [110]. A recent paper by Hoel et al. [111]
makes a similar point based on the identification of different spatiotemporal neural/mental scales in the framework
of integrated information theory.

Remark A14. For an early reference, see Amati and van Rijsbergen [112]; a recent collection of essays is due to
de Virgilio et al. [113]. The semantic web (web 3.0, linked open data, web of data) due to Berners-Lee et al. [114]
is an obviously related development.

Remark A15. A closer look into the definitions of statistical complexity measures shows that their two-level
structure (see Section 1.2) actually accounts for a subtle interplay of local and global properties. For instance,
variance complexity (Atmanspacher et al. [60]) is the global variance of local (block) variances based on suitably
chosen partitions (blocks) of the data forming the pattern.

Remark A16. The dimension D of an attractor is the dimension of the subspace of its macroscopic state space
that is required to model its behavior. An algorithm due to Grassberger and Procaccia [115] can be used to
determine D from empirical time series of the system.
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Remark A17. For some corresponding ideas concerning learning in networks, see Atmanspacher and Filk [116]
or, for an alternative approach, Crutchfield and Whalen [117]. Moreover, see Freeman [118] for an interesting
application of the concept of pragmatic information in the interpretation of EEG dynamics.
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