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Abstract: In this paper, a four-dimensional model of energy supply–demand with two-delay is
built. The interactions among energy demand of east China, energy supply of west China and the
utilization of renewable energy in east China are delayed in this model. We discuss stability of the
system affected by parameters and the existence of Hopf bifurcation at the equilibrium point from
two aspects: single delay and two-delay. The stability and complexity of the system are demonstrated
through bifurcation diagram, Poincare section plot, entropy diagram, etc. in numerical simulation.
The simulation results show that the parameters beyond the stable region will cause the system to be
unstable and increase the complexity of the system. At this point, because of energy supply–demand
system fluctuations, it is difficult to formulate energy policies. Finally, the bifurcation control is
realized successfully by the method of delayed feedback control. The results of bifurcation control
simulation indicate that the system can return to stable state by adjusting the control parameter.
In addition, we find that the bigger the value of the control parameter, the better the effect of the
bifurcation control. The results of this paper can provide help for maintaining the stability of the
system, which will be conducive to energy scheduling.
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1. Introduction

Energy is the foundation of the national economy. Because of the uneven distribution of natural
resources and the difference of economic development in China, the energy demand in east China
is relatively large. We generally take a variety of measures to meet the great demand for energy
in east China, such as the energy transportation project from west to east, energy imports and the
development of renewable energy. Many scholars have studied energy demand and supply and energy
sustainable development. They have obtained many valuable results. Wu et al. [1] studied energy
efficiency, environmental efficiency and the integration of energy and environmental measures. They
obtained some valuable results. For instance, the energy-saving and emission-reduction efficiency
in western and central China is worse than that in east China. Fang et al. [2] discussed the impact of
carbon tax on energy intensity and economic growth in energy-saving and emission-reduction system.
The dynamic characteristics of system are investigated on the basis of complexity theory and entropy
theory. Liu et al. [3] put forward a lot of suggestions about layout optimization, structure adjustment
and matching policy support. Their research results can provide theoretical reference and practical
guidance for the sustainable development of China’s energy. Zhang et al. [4] took oil, coal, electricity
and gas as the research object, and analyzed the energy supply–demand evolution process from 1997
to 2009. The results show that there is a huge difference in energy supply and energy demand in

Entropy 2016, 18, 434; doi:10.3390/e18120434 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2016, 18, 434 2 of 21

space. Their suggestions can promote the coordinated development of the region. Wang et al. [5]
focused on the analysis of energy strategy, energy development and energy consumption of China.
In addition, they also studied the Asia’s energy security project by the method of Long-range Energy
Alternatives Planning, which played an important role in the future of energy and environmental
policy. Zhang et al. [6] pointed out that China must implement energy-saving and emission-reduction
to reduce environmental pollution and insist on sustainable development. Moreover, China must
adhere to the development of renewable energy and clean energy, which is conducive to reducing the
consumption of non-renewable energy sources.

Jiang et al. [7] put forward that China should develop low carbon economy and develop clean
energy such as the renewable energy and new energy. Besides, China should increase publicity
and legislation to promote national awareness of energy conservation and emission reduction, and
protect the environment. Ma et al. [8] proposed a development strategy that can solve the energy
demand of China. The research results show that China must improve the efficiency of energy-saving
and emission-reduction, and give priority to the development of alternative energy sources. Li [9]
studied the quantitative problem of sustainable energy strategy in China using the econometric
method. Sun et al. [10] built a universal bipartite model based on an energy supply–demand network.
They empirically analyzed the production’s SPL (Service Parts Logistics) distribution of the US coal
companies from 1991 to 2009.

Sun et al. [11] the parameters of energy supply–demand system are determined through neural
network method. They analyzed the dynamic behavior of the energy supply–demand system.
The results show that the energy supply–demand system has the ability of self-regulation to ensure that
the unstable system returns to a steady state. Hacatoglu et al. [12] an evaluation method for sustainable
economic development by life-cycle emission factors and sustainability indicators is proposed. This
method can ensure the sustainable and healthy development of the economy. Pereira et al. [13]
discussed the development situation of the renewable energy market in Brazil and the theory of
overcoming the obstacles of market development. The conclusions of this paper can provide help
for the consolidation and development of renewable energy markets. Mulhall et al. [14] suggested
that fluctuations in energy prices may affect the stability of individual firms and their supply chains.
The extension of the time commitment of the energy supply contract entails the decrease can reduce
the flexibility of the enterprise in the management of price changes. Toan et al. [15] studied the current
status and trends of energy use in Vietnam, as well as the forecast of energy demand and supply in the
coming decades. Buscarino et al. [16] investigated the problem of the design and the implementation
of chaotic circuits with delay. The chaotic dynamic characteristics of the circuit are discussed.

A new four-dimensional energy supply–demand model was established in [17]. The model
revealed the complex relationship of mutual support and mutual constraints among energy demand,
energy imports and renewable energy utilization. The model in [17] is as follows:

dx
dt = a1x(1− x

M )− a2x(y + z)− d3w,
dy
dt = −b1y− b2z + b3x[N − (x− z)],
dz
dt = c1z(c2x− c3),
dw
dt = d1x− d2w,

(1)

where x(t) is the energy demand in east China; y(t) is energy supply in west China; z(t) is the energy
imports in east China; w(t) is the utilization of renewable energy resources in east China; a1 is the
elasticity coefficient of energy consumption in east China; a2 is the coefficient of the impact of energy
supply in west China and energy imports on the energy demand in east China; b1 is the influence
coefficient of energy supply in west China on supply speed; b2 is coefficient of the impact of energy
imported in east China on the speed of energy supply; b3 is the coefficient of the influence of energy
demand in east China on the speed of energy supply; c1 is speed of energy imported in east China; c2 is
income from unit energy imported; c3 is the cost of energy imported; d1 is the coefficient of the impact
of energy demand in east China on the utilization of renewable energy; d2 is the coefficient of the
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impact of the utilization of renewable energy in east China on the ratio of renewable energy utilization;
d3 is the coefficient of the influence of the utilization of renewable energy on energy demand in east
China; M is the biggest energy demand in east China; N is the threshold of energy demand in east
China; and ai, bi, ci, M, N > 0, N < M, which are all constant.

However, it takes time to develop and utilize renewable energy in east China. This paper
considers only hydropower. China has an uneven distribution of hydropower resources. The available
water resources in the eastern areas accounts only for 6% of the total amount of the nation while the
southwestern areas have the lion share, taking up 67.8%. Meanwhile, the rainfall in east China tends
to be the greatest in summer but waning in other seasons. We know that hydropower station needs
to store water before they can generate electricity. Only when the water storage capacity exceeds the
threshold, the hydropower station can complete the power output to meet the energy demand of
economic development. We found that the power output lagged behind the storage capacity. In other
words, meeting energy demand x(t) also lagged behind the water storage capacity w(t). We define this
delay as τ1. There is a significant impact of rainfall on water storage capacity. With different seasons,
τ1 changes significantly.

China has an uneven distribution of coal reserve: Xinjing, Inner Monglia, Shanxi and Shan’xi
account for 81.3% of the total reserve while the eastern provinces 6%. However, the demand in the
more developed eastern regions of China is much higher, as those 16 provinces and provincial cities
in 2015 alone accounted for 67% of the nation’s GDP. The regional discrepancy in coal resources
distribution and the gap in the demand and supply dictates the distinctive mode of “coal transporting
from west to east”, which relies heavily on the coordinated transportation of railway and seaway in
the coastal regions but is also supplemented with railway delivery, inland river and road transport.

In addition, since China is a large country geographically, it takes time for the energy sources
in west China to be transported to east China. In this paper, we only consider coal transportation.
That is to say, coal demand in east China x(t) will lag behind the coal supply in west China y(t).
We define the delay as τ2. With the changes of coal mining in west China, conveyance and weather, τ2

changes obviously.
Therefore, on the basis of Model (1), we study the following model with two-delay:

dx
dt = a1x(1− x

M )− a2x(y(t− τ2) + z)− d3w(t− τ1),
dy
dt = −b1y− b2z + b3x[N − (x− z)],
dz
dt = c1z(c2x− c3),
dw
dt = d1x− d2w,

(2)

where the development speed of energy demand in east China dx(t)
dt is proportional to the current

demand for energy x(t) and the development potential for energy demand 1− x(t)
M ; −a2y(t) stands

for supply with energy from China’s western areas to the eastern ones, while −a2z(t) represents
energy input by importing into China’s eastern areas reducing energy demand in east China; −b1y(t)
stands for the curb against energy supply to China’s eastern areas from the western ones because of
such factors as cost, ecological environment protection, etc.; −b2z(t) stands for reduction of energy
supply from China’s western areas because of the imported energy input in China’s eastern areas;
b3x(t)[N − x(t)− z(t)] indicates, when energy demand in China’s eastern areas is smaller than the
threshold value (x(t)− z(t) < N), the speed of energy supply of China’s eastern areas from China’s
western areas increases as x(t) increases; however, when energy demand in China’s eastern areas
is big enough (x(t) − z(t) > N), with the development of the regional economy in China’s west
areas, Chinese western areas’ energy demand is greatly improved, energy supply velocity in the east
will decrease as x(t) increases; c1z(t)(c2x(t)− c3) shows that energy importing speed is restricted by
energy demand in China’s eastern regions, as well as the cost of imported energy; −d3w indicates that
the utility of renewable energy in eastern areas leads to decrease of the energy supply from China’s
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western regions; and d1x− d2w symbolizes that the utility rate of renewable energy in China’s eastern
areas dw

dt increases as x(t) rises and decreases as w(t) goes up.
The rest of this paper is organized as follows. In Section 2, we build a four-dimensional energy

supply–demand model with two-delay and study the local stability and the existence of Hopf
bifurcation at the equilibrium point of Model (2). In Section 3, we discuss the impacts of parameters on
the stability and entropy of Model (2). In Section 4, bifurcation control is achieved successfully using
the method of delayed feedback control. Finally, conclusions are given in Section 5.

2. Local Stability and the Existence of Hopf Bifurcation

It is more difficult to get the equilibrium point directly in Model (2), so we assume that the
equilibrium point of Model (2) is E(x∗, y∗, z∗, w∗). We can obtain a specific equilibrium point of
Model (2) with given parameters. In this paper, we will study the impacts of τ1,τ2 and other parameters
on the stability and entropy of Model (2) at the equilibrium point.

For simplicity, the linear form of Model (2) at the equilibrium point E(x∗, y∗, z∗, w∗) through the
Jacobian matrix is as follows [18]:

dx
dt = (a1 − 2a1x∗

M − a2y∗ − a2z∗)x− a2x∗y(t− τ2)− a2x∗z− d3w(t− τ1),
dy
dt = (b3N − 2b3x∗ + b3z∗)x− b1y + (b3x∗ − b2)z,
dz
dt = c1c2z∗x + (c1c2x∗ − c1c3)z,
dw
dt = d1x− d2w,

(3)

The determinant of Model (3) is:∣∣∣∣∣∣∣∣∣
λ− (a1 − 2a1x∗

M − a2y∗ − a2z∗) a2x∗e−λτ2 a2x∗ d3e−λτ1

−(b3N − 2b3x∗ + b3z∗) λ + b1 −(b3x∗ − b2) 0
−c1c2z∗ 0 λ− (c1c2x∗ − c1c3) 0
−d1 0 0 λ + d2

∣∣∣∣∣∣∣∣∣ = 0 (4)

The characteristic equation of Model (3) is:

λ4 + A3λ3 + A2λ2 + A1λ + A0 + (B2λ2 + B1λ + B0)e−λτ1 + (C2λ2 + C1λ + C0)e−λτ2 = 0 (5)

where
A3 =

1
M

2a1x∗ − a1 + b1 + d2 + c1c3 + a2y∗ + a2z∗ − c1c2x∗,

A2 = −a1b1 − a1d2 + b1d2 +
1
M 2a1b1x∗ + 1

M 2a1d2x∗ − 1
M 2a1c1c2x∗2 − a1c1c3

+b1c1c3 + c1c3d2 + a2b1y∗ + a2b1z∗ + a2d2y∗ + a2d2z∗ + 1
M 2a1c1c3x∗

+a1c1c2x∗ − b1c1c2x∗ + a2c1c3y∗ + a2c1c3z∗ − c1c2d2x∗ − a2c1c2x∗y∗
,

A1 = −a1b1d2 +
1
M 2a1b1d2x∗ − 1

M 2a1b1c1c2x∗2 − 1
M 2a1c1c2d2x∗2 − a1b1c1c3 − a1c1c3d2

+b1c1c3d2 + a2b1d2y∗ + a2b1d2z∗ + 1
M 2a1b1c1c3x∗ + 1

M 2a1c1c3d2x∗ + a1b1c1c2x∗

+a2b1c1c3y∗ + a1c1c2d2x∗ + a2b1c1c3z∗ − b1c1c2d2x∗ + a2c1c3d2y∗ + a2c1c3d2z∗

−a2b1c1c2x∗y∗ − a2c1c2d2x∗y∗

,

A0 = − 1
M 2a1b1c1c2d2x∗2 − a1b1c1c3d2 +

1
M 2a1b1c1c3d2x∗ + a1b1c1c2d2x∗

+a2b1c1c3d2y∗ + a2b1c1c3d2z∗ − a2b1c1c2d2x∗y∗
,

B2 = d1d3, B1 = b1d1d3 + c1c3d1d3 − c1c2d1d3x∗, B0 = b1c1c3d1d3 − b1c1c2d1d3x∗,

C2 = −2a2b3x∗2 + Na2b3x∗ + a2b3x∗z∗,

C1 = −2a2b3d2x∗2 + Na2b3d2x∗ + a2b3d2x∗z∗ + 2a2b3c1c2x∗3 − 2a2b3c1c3x∗2

+Na2b3c1c3x∗ − a2b2c1c2x∗z∗ + a2b3c1c3x∗z∗ − Na2b3c1c2x∗2 ,
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C0 = 2a2b3c1c2d2x∗3 − 2a2b3c1c3d2x∗2 + Na2b3c1c3d2x∗

−a2b2c1c2d2x∗z∗ + a2b3c1c3d2x∗z∗ − Na2b3c1c2d2x∗2 .

2.1. Case 1. τ1 > 0, τ2 = 0

When τ1 > 0, τ2 = 0, the characteristic equation of Model (3) becomes as below:

λ4 + A3λ3 + (A2 + C2)λ
2 + (A1 + C1)λ + A0 + C0 + (B2λ2 + B1λ + B0)e−λτ1 = 0 (6)

Let λ = iω1(ω1 > 0) be the root of Equation (6). Substituting λ = iω1(ω1 > 0) into Equation (6)
and separating the real and imaginary parts, we can get:{

(B2ω2
1 − B0)sinω1τ1 + B1ω1cosω1τ1 = A3ω3

1 + (A1 + C1)ω1

B1ω1sinω1τ1 − (B2ω2
1 − B0)cosω1τ1 = −ω4

1 + (A2 + C2)ω
2
1 − (A0 + C0)

(7)

The following result can be obtained from Equation (7)

cosω1τ1 =
H6ω6

1 + H4ω4
1 + H2ω2

1 + H0

B2
1ω2

1 + (B2ω2
1 − B0)

2 (8)

where
H6 = B2, H4 = A3B1 − A2B2 − B2C2 + B0,

H2 = A1B1 + B1C1 + A0B2 + B2C0 + A2B0 + B0C2, H0 = −(A0B0 + B0C0),

Adding up the squares of both equations given, we have

ω8
1 + h6ω6

1 + h4ω4
1 + h2ω2

1 + h0 = 0 (9)

where

h6 = A2
3 − 2A2 − 2C2, h4 = 2A1 A3 + 2A3C1 + 2A0 + 2C0 − B2

2 + A2
2 + C2

2 + 2A2C2,

h2 = A2
1 + C2

1 + 2A1C1 − 2A0 A2 − 2A0C2 − 2A2C0 − 2C0C2 + 2B0B2 − B2
1,

h0 = (A0 + C0)
2 − B2

0,

Let s1 = ω2
1 , Equation (9) is simplified as follows:

s4
1 + h6s3

1 + h4s2
1 + h2s1 + h0 = 0 (10)

According to Lemmas 2.1 and 2.2 in [19], we denote h(s1) = s4
1 + h6s3

1 + h4s2
1 + h2s1 + h0. Thus,

we can obtain that (H1): if h0 < 0, Equation (10) has at least one positive root; (H2): if h0 ≥ 0 and
D ≥ 0, Equation (10) has positive roots if and only if s11 > 0 and h (s11) < 0; (H3): h0 ≥ 0 and D < 0,
Equation (10) has positive roots if and only if there exists at least one s∗1 ∈ {s11 , s12 , s13}, such that
s∗1 > 0 and h(s∗1) < 0. Where

D = (
q1

2
)

2
+ (

p1

3
)

3
, p1 =

h4

2
− 3

16
h2

6, (H2)q1 =
h3

6
32
− h6h4

8
+ h2, σ =

−1 +
√

3i
2

,

y1 = 3
√
− q1

2 +
√

D + 3
√
− q1

2 −
√

D, y2 = 3
√
− q1

2 +
√

Dσ + 3
√
− q1

2 −
√

Dσ2,

y3 = 3
√
− q1

2 +
√

Dσ2 + 3
√
− q1

2 −
√

Dσ, s1i = yi − 3h6
4 , i = 1, 2, 3

Suppose that Equation (10) has positive roots. Without loss of generality, we suppose that
it has four positive roots, defined by s1k, k = 1, 2, 3, 4. Then, Equation (9) also has four positive
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roots; that is, ω1k =
√

s1k, k = 1, 2, 3, 4. For every fixed ω1k (k = 1, 2, 3, 4), there exists a sequence{
τ
(j)
1k |k = 1, 2, 3, 4; j = 0, 1, 2, ...

}
. From Equation (8), we have:

τ
(j)
1k = 1

w1k
arccos H6ω6

1k+H4ω4
1k+H2ω2

1k+H0

B2
1ω2

1k+(B2ω2
1k−B0)

2 + 2jπ
ω1k

k = 1, 2, 3, 4; j = 0, 1, 2, ...
(11)

Let τ10 = min
{

τ
(j)
1k

∣∣∣k = 1, 2, 3, 4; j = 0, 1, 2, ...
}

= min
{

τ
(0)
1k

∣∣∣k = 1, 2, 3, 4
}

= τ1k0 , then
ω10 = ω1k0 .Thus, we get τ10 as follows:

τ10 =
1

w10
arccos

H6ω6
10 + H4ω4

10 + H2ω2
10 + H0

B2
1ω2

10 + (B2ω2
10 − B0)

2 (12)

Based on the analysis above, we can obtain the following main results [20]:

Lemma 1. If conditions (H1)− (H3) have at least one hold, Equation (6) has a pair of purely imaginary roots
±iω10 when τ1 = τ10.

Next, take the derivative with τ1 in Equation (6), we have:[
dλ

dτ1

]−1
=

(4λ3 + 3A3λ2 + 2(A2 + C2)λ + A1 + C1)eλτ1 + 2B2λ + B1

λ(B2λ2 + B1λ + B0)
− τ1

λ
(13)

[
dλ(τ10)

dτ1

]−1

λ=iω10

=
R1R2 + I1 I2

R2
1 + I2

1
(14)

where
R1 = −B1ω2

10, I1 = B0ω10 − B2ω3
10,

R2 = 4ω3
10sinω10τ10 − 3A3ω2

10cosω10τ10 − 2(A2 + C2)ω10sinω10τ10 + (A1 + C1)cosω10τ10 + B10,

I2 = −4ω3
10cosω10τ10 − 3A3ω2

10sinω10τ10 + 2(A2 + C2)ω10cosω10τ10 + (A1 + C1)sinω10τ10 + 2B2ω10.

Lemma 2. If R1R2 + I1 I2 6= 0, then dReλ(τ10)
dτ1

∣∣∣
λ=iω10

= Re
[

dλ(τ10)
dτ1

]−1

λ=iω10
6= 0. Thus, it satisfies the

transversal condition.

According to Lemmas 1 and 2 and the Hopf bifurcation theorem in [21], we obtain the
following results:

Theorem 1. The equilibrium point E(x∗, y∗, z∗, u∗) of Model (2) is asymptotically stable for τ1 ∈ [0, τ10) and
unstable for τ1 > τ10. Model (2) has a Hopf bifurcation when τ1 = τ10.

2.2. Case 2. τ1 > 0, τ2 > 0

When τ1 > 0, τ2 > 0, the characteristic equation of Model (2) is still Equation (5). In this case, we
consider the characteristic Equation (5) with τ1 in its stable intervals, i.e., τ1 ∈ [0, τ10) [22]. We study
the impact of τ2 on the stability of Model (2) when τ1 unchanged.

Let λ = iω2(ω2 > 0) be a root of Equation (5). Similar to case1, we have:{
(C2ω2

2 − C0)sinω2τ2 + C1ω2cosω2τ2 = A3ω3
2 − A1ω2 − B2ω2

2sinω2τ1 − B1ω2cosω2τ1 + B0sinω2τ1

C1ω2sinω2τ2 − (C2ω2
2 − C0)cosω2τ2 = −ω4

2 + A2ω2
2 − A0 + B2ω2

2cosω2τ1 − B1ω2sinω2τ1 − B0cosω2τ1
(15)
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From Equation (15), we obtain:

cosω2τ2 =
∆

C2
1ω2

2 + (C2ω2
2 − C0)

2 (16)

where

∆ = A3C1ω3
2 − A1C1ω2 − B2C1ω2

2sinω2τ1 − B1C1ω2cosω2τ1 + B0C1sinω2τ1 + C2ω6
2

−A2C2ω4
2 + A0C2ω2

2 − B2C2ω4
2cosω2τ1 + B1C2ω3

2sinω2τ1 + B0C2ω2
2cosω2τ1 − C0ω4

2
+A2C0ω2

2 − A0C0 + B2C0ω2
2cosω2τ1 − B1C0ω2sinω2τ1 − B0C0cosω2τ1

,

From Equation (15), we further get:

ω8
2 + n7ω7

2 + n6ω6
2 + n5ω5

2 + n4ω4
2 + n3ω3

2 + n2ω2
2 + n1ω2 + n0 = 0 (17)

where
n7 = 0, n6 = A2

3 − 2A2 − 2B2cosω2τ1, n5 = −2A3B2sinω2τ1 + 2B1sinω2τ1,

n4 = −2A1 A3 − C2
2 + B2

2 − 2A3B1cosω2τ1 + A2
2 + 2A0 + 2A2B2cosω2τ1 + 2B0cosω2τ1,

n3 = 2A1B2sinω2τ1 + 2A3B0sinω2τ1 − 2A2B1sinω2τ1,

n2 = A2
1 − C2

1 + 2C0C2 + 2A1B1cosω2τ1 − 2B0B2 − 2A0 A2 − 2A0B2cosω2τ1 + B2
1 − 2A2B0cosω2τ1,

n1 = 2A0B1sinω2τ1 − 2A1B0sinω2τ1, n0 = B2
0 + A2

0 + 2A0B0cosω2τ1 − C2
0 ,

Denote

h(ω2) = ω8
2 + n7ω7

2 + n6ω6
2 + n5ω5

2 + n4ω4
2 + n3ω3

2 + n2ω2
2 + n1ω2 + n0

Because lim
ω2→∞

h(ω2) = ∞, we conclude that if n0 < 0, then Equation (17) has at least one positive

root [19]. Without loss of generality, we assume that Equation (17) has a finite number of positive
roots defined by ω21, ω22, ω23, ..., ω2k, respectively. Fix each ω2i, (i = 1, 2, ..., k), and there is a series{

τ
(j)
2i |i = 1, 2, ..., k; j = 0, 1, 2, ...

}
which satisfies Equation (17). From Equation (16), we can obtain:

τ
(j)
2i =

1
ω2i

arccos
∆

C2
1ω2

2i + (C2ω2
2i − C0)

2 +
2jπ
ω2i

, i = 1, 2, ..., k; j = 0, 1, 2, ... (18)

Let τ20 = min{τ(j)
2i |i = 1, 2, ..., k; j = 0, 1, 2, ...} = min

i∈{1,2,...,k}
{τ(0)

2i } = τ2i0 , ω20 = ω2i0 . Then τ20 is:

τ20 =
1

ω20
arccos

∆′

C2
1ω2

20 + (C2ω2
20 − C0)

2 (19)

∆′ = A3C1ω3
20 − A1C1ω20 − B2C1ω2

20sinω20τ1 − B1C1ω20cosω20τ1 + B0C1sinω20τ1 + C2ω6
20

−A2C2ω4
20 + A0C2ω2

20 − B2C2ω4
20cosω20τ1 + B1C2ω3

20sinω20τ1 + B0C2ω2
20cosω20τ1 − C0ω4

20
+A2C0ω2

20 − A0C0 + B2C0ω2
20cosω20τ1 − B1C0ω20sinω20τ1 − B0C0cosω20τ1

.

In the basis of the above analysis, we can obtain the following conclusion:

Lemma 3. If n0 < 0, the ±iω20 is a pair of purely imaginary roots of Equation (5) when τ2 = τ20 and
τ1 ∈ [0, τ10).

Next, we take the derivative of λ with respect to τ2 in Equation (5), we can obtain:
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[
dλ

dτ2

]−1
=

N4 + N3 + N2 + N1

N0
− τ2

λ
(20)

where
N4 = (4λ3 + 3A3λ2 + 2A2λ + A1)eλτ2 , N3 = (2B2λ + B1)eλ(τ2−τ1),

N2 = −τ1(B2λ2 + B1λ + B0)eλ(τ2−τ1), N1 = 2C2λ + C1, N0 = λ(C2λ2 + C1λ + C0),

Taking λ = iω20 (ω20 > 0) into Equation (20), we get:[
dλ(τ20)

dτ2

]−1

λ=iω20

=
R3R4 + I3 I4

R2
3 + I2

3
(21)

where
R3 = −C1ω2

20, I3 = C0ω20 − C2ω3
20,

R4 = 4ω3
20sinω20τ20 − 3A3ω2

20cosω20τ20 − 2A2ω20sinω20τ20 + A1cosω20τ20 − 2B2ω20sinω20(τ20 − τ1)

+B1cosω20(τ20 − τ1) + B2τ1ω2
20cosω20(τ20 − τ1) + B1τ1ω20sinω20(τ20 − τ1)− B0τ1cosω20(τ20 − τ1) + C1

,

I4 = −4ω3
20cosω20τ20 − 3A3ω2

20sinω20τ20 + 2A2ω20cosω20τ20 + A1sinω20τ20 + 2B2ω20cosω20(τ20 − τ1)

+B1sinω20(τ20 − τ1) + B2τ1ω2
20sinω20(τ20 − τ1)− B1τ1ω20cosω20(τ20 − τ1)− B0τ1sinω20(τ20 − τ1) + 2C2ω20

,

Owing to

sign
[

d(Reλ(τ20))

dτ2

]
= signRe

[
dλ(τ20)

dτ2

]−1

Lemma 4. If R3R4 + I3 I4 6= 0, then
[

dλ(τ20)
dτ2

]−1

λ=iω20
6= 0. Therefore, Model (2) satisfies the

transversal condition.

On the basis of Lemmas 3 and 4 and the Hopf bifurcation theorem in [21], we obtain the
following results:

Theorem 2. For τ1 ∈ [0, τ10), τ10 is defined by Equation (12). The equilibrium point E(x∗, y∗, z∗, u∗) of
Model (2) is asymptotically stable for τ2 ∈ [0, τ20) and unstable when τ2 > τ20. Model (2) undergoes a Hopf
bifurcation at τ2 = τ20.

3. Numerical Simulation and Analysis

In this section, we verify the correctness of the theoretical analysis and discuss the effect of the
parameters on the stability of the system by numerical simulation. Let a1 = 1; a2 = 0.6; b1 = 1;
b2 = 1.2; b3 = 1.5; c1 = 11; c2 = 0.7; c3 = 0.6; M = 3.8; N = 1.2; d1 = 0.1; d2 = 0.7; d3 = 0.8; x(0) = 1;
y(0) = 0.8; z(0) = 0.6; w(0) = 0.4. Thus, we consider the following model:

dx
dt = x(1− x

3.8 )− 0.6x(y(t− τ2) + z)− 0.8w(t− τ1),
dy
dt = −y− 1.2z + 1.5x[1.2− (x− z)],
dz
dt = 11z(0.7x− 0.6),
dw
dt = 0.1x− 0.7w,

(22)

It is easy to get the equilibrium point of Model (22). However, only E(0.8572, 0.4929, 0.6088, 0.1225)
conforms to the economic significance. It means that x(t), y(t), z(t) and u(t) will converge to the
equilibrium point E through the game.

For case 1, when τ1 > 0, τ2 = 0, we get τ10 = 0.2208,ω10 = 3.5247 by Equations (10) and (12).
In addition, we can obtain R1R2 + I1 I2 = 86.8936 6= 0, h0 = −36.4229 < 0. According to Theorem 1,
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we obtain that the equilibrium point E of Model (22) is asymptotically stable when τ1 ∈ [0, 0.2208) and
unstable when τ1 > 0.2208. It has a Hopf bifurcation at τ1 = 0.2208.

For case 2, when τ1 > 0, τ > 0, let τ1 = 0.1 ∈ [0, 0.2208), we can obtain τ20 = 0.1429, ω20 = 5.4496
through Equations (17) and (19). Besides, we get R3R4 + I3 I4 = 67.3428 6= 0, n0 = −47.6814 < 0.
According to Theorem 2, we can obtain that the equilibrium point E of Model (22) is asymptotically
stable when τ2 ∈ [0, 0.1429) for τ1 = 0.1 and unstable when τ2 > 0.1429 for τ1 = 0.1. It undergoes a
Hopf bifurcation when τ2 = 0.1429 for τ1 = 0.1.

3.1. The Influence of τ1 on the Stability of Equation (22)

Model (22) shifts from stable to unstable with the increase of τ1, and it has a Hopf bifurcation at
τ1 = 0.2208 when τ2 = 0. Figure 1a shows the dynamic evolution process of Model (22). We can see
clearly that energy demand x(t) and energy imports z(t) in east China show an obvious bifurcation.
The largest Lyapunov exponent (LLE) judges whether the system is stable depending on the exponent
value. If it is less than 0, the system is stable. If it is more than 0, the system is unstable. If it is equal to
0, the system appears bifurcation. In this paper, we calculate the LLE by using the method of Wolf
reconstruction [23]. We find that the value of the LLE is equal to 0 when τ1 = 0.2208 in Figure 1b.
That is to say, Model (22) appears bifurcation at τ1 = 0.2208. This is consistent with the conclusion of
theoretical analysis. Figure 1b also verifies the correctness of evolution process in Figure 1a.

According to the above analysis, we can conclude that if time interval between storage of water
and power output in hydroelectric power is greater than the bifurcation value in Model (22), it will
cause the energy demand x(t) and energy imports z(t) to be unstable and fluctuant. The unstable
energy supply–demand system is not conducive to the determination of energy demand and
energy allocation.
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Figure 1. The impact of τ1 on the stability of Model (22) when τ2 = 0: (a) bifurcation diagram;
and (b) the largest Lyapunov exponent plot.

According to Theorem 1, Model (22) is stable when τ1 = 0.1 < τ10 = 0.2208, τ2 = 0. These
properties are shown in Figures 2 and 3. As the time variable increases, Model (22) tends to be stable
as is shown in Figure 2a, which means that the energy supply–demand system has self-repair ability
to return to a steady state when τ1 < τ10, τ2 = 0. Moreover, Poincare section is an effective tool to
judge the state of the system. There are four discrete points in Figure 2b, which shows that the system
is stable.

Attractor indicates the final state of the system runs. It can be seen that the system tends to
equilibrium point E(0.8572, 0.4929, 0.6088, 0.1225) finally. That means each participant in the energy
supply–demand system has obtained the best strategy through the game and that the whole system is
in a stable state. It will contribute to the formulation of energy supply and demand policy. Figure 3
shows the dynamic evolution of the attractor.
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Figure 3. The attractor of Model (22) when τ1 = 0.1 < τ10 = 0.2208, τ2 = 0: (a) x(t), y(t), z(t);
and (b) x(t), z(t), w(t).

From Theorem 1, we also know that Model (22) is unstable when τ1 = 0.4 > τ10 = 0.2208, τ2 = 0.
At this time, Poincare section turns into a semi-circle, which means that the system has periodic
solution. That is to say, x(t), y(t), z(t) and w(t) will converge to the basin of attraction through the
game. These analyses can be seen in Figures 4 and 5. We conclude that energy demand and energy
imports in east China, energy supply in west China and the use of renewable energy is cyclical, which
is not conducive to the formulation of long-term energy policy.
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Figure 4. (a) Time-domain plot; and (b) Poincare section when τ1 = 0.4 > τ10 = 0.2208, τ2 = 0.
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Figure 5. The attractor when τ1 = 0.4 > τ10 = 0.2208, τ2 = 0: (a) x(t), y(t), z(t); and (b) x(t), z(t), w(t).

Based on the above analysis, we know that system stability must be τ1 < τ10. In other words,
hydroelectric power stations must shorten the time of water storage. Therefore, we can take the
following measures: on the one hand, we can increase the capacity for water storage in rainy seasons;
and, on the other hand, the excess energy should be converted to water storage.

3.2. The Influence of τ1 on the Entropy of Model (22)

Entropy is a measure of the complexity of the system. The greater entropy represents the more
complex system. Let the entropy value be k. If the system is stable and in regular motion, then the
value of k is equal to 0. Otherwise, it is greater than 0. Based on the analysis in Section 3.1, we know
that k = 0 when τ1 < τ10 = 0.2208 or k > 0 when τ1 > τ10 = 0.2208. Entropy becomes bigger with the
increase of τ1 when τ1 > τ10 = 0.2208. Namely, the system becomes more and more complex. In this
complex system, energy supply and coordination will be even more difficult. At this point, it will take
longer or be more difficult for the system to return to the stable state. The change trend of entropy is
displayed in Figure 6.
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Figure 6. The entropy plot respect to τ1 when τ2 = 0.

3.3. The Influence of τ1, a1, d3 on the Stability of Model (22)

In Figure 7, it can be found that the impact of a1on x is relatively obvious. However, the impact
of τ1 on x is weak. There is an obvious fluctuation of x with the increase of a1. In this process,
the minimum value of x is −1.573 × 1013 for (τ1, a1) = (1, 0.05), and the maximum value of x is
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8.701 × 1011 for (τ1, a1) = (0.25, 0.65). The analysis shows that the energy consumption coefficient
a1 has the greatest impact on the energy demand when other parameters are fixed. Therefore, the
unscientific energy consumption coefficient will affect the accuracy of the energy demand forecast and
further impact the social and economic development.Entropy 2016, 18, 434 14 of 23 
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Figure 7. The influence of τ1 and a1 on x when τ2 = 0.

In Figure 8, we can see that x is stable in most region of τ1 and d3. In this unstable region,
the minimum value of x is −3.387 × 1012 for (τ1, d3) = (0.85, 1), and the maximum value of x
is 4.387 × 1011 for (τ1, d3) = (1, 1). The x is approximately 0.85 in stable regions. If the other
parameters are unchanged, we must ensure τ1 < 0.5 or d3 < 0.85 in order to maintain the stability of
energy demand.
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Figure 8. The influence of τ1 and d3 on x when τ2 = 0.

When d3 < 0.5, τ1 has little effect on x, and the value of x shifts from small to large with the
increase of a1. When d3 > 0.5, x shifts from large to small with the increase of τ1 and there is larger
fluctuation with the increase of a1. In order to maintain the stability of energy supply–demand system,
we must ensure d3 < 0.5, a1 close to 1 or 0 and τ1 > 0. The game relationship among three parties can
be observed in Figure 9.
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Figure 9. The influence of τ1, a1 and d3 on x when τ2 = 0.

3.4. The Influence of τ2 on the Stability of Model (22)

Let τ1 = 0.1 ∈ [0, τ10), we study the impact of τ2 on the stability of the system. Model (22)
will become unstable with the increase of τ2. Figure 10a displays the dynamic evolution process
of Model (22). Similar to Section 3.1, Figure 10b shows that Model (22) undergoes bifurcation at
τ2 = 0.1429 for τ1 = 0.1. Therefore, the simulation results are in agreement with the theoretical
analysis. From the above analysis we can find that the energy demand and energy imports show
fluctuations when τ2 > 0.1429, so we must shorten the time of energy supply in west China. Comparing
Figures 1 and 2, we find that the change of τ1 or τ2 would cause x(t) and z(t) fluctuations. Therefore,
we should focus on energy imports strategy.
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Figure 10. The influence of τ2 on the stability of Model (22) when τ1 = 0.1: (a) bifurcation diagram;
and (b) the largest Lyapunov exponent plot.

According to Theorem 2, Model (22) is stable when τ1 = 0.1, τ2 = 0.05 < τ20 = 0.1429. Figure 11a
shows that each participant of the system has taken the best strategy through game. Finally, the
system will be in a stable state. Hence, x(t), y(t), z(t) and w(t) will converge to the equilibrium point
E(0.8572, 0.4929, 0.6088, 0.1225). These properties are shown in Figure 11b,c. If the system is stable, it
means that energy demand and energy imports are invariable when other parameters are fixed. It is
beneficial to formulation and implementation of the energy policy.
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Figure 11. The influence of τ2 on the stability of Model (22) when τ1 = 0.1, τ2 = 0.05 < τ20 =

0.1429: (a) Time-domain plot; (b) energy supply–demand attractor (x(t), y(t), z(t)); and (c) energy
supply–demand attractor (x(t), z(t), w(t)).

Based on Theorem 2, Model (22) is unstable when τ1 = 0.1, τ2 = 0.35 > τ20 = 0.1429. Figure 12a
shows the dynamic game process of each participant in the system. The energy demand and energy
imports continue to be in a state of volatility as time goes by, but the fluctuation amplitude decreases.
The x(t), y(t), z(t) and w(t) will converge to the basin of attraction through the game. They are in
a state of periodic. These characteristics are shown in Figure 12b,c. In this case, it will increase the
complexity of energy supply–demand system.
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Entropy 2016, 18, 434 15 of 21
Entropy 2016, 18, 434 17 of 23 

 

(c)

Figure 12. The influence of 2τ  on the stability of Model (22) when 1 2 200.1, 0.35 0.1429τ τ τ= = > = : 

(a) Time-domain plot; (b) energy supply–demand attractor ( ( ), ( ), ( ))x t y t z t ; and (c) energy 

supply–demand attractor ( ( ), ( ), ( ))x t z t w t . 

3.5. The Influence of 2 3 4, ,b bτ  on the Stability of Model (22) 

In Figure 13, we find that 1b  has an obvious impact on x , which causes the system to be 

unstable, but 2τ  has no effects on x . x  suddenly changes from small to large with the increase of  

1b , and it tends to be stable through slight fluctuations. Finally, x  is stable at around 0.8. In the whole 

evolution process, the maximum value of x  is 0.9542 for 2 1( , ) (0.01,0.5)bτ =  and the minimum 

value of x  is 0.0857 for 2 1( , ) (0.1,0.1)bτ = . There are no great ups and downs of x  when 1 0.5b > . 
In other words, the impact of the speed of energy supply in west China on the energy demand in 
east China is small. 

 
Figure 13. The influence of 2τ  and 1b  on x when 1 0.1τ = . 

The impact of 2b  on x  is larger, which causes large x  fluctuations. Although the influence of 

2τ  on x  is smaller, it also leads the instability of x . The maximum value of x  is 9.558 × 1011 for

2 2( , ) (0.09,0.2)bτ =  and the minimum value of x  is −6.97 × 1012 for 2 2( , ) (0.04,0.2)bτ = . Most regions 

of 2 2( , )bτ  plane are stable at approximately 6 × 1012. The above features are shown in Figure 14. 

0.8
1

1.2
1.4

0
0.5

1
1.5

2
0.1

0.2

0.3

0.4

0.5

x(t)z(t)

w
(t)

0

0.05

0.1

00.20.40.60.81
0

0.2

0.4

0.6

0.8

1

τ2
b1

 

x(
t)

Figure 12. The influence of τ2 on the stability of Model (22) when τ1 = 0.1, τ2 = 0.35 > τ20 =

0.1429: (a) Time-domain plot; (b) energy supply–demand attractor (x(t), y(t), z(t)); and (c) energy
supply–demand attractor (x(t), z(t), w(t)).

3.5. The Influence of τ2, b3, b4 on the Stability of Model (22)

In Figure 13, we find that b1 has an obvious impact on , which causes the system to be unstable,
but τ2 has no effects on x. x suddenly changes from small to large with the increase of b1, and it tends
to be stable through slight fluctuations. Finally, x is stable at around 0.8. In the whole evolution process,
the maximum value of x is 0.9542 for (τ2, b1) = (0.01, 0.5) and the minimum value of x is 0.0857 for
(τ2, b1) = (0.1, 0.1). There are no great ups and downs of x when b1 > 0.5. In other words, the impact
of the speed of energy supply in west China on the energy demand in east China is small.
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Figure 13. The influence of τ2 and b1 on x when τ1 = 0.1.

The impact of b2 on x is larger, which causes large x fluctuations. Although the influence of
τ2 on x is smaller, it also leads the instability of x. The maximum value of x is 9.558 × 1011 for
(τ2, b2) = (0.09, 0.2) and the minimum value of x is−6.97× 1012 for (τ2, b2) = (0.04, 0.2). Most regions
of (τ2, b2) plane are stable at approximately 6 × 1012. The above features are shown in Figure 14.
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Figure 14. The influence of τ2 and b2 on x when τ1 = 0.1.

When b1 < 0.5, b2 has no effect on x. When b1 > 0.5 and τ2 > 0.5, the value of x becomes larger
with the increase of b2. However, b2 has no impact on x when b1 > 0.5 and τ2 < 0.5. When b2 < 0.6,
τ2 has no impact on x and the x moves from small to large and again to small with the increase of
b1.When b2 > 0.6, x shifts from small to large with the increase of τ2 and there is fluctuation with the
increase of b1. These properties can be seen in Figure 15.
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Figure 15. The influence of τ2, b1 and b2 on x when τ1 = 0.1.

3.6. The Influence of τ1, τ2 on the Stability of Model (22)

When τ1 > 0.4, the amplitude of fluctuation of x is larger. If the τ1 and τ2 are smaller, x is
more stable, and it is stable at about 0.47. In unstable region, the maximum value of x is 1.179 for
(τ1, τ2) = (0.86, 0.31) and the minimum value of x is 0.5637 for (τ1, τ2) = (0.96, 0.26). The change
trends are shown in Figure 16. If you want to get the energy demand accurately, you must make sure
that τ1 and τ2 are in a smaller region. Otherwise, the system will be unstable.
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4. Bifurcation Control

According to the above analysis, we know that if the system is unstable, it will lead to fluctuations
of the system and increase the complexity of the system. Thus, it is necessary to take measures to
ensure the system is in a stable state. In this paper, we implement bifurcation control by using the
method of delayed feedback control [24]. Thus, we study the following bifurcation control system:

dx
dt = x(1− x

3.8 )− 0.6x(y(t− τ2) + z)− 0.8w(t− τ1) + k(w(t− τ1)− w),
dy
dt = −y− 1.2z + 1.5x[1.2− (x− z)],
dz
dt = 11z(0.7x− 0.6),
dw
dt = 0.1x− 0.7w,

(23)

We realize the effective bifurcation control by adjusting the control parameter k. Referring to the
conclusion in Section 3.1, we know that if τ1 = 0.4, τ2 = 0 Model (22) is unstable and becomes more
complex with the increase of τ1. It can be seen in Figures 4–6.

4.1. Bifurcation Value

Figure 17a shows that the dynamic evolution process of Model (23) for τ1 = 0.4, τ2 = 0. According
to Figure 17b, we obtain that Model (23) has a bifurcation at k = 0.7013. That is to say, Model (23) is
unstable when k < 0.7013 and it is stable when k > 0.7013, which means that the control parameter k
can affect the stability of the system. In Figure 17a, we find that the greater control parameter k is, the
better control effect is. Otherwise, it is the other way around.Entropy 2016, 18, 434 20 of 23 
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Figure 17. The influence of k on the stability of Model (23) when τ1 = 0.4, τ2 = 0: (a) bifurcation
diagram; and (b) the largest Lyapunov exponent plot.
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4.2. Model (23) Is Unstable

Let k = 0.6 < 0.7013, the time-domain plot and attractor of Model (23) are displayed in Figure 18.
We find that Model (23) is still unstable and it has a basin of attractor. This is consistent with the above
analysis. That is, the control parameter does not play any role in bifurcation control.
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Figure 18. Model (23) is unstable when k = 0.6 < 0.7013 for τ1 = 0.4, τ2 = 0: (a) time-domain
plot; (b) energy supply–demand attractor (x(t), y(t), z(t)); and (c) energy supply–demand attractor
(x(t), z(t), w(t)).

4.3. Model (23) Is Stable

Let k = 0.8 > 0.7013, the time-domain plot and attractor of Model (23) are shown in Figure 19.
We can see that Model (23) returns to a steady state. Therefore, bifurcation control is successful as
k > 0.7013.Entropy 2016, 18, 434 19 of 21
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4.4. The Influence of Control Parameter k on Entropy

When k < 0.7013 the system is unstable, entropy is more than 0. If k > 0.7013, the system is stable,
then entropy is equal to 0. This phenomenon is shown in Figure 20. Thus, it can reduce the complexity
of the system by adjusting the control parameter k, which indicates that the system will get rid of the
unstable state and return to the stable state.
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4.4. The Influence of Control Parameter k on Entropy

When k < 0.7013 the system is unstable, entropy is more than 0. If k > 0.7013, the system is stable,
then entropy is equal to 0. This phenomenon is shown in Figure 20. Thus, it can reduce the complexity
of the system by adjusting the control parameter k, which indicates that the system will get rid of the
unstable state and return to the stable state.Entropy 2016, 18, 434 22 of 23 
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The research results show that the delays play an important role in the stability of the system. 
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We conclude that the energy supply–demand system will be unstable if these uncertain factors
are added, but it will regain the stable state if delay feedback control method is administered.

5. Conclusions

In this paper, a four-dimensional energy supply–demand model with two-delay is built. We study
the impacts of delays and other parameters on the stability of the system. The change of parameters
will result in the system switching between stability and instability. In order to keep the stability of the
system, we must ensure that the value of delays is less than the bifurcation value or the combination
of delays and other parameters in the stable region. Otherwise, the system will go through huge
fluctuations. It will be difficult to formulate energy scheduling policy. Therefore, we can carry out
bifurcation control by the delayed feedback control method for the unstable system. The system
returns to a stable state by adjusting control parameters.
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The research results show that the delays play an important role in the stability of the system.
With other conditions unchanged, we must take steps to minimize the time delay. For example, to
improve the storage capacity of hydropower stations to ensure sustained and stable power output;
if there is interruption, there should be timely replenishment to restore power generation, so it must
be ensured that τ1 < 0.2208. In addition, to improve the transport capacity of coal resources in west
China to shorten the transport time and to avoid excessive delay-caused supply interruption for the
eastern coal demand, it must be ensured that τ2 < 0.1429. According to the research presented in this
paper, we conclude that d3 < 0.85 for τ1 > 0, τ2 = 0 and b1 > 0.5 for τ1 = 0.1, τ2 > 0 can keep the
system in stable state other parameters being unchanged.
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