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Abstract: With the levels of confidence and system complexity, interval forecasts and entropy analysis
can deliver more information than point forecasts. In this paper, we take receivers’ demands as our
starting point, use the trade-off model between accuracy and informativeness as the criterion to
construct the optimal confidence interval, derive the theoretical formula of the optimal confidence
interval and propose a practical and efficient algorithm based on entropy theory and complexity
theory. In order to improve the estimation precision of the error distribution, the point prediction
errors are STRATIFIED according to prices and the complexity of the system; the corresponding
prediction error samples are obtained by the prices stratification; and the error distributions are
estimated by the kernel function method and the stability of the system. In a stable and orderly
environment for price forecasting, we obtain point prediction error samples by the weighted local
region and RBF (Radial basis function) neural network methods, forecast the intervals of the
soybean meal and non-GMO (Genetically Modified Organism) soybean continuous futures closing
prices and implement unconditional coverage, independence and conditional coverage tests for the
simulation results. The empirical results are compared from various interval evaluation indicators,
different levels of noise, several target confidence levels and different point prediction methods.
The analysis shows that the optimal interval construction method is better than the equal probability
method and the shortest interval method and has good anti-noise ability with the reduction of system
entropy; the hierarchical estimation error method can obtain higher accuracy and better interval
estimation than the non-hierarchical method in a stable system.

Keywords: optimal confidence interval; entropy; algorithm; error distribution; hierarchical by price;
agricultural products’ price; anti-noise ability

1. Introduction

According to price forecasts, producers and managers adjust current productions and operations,
and governments make proper macro-economic policy to stabilize prices. A great number of studies
shows that price forecasts of agricultural products are meaningful [1,2]. Nowadays, the price forecasts
of agricultural products are mainly based on the point forecasts. However, interval forecasts can
deliver more information than point forecasts. Point forecasting is widely used, can provide a single
value of the variable in the future and cannot provide any information about the value of uncertainty.
Uncertainty information is particularly important for decision makers with different risk preferences.
The result of interval forecasts is an interval with a confidence level, which is more convenient for
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decision makers to formulate risk management strategies. Due to the importance of interval forecasts,
in the monthly World Agricultural Supply and Demand Estimates (WASDE) of the United States
Department of Agriculture (USDA), price forecasts are published in the form of intervals.

The more stable and simple the price system of agricultural products, the more favorable the
price forecast. Entropy is a measure of the complexity of a system. Greater entropy means that the
system is more complex, and then, the price forecast is prone to distortion. Su et al. [3] verified that
there is chaos in the price system by calculating the Kolmogorov entropy. Their price system has
positive entropy; but the entropy is not big, and the system has weak chaos. How do we predict prices
in such a system? When entropy is not big, can we obtain better forecasting results? In this paper,
we illustrate that this price system can be forecasted, and we verify that the price interval forecast is
feasible in the system with positive Kolmogorov entropy. Our paper illustrates that we can obtain
the interval forecasts. In recent years, many scholars have carried out research work on entropy in
the economic field. Bekiros et al. [4] studied the dynamic causality between stock and commodity
futures markets in the United States by using complex network theory. We utilize the extended matrix
and the time varying network topology to reveal the correlation and the temporal dimension of the
entropy relationship. Selvakumar [5] proposed an enhanced cross-entropy (ECE) method to solve the
dynamic economic dispatch (DED) problem with valve-point effects. Fan et al. [6] used multi-scale
entropy analysis; we investigate the complexity of the carbon market and the average return trend of
daily price returns. Billio et al. [7] analyzed the temporal evolution of systemic risk in Europe by using
different entropy measures and constructed a new banking crisis early warning indicator. Ma and Si [8]
studied a continuous duopoly game model with a two-stage delay. They investigated the influence of
delay parameters on the stability of the system.

In agricultural economics, Teigen and Bell [9] established the confidence interval of the corn
price by the approximate variance of the forecast. Prescott and Stengos [10] applied the bootstrap
method to construct the confidence interval of the dynamic metering model and forecasted the pork
supply. Bessler and Kling [11] affirmed the role of probability prediction and defined what is a
“good” prediction. Sanders and Manfredo [12], Isengildina-Massa et al. [13] compared four methods,
including the histogram method, the kernel density method, the parameter distribution estimation
method and the quantile regression method. They evaluated the confidence intervals generated by
these methods. The results showed that the kernel function method and the quantile regression method
can get the best interval forecasts.

There are two main methods for interval forecasting. One is the prediction of the interval type
data [14]. The interval type data are composed of the minimum and maximum sequences. This method
can be used in a case with comprehensive information. The disadvantage is that it cannot provide the
confidence level of the interval. The other is constructing the confidence interval by the estimation
of the errors of point forecasts. The advantage is that one can obtain confidence levels. In this paper,
we will construct a forecast interval with some target confidence level based on the entropy theory and
system complexity theory.

In practice, the prediction interval of the same target confidence is not unique, so which is the
best interval? Decision makers often choose those results that meet their own needs, so we can directly
build the “optimal” forecast intervals under their standard. In this paper, we will construct the model
of the optimal forecast interval and transform this problem to an optimization problem. Since it is
difficult to solve the analytic solution for a nonlinear optimization problem, we establish an algorithm
to solve the numerical solution.

Nowadays, the optimal criterion of the interval mainly lies in the accumulation of the accuracies of
point forecasts. The M index defined by Batu [15] is an average of point forecast errors in the prediction
interval. Demetresc [16] used the cumulative accuracy of the point forecasts, which can obtain longer
intervals and high reliability. However, for the economic data, this kind of forecast loses significance.
The forecast interval not only delivers accuracy, but also delivers information. How does one evaluate
the interval from both the accuracy and the informativeness, which seem to be contradictory aspects?
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Yaniv and Foster [17] provided a formal model of the binary loss function, i.e., the trade-off model
between accuracy and informativeness. They compared their model with many common models.
The results showed that their model is more suitable to reflect individual preferences. In this paper,
the optimal forecast interval model is established by using the trade-off model.

To obtain the confidence level, it is critical to correctly estimate the error distribution of the
point forecasts. In general, the error distribution is supposed to be a normal distribution or a χ2

distribution, etc. However, this method is subjective, and it is possible that the error distribution
does not obey the assumed distribution. Gardner [18] found that prediction intervals generated by
the Chebyshev inequality are more accurate than those generated by the hypothesis of the normal
distribution, which was opposed by Bowerman and Koehler [19], Makridakis and Winkler [20] and
Allen and Morzuch [21]. They thought the intervals generated by the Chebyshev inequality are too
wide. Stoto [22] and Cohen [23] found that the forecast errors of population growth asymptotically
obey the normal distribution. Shlyakhter et al. [24], recommended the exponential distribution in
the data of population and energy. Willia and Goodman [25] first used the empirical method to
estimate the distribution of historical errors of point forecasts without restrictions on the method
of the point forecast. Chatfield [26] pointed out that the empirical method is a good choice when
the error distribution is uncertain. Taylor and Bunn [27] first applied the quantile regression for
the interval estimation. Hanse [28] used semi-parametric estimation and the quantile method to
construct the asymptotic forecast intervals. This method has strict requirements on time series.
Demetrescu [16] pointed out that quantile regressions are not so useful, since one does not know
in advance which quantile is needed, and an iterative procedure would have obvious complexity.
Jorgensen and Sjoberg [29] used the nonparametric histogram method to find the points of the software
development workload distribution. Yan et al. [30], thought that the errors of point forecasts have
great influence on the accuracy of uncertainty analysis. Ma et al. [31] investigated existence and the
local stable region of the Nash equilibrium point. Ma and Xie [32] studied financial and economic
system under the condition of three parameters’ change circumstances, Zhang and Ma [33] and ou and
Ma [34] investigated a class of the nonlinear system modeling problem, with good research results.
Martínez-Ballesteros et al. [35] forecasted by means of association rules. Ren and Ma deepen and
complete a kind of macroeconomics IS-LM model with fractional-order calculus theory, which is a
good reflection on the memory characteristics of economic variables.

The novelty of this paper is in providing two methods. One is the stratified historical errors’
estimation, and the other is the optimal confidence interval model.

To improve the estimation accuracy, we try to stratify the historical error data according to the price
and estimate the error distribution of each layer. In the estimation of the historical error distribution,
all errors are often treated as obeying the same distribution. Considering the heteroscedasticity of
prediction errors of different prices, it is too rough. The frequencies of different prices in history
are different. Some extreme prices in history only appeared several times with the emergence of
sharp fluctuations. The forecast errors of these prices are generally large, and the sample capacity
of such errors is small. On the contrary, some prices appear very frequently with small fluctuations.
The forecast errors of these prices are generally small, and the sample capacity of such errors is big.
Therefore, we stratify the historical error data according to different prices and estimate the error
distribution of each layer.

In this paper, we induce the model of the optimal confidence interval according to the accuracy
and the informativeness trade-off model, provide a practical and efficient algorithm for the optimal
confidence interval model based on the complexity of the forecasting system and estimate the error
distributions according to the stratified prices. The kernel function method is used to estimate the
error distribution. For different target confidence levels, simulation prediction is achieved for the
continuous futures daily closing prices of soybean meal and non-GMO soybean. Unconditional
coverage, independence and conditional coverage tests are used to evaluate the interval forecasts.
Empirical analysis is divided into two subsections. In Section 5.1, we apply the equal probability
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method, the shortest interval method and the optimal interval method to construct the prediction
intervals, compare their loss functions and test whether the intervals generated by the optimal interval
method are optimal. We add the various SNR (Signal-Noise Ratio) noises to the historical error data
and the prediction prices and test the robustness of the algorithm. In Section 5.2, the prediction errors
are divided into one to 20 layers according to the prices. The error distributions are estimated in
different layers. The confidence intervals are constructed and evaluated, finding whether the error
stratification method can improve the prediction accuracy. The evaluation indices are concluding
from the loss function, interval endpoint, interval midpoint, interval length, coverage, unconditional
coverage test statistic, independence test statistic and conditional coverage test statistic. The error data,
including point forecast errors generated by the weighted local method and the RBF neural network
method, are used to investigate whether the hierarchical estimation error method can improve the
prediction accuracy for different point forecasts.

2. The Model and Algorithm of the Optimal Confidence Intervals

Denote by Yt the process to be forecast, and assume it has a continuous and strictly increasing
cumulative distribution function. Suppose ft = fYt |Ψt−1

is the conditional density of Yt on its past
Ψt−1 = {Yt−1, Yt−2, . . .}, and Ft = FYt |Ψt−1

is the conditional cumulative distribution function of Yt.
Clearly, the confidence interval [Lt, Ut](Lt < Ut) of Yt with confidence level α0(0 < α0 < 1) satisfies:

P(Lt ≤ Yt ≤ Ut|Ψt−1) =
w Ut

Lt
ft(y)dy = Ft(Ut)− Ft(Lt) = α0 (1)

Yaniv and Foster [17] established the accuracy-informativeness trade-off model:

L = f
[∣∣∣∣y−m

g

∣∣∣∣ , ln(g)
]

,

where the first variable evaluates accuracy, the second variable evaluates informativeness, y is a
truth value, m is the midpoint of prediction interval and g denotes the width of interval. Actually,
the accuracy-informativeness trade-off model is a kind of loss function. Yaniv and Foster [17] thought
that, for a good interval, the lower the L score, the better. They gave a concrete expression of L:

L =

∣∣∣∣y−m
g

∣∣∣∣+ γln(g),

where the coefficient γ ≥ 0 is a trade-off parameter that reflects the weights placed on the accuracy
and informativeness of the estimates. Yaniv and Foster [17] supposed that the value of γ is taken from
0.6 to 1.2, close to one.

For a given confidence levelα0 , we take the minimum L as the objective to solve the optimal

confidence interval, which can be transformed to find the solution

(
Lt∗
Ut∗

)
of the nonlinear

optimization problem under the condition Ψt−1, where:(
Lt∗
Ut∗

)
:= arg min

Lt ,Ut∈Dt

E(Lt|Lt ≤ Yt ≤ Ut).

Denote by Dt the set of all possible values of Yt; the constraint conditions are:

(i) Ft(Ut∗)− Ft(Lt∗) =
r Ut∗

Lt∗ ft(y)dy = α0;

(ii) Lt∗ < Ut∗

Then, we can obtain the following simplified objective function.
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Proposition 1.

E(Lt|Lt ≤ Yt ≤ Ut) =
w Ut

Lt

[∣∣∣∣∣y− Lt+Ut
2

Ut − Lt

∣∣∣∣∣+ γln (Ut − Lt)

]
ft(y)dy (2)

Proof. See Appendix A.

Thus, we only need to find the solution

(
Lt

Ut

)
that can minimize E(Lt|Lt ≤ Yt ≤ Ut) of (2)

and that satisfies Ft(Ut)− Ft(Lt) = α0 with Lt < Ut. It is difficult to solve analytic solutions; however,
for a strictly increasing and numerical Ft, we can establish an algorithm to obtain numerical solutions.
The steps are as follows.

Step 1. Take all Lt, Ut ∈ Dt and Lt < Ut, and find all

(
Lt

Ut

)
satisfying Ft(Ut)− Ft(Lt) = α0,

i.e.,

(
Lt

1

Ut
1

)
,

(
Lt

2

Ut
2

)
, . . . . Since the value Ft(Ut) − Ft(Lt) increases with the increase of Ut for a

fixed Lt, the value of Ut can be solved uniquely. Therefore, we point out that it is not necessary to take
all of the values of Dt.

Step 2. For each point obtained from the first step

(
Lt

1

Ut
1

)
,

(
Lt

2

Ut
2

)
, . . ., calculate the midpoint

Mi
t =

Li
t + Ui

t
2

.

Step 3. For every


Li

t

Mi
t

Ui
t

, compute:

Li
t =

(
1
2
+ γln

(
Ui

t − Li
t

))
α0 +

1
Ui

t − Li
t

w Li
t+Ui

t
2

Li
t

Ft(y)dy−
w Ui

t
Li

t+Ui
t

2

Ft(y)dy



Step 4. Sort all of the Lt
1,Lt

2, . . .; find the smallest Lt∗; and record the corresponding

 Lt∗
Mt∗
Ut∗


3. Estimate the Conditional Probability Distribution of Error

Denote by Ŷt the forecast of Yt and by et = Yt − Ŷt the error, i.e.,

Yt = Ŷt + et. (3)

If we take Ŷt as the optimal point forecast [27], we can estimate et and obtain the distribution of Yt.
In this paper, we apply the empirical method, which means that we can take all obtained point forecast
errors as samples of the same probability distribution. We estimate the probability distribution by the
kernel function method, for which we give the details below. However, it is rough to take all obtained
errors as obeying one distribution. For one forecasting value, if we can collect all corresponding errors,
the errors can be considered to obey one distribution. However, in general, the error sample size of
one forecasting value is very small. In order to collect as many samples as possible, we can take the
errors of one forecasting interval. Therefore, how to choose reasonable forecasting value intervals is
very important.

We stratify the prediction error samples evenly according to the forecasting values. First, we divide
the N historical forecasting values

{
Ŷk, k = t− 1, t− 2, . . . , t− N

}
into M layers, i.e., M intervals,
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and record the upper limit and lower limit of every layer. The size of every layer is about N/M.
The size of every layer may not be the same, and a 10% difference is admissible. Second, put the errors
of every layer forecasts into the error sample set of the layer. For example, when N = 1000, M = 8,
the division of the forecasts is shown in Figure 1.
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Figure 1. Stratifying historical errors.

When N is fixed, the bigger M is, the smaller N/M is; the smaller M is, the greater N/M is.
When N/M is small, the size of the sample is small, and the estimating accuracy declines. When N/M
is big, the size of the sample is big, which means the width between two adjacent red lines in Figure 1
will be bigger. At this time, the forecasting values within the same layer have a big difference; taking the
errors in this layer as obeying the same probability distribution is not reasonable. In short, M cannot
be taken too big or too small. When N is fixed, there is an optimal M to obtain the optimal estimated
error distribution, which will be verified in Section 5.

For fixed N and M (N > M), we apply the kernel function method to estimate the
error distribution. Assume that the size of each layer is N/M; the error sequence of the
i− th (i = 1, 2, · · · , M) layer is {eik, k = 1, 2, · · · , KM}. Then, the density estimation of the sequence at

point x is f̂i(x) = 1
KM

KM
∑

k=1
φ (x− eik; hi), where φ is the normal kernel function:

φ (u; h) =
1√
2πh

exp
{
− u2

2h2

}
hi is the bandwidth or smoothing parameter. In this paper, we apply the optimal bandwidth [30]

hi =

(
4

3KM

) 1
5

σ̃i, where σ̃i = median {|eik − µ̃i|} /0.6745, and µ̃i represents the sample median.

4. Evaluation of the Prediction Interval

The accuracy of forecast intervals is traditionally examined in terms of coverage. However, only if
test values are enough, the coverage can reflect the true confidence level. Bowman [36] describes
the use of smoothing techniques in statistics, including both density estimation and nonparametric
regression. Christoffersen [37] developed approaches to test the coverage and independence in terms
of hypothesis tests. Since his methods do not make any assumption about the true distribution,
they can be applied to all empirical confidence intervals. His methods include unconditional coverage,
independence and conditional coverage tests.

Suppose that α0 is the confidence level, and test sample sequence is {et, t = 1, · · · , N2}. First,
denote by It the indicator:

It =

{
1, i f et ∈ [Lt|t−1(α0), Ut|t−1(α0)]

0, i f et /∈ [Lt|t−1(α0), Ut|t−1(α0)]
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where [Lt|t−1(α0), Ut|t−1(α0)] is an out-of-sample prediction interval, which denotes the prediction
interval of et constructed by the (t − 1) − th error; Lt|t−1(α0) and Ut|t−1(α0) are the lower limit

and upper limit, respectively. Christoffersen [37] proved that
N2
∑

t=1
It obeys the binomial distribution

B(N2, α0). When the capacity of test sample is finite, Christoffersen [37] constructed a standard
likelihood ratio test with the null hypothesis H0 : E(It|Ωt−1) = α0 and the alternative hypothesis

H1 : E(It|Ωt−1) 6= α0 . The purpose is to examine, with condition Ωt−1, whether
N2
∑

t=1
It equals α0

significantly. If H0 is accepted, then the coverage of the test sample equals the target confidence level.
Christoffersen [37] established the following test statistic:

LRuc(α) = −2ln
L(α; I1, I2, ...IN2)

L( p̂; I1, I2, ...IN2)

When the null hypothesis holds, LRuc(α)
asy∼ χ2(1) and χ2(1) represent the chi-squared

distribution which degree of freedom is 1, where L(α; I1, I2, ...IN2) = (1− α)n0 αn1 , p̂ =
n1

n0 + n1
is

the maximum likelihood estimation of α0, and n0 and n1 denote the number that {It} “hit” zero and
one, respectively.

Christoffersen [37] thought that the unconditional test is insufficient when the dynamics are
present in the higher order moments. In order to test the independence, he introduced a binary
first-order Markov chain with transition probability matrix:

Π1 =

[
1− π01 π01

1− π11 π11

]
, (4)

where πij = P(It = j
∣∣It−1 = i) . If independence holds true, then πij = πj, i, j = 0, 1, where

πj = P(It = j). Therefore, under the null hypothesis of independence, (4) turns to:

Π2 =

[
1− π1 π1

1− π1 π1

]

We can estimate πij, πj by the test sample frequency, i.e.,

Π̂1 =


n00

n00 + n01

n01

n00 + n01
n10

n10 + n11

n11

n10 + n11


Additionally, π̂1 =

n01 + n11

n00 + n10 + n01 + n11
. The test statistic under the null hypothesis is:

LRind = −2ln
L(Π̂2; I1, I2, ...IN2)

L(Π̂1; I1, I2, ...IN2)

asy∼ χ2(1)

where L(Π̂1) = (1− π̂01)
n00 π̂

n01
01 (1− π̂11)

n10 π̂n11
11 , L(Π̂2) = (1− π̂1)

n00+n10 π̂
n01+n11
1 .

The above tests for unconditional coverage and independence are now combined to form a
complete test of conditional coverage:

LRcc = −2ln
L(α; I1, I2, ..., IN2)

L(Π̂1; I1, I2, ..., IN2)

asy∼ χ2(2).
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5. Empirical Analysis

In this paper, the continuous futures daily closing prices of the soybean meal and non-GMO
soybean from 4 January 2005 to 25 September 2015 are applied to the interval forecast. All of the data
are from the Dalian Commodities Exchange in China. The data capacity is 2612. We use a rolling
window approach to point forecast with a fixed bandwidth of 1558. Thus, a total of 1053 forecast values
and a total of 1053 errors are obtained. The first 1000 of 1053 are used as the training set to construct
the prediction interval, and the last 53 are used as the test set. Our purpose is as follows: (1) if the
training set is too small, the accuracy of the error distribution estimation will be reduced; (2) if the
training set is too big, the amount of data used in one-step prediction will be reduced, which also
reduces the forecast accuracy; (3) in general, different amounts of data used to predict the price will
induce different forecasts, and the prediction error is very likely to be negatively related to the amount
of data, so we apply the fixed bandwidth method in order to avoid such systematic deviations.

We detected chaos by the method of [32]. Results show that the daily closing price data are a time
series of chaos. Although the Kolmogorov entropy is positive, it is not big, which means the price
system can be described and that price forecasts are feasible. Therefore, we use the classical weighted
local region and RBF neural network methods to do the one-step point forecast. The classical weighted
local region method is looking for some trajectory points closest to the central point as the correlation
point and fitting the reconstructed function. The RBF neural network method uses the radial basis
function to forecast. The prediction mechanisms of these two methods are different. The former is
representative of the local region method, and the latter is a typical three-layer feedforward neural
network. Therefore, the two point methods used in this paper are representative.

5.1. Evaluation and Robustness Analysis of the Method of Confidence Intervals

5.1.1. Comparison of Different Methods Constructing the Confidence Interval

Tables 1 and 2 show the mean values of the closing price interval forecast in the last 53 days. In the
following tables, “lower limit”, “upper limit”, “interval midpoint”, L and “interval width” denote the
mean values of the 53 lower limits, 53 upper limits, 53 interval midpoints, 53 loss function values and
53 interval widths, respectively. Table 1 shows the result of soybean meal, and Table 2 shows that of
non-GMO soybean. OI (optimal interval) presents the result with intervals constructed by our method;
EI (equal probability interval) presents the result with intervals generated by the equal probability
method, i.e., the bilateral tail probability equals half of the target confidence; and SI (shortest interval)
presents the result with intervals constructed by the shortest interval method, i.e., the shortest interval
is chosen, the one among all of the intervals with the target confidence. From Tables 1 and 2, no matter
if the confidence level is 80%, 90% or 95%, no matter if the point forecast method is the weighted local
region method or the RBF neural network method, the forecast intervals constructed by our method
have the smallest loss function value. The loss function of OI is 20% lower than that of EI and is 19%
lower than that of SI.

Table 1. The interval forecasts of soybean meal. OI, optimal interval; EI, equal probability interval; SI:
shortest interval.

Confidence Level
The Weighted Local Region RBF Neural Network

Lower Limit Upper Limit L Lower Limit Upper Limit L

80%
OI 2642.34 2768.68 3.30 2535.81 2843.22 4.52
EI 2646.98 2773.55 5.14 2528.49 2835.77 5.95
SI 2644.50 2770.60 5.14 2530.93 2838.34 5.95

90%
OI 2617.39 2792.50 4.62 2468.68 2893.44 5.33
EI 2625.68 2800.38 5.38 2470.05 2895.32 6.21
SI 2622.51 2796.43 5.38 2458.21 2881.95 6.22

95%
OI 2593.38 2826.23 5.10 2426.98 2946.08 5.46
EI 2427.04 2802.54 6.18 2309.04 2899.63 6.57
SI 2597.83 2829.53 5.61 2419.10 2938.11 6.38
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Table 2. The interval forecasts of non-GMO soybean.

Confidence Level
The Weighted Local Region RBF Neural Network

Lower Limit Upper Limit L Lower Limit Upper Limit L

80%
OI 4147.66 4285.14 3.10 4174.33 4440.23 3.44
EI 4150.06 4287.24 5.34 4139.06 4412.03 6.03
SI 4152.56 4289.65 5.34 4168.17 4433.39 6.05

90%
OI 4087.47 4353.79 5.08 4113.83 4471.03 5.06
EI 4120.84 4316.16 5.57 4084.13 4444.14 6.19
SI 4119.94 4315.14 5.57 4103.69 4458.77 6.20

95%
OI 4087.47 4353.79 5.08 4068.18 4507.38 5.50
EI 4087.80 4354.21 5.80 4036.21 4473.38 6.33
SI 4092.47 4359.28 5.81 4052.54 4486.67 6.33

5.1.2. The Robustness Analysis of the Optimal Confidence Interval Algorithm

In Equation (3), sequences Ŷt and et may contain noise. In this section, different SNR Gaussian
white noises are added into the historical error data and the forecast price; the prediction interval and
loss function are re-calculated; the absolute relative error percent is obtained with the no-noise results
as benchmarks; and the robustness of the algorithm is analyzed.

Tables 3 and 4 list the noise test results of the soybean meal price and non-GMO soybean price.
Their point forecast methods are the RBF neural network method and the weighted local region
method. The symbol H means that the historical error data are added into noise; P means that the
forecast Ŷt is added into the noise; and H and P mean that both historical error data and the forecast are
added into the noise. Theoretically, SNR < 10 is strong noise, and SNR > 1000 is weak noise, where SNR
means the signal to noise ratio. From the table below, we can know that, when SNR = 1, the forecast
results produce a rather big deviation, while for SNR = 100 and 1000, the deviations are not over 0.06%,
which can be ignored. Taken together, with the noise intensity increasing, the effect of the result is
also increased; the noise added into the historical error data has relatively little effect on the results,
and especially when SNR = 10, 100 and 1000, the effects are below 3%. Instead, the noise added into Ŷt

has a relatively big effect, especially when SNR = 1 and 10. Therefore, the algorithm to calculate the
optimal prediction interval in this paper is robust for noise with SNR ≥ 100.

Table 3. The weighted local region: soybean meal. H, historical error data.

SNR

Confidence Level 80% Confidence Level 90% Confidence Level 95%

Lower
Limit

Upper
Limit L Lower

Limit
Upper
Limit L Lower

Limit
Upper
Limit L

H

1000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
100 0.00% 0.00% 0.00% 0.02% 0.02% 0.00% 0.02% 0.02% 0.00%
10 0.21% 0.36% 2.17% 0.21% 0.33% 2.61% 0.39% 0.14% 1.62%
1 1.59% 1.78% 9.07% 1.54% 1.56% 12.91% 2.17% 2.36% 9.53%

P

1000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
100 0.05% 0.04% 0.01% 0.02% 0.02% 0.00% 0.02% 0.02% 0.00%
10 40.78% 40.75% 9.45% 19.32% 19.31% 11.77% 7.47% 7.46% 2.26%
1 17.72% 17.69% 4.62% 60.96% 60.95% 65.87% 46.34% 46.34% 10.29%

H,P

10,1000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
100,100 0.00% 0.00% 0.00% 0.02% 0.02% 0.00% 0.02% 0.02% 0.00%
10,10 37.02% 37.61% 10.01% 39.77% 40.52% 18.57% 8.20% 8.67% 3.47%
5,5 13.98% 15.75% 8.12% 4.38% 6.08% 11.53% 1.13% 2.65% 4.13%
1,1 85.22% 91.29% 24.40% 87.23% 92.80% 39.09% 11.87% 16.00% 9.58%
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Table 4. The RBF neural network: non-GMO soybean.

SNR

Confidence Level 80% Confidence Level 90% Confidence Level 95%

Lower
Limit

Upper
Limit L Lower

Limit
Upper
Limit L Lower

Limit
Upper
Limit L

H

1000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
100 0.00% 0.00% 0.00% 0.04% 0.06% 0.00% 0.00% 0.00% 0.00%
10 0.28% 0.01% 2.96% 0.00% 0.00% 0.00% 0.23% 0.06% 2.40%
1 1.16% 1.01% 18.56% 0.03% 0.05% 0.01% 1.99% 1.24% 7.95%

P

1000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
100 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
10 16.90% 15.88% 0.00% 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%
1 51.15% 48.08% 0.00% 0.02% 0.01% 0.00% 44.03% 39.76% 0.00%

H,P

1000,1000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
100,100 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
10,10 2.86% 3.19% 2.41% 2.60% 2.93% 1.56% 6.10% 5.60% 0.93%
5,5 13.26% 13.63% 10.78% 2.78% 3.53% 3.85% 19.43% 18.64% 3.74%
1,1 64.64% 62.53% 14.30% 22.02% 23.02% 10.35% 0.39% 2.34% 8.94%

5.2. Optimal Hierarchical Analysis

In this section, we verify that, by empirical analysis: (1) the forecasting values and their
corresponding errors are correlated, so estimating the error distribution should be according to
different forecast values; (2) stratified error estimations are much better than those without stratified
error estimations, since the former can obtain better interval forecasts; (3) for stratified error estimation,
there is an optimal number of layers to attain the best interval forecasts.

5.2.1. Comparison of the Error Distribution under Different Hierarchies

First, correlation analysis was performed. We take the first 1000 historical errors obtained by the
weighted local region point forecasts and show the scatter plot of the relative error percent in Figure 2.
In order to find whether the prediction prices and errors are correlated, the Pearson correlation index
0.1813 is calculated, which indicates that the prices and the errors are significantly correlated at the
0.01 significance level (bilateral).
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Second, using the method in Section 3, we divide 1000 historical price forecasts into
M (M = 1, 2, · · · , 20) layers, where M = 1 means no hierarchy. Denote by Ai (i = 1, 2, · · · , M)

the Ai − th layer. Put the errors corresponding to the prices into each layer, and obtain the error sample
in each layer. Third, with the error sample of the Ai − th layer, we estimate the probability density in
the Ai − th layer by the kernel function method. Then, we can get M probability density functions.
Fourth, we take the last 53 price data as the test set. Assume the number of layers is M. For each
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price in the test set, we choose the layer to which it belongs, namely the A∗ − th layer. The A∗ − th
layer contains at least 50 errors. We pick out the error probability density function of the A∗ − th
layer and construct the optimal interval by the method of Section 2. For convenience, we take γ = 1.
Thus, we can collect 53 optimal intervals for a number of layers M. For every M, we can also collect 53
intervals. Finally, we evaluate all of the intervals according to Section 4.

Table 5 and Tables B1 and B2 (see Appendix B) list the results and the evaluation of optimal
prediction intervals with target confidence levels of 90%, 95% and 80%, respectively. In the following
tables, n1 presents the number with It hitting one; the coverage = n1

n ; according to all of the values
of LRuc, LRind, LRcc (see Section 4), the null hypothesis is accepted at the 0.05 significance (bilateral)
level that the coverage of the test samples is equal to the target confidence, and the confidence intervals
satisfy the independence; for every element in the test set, we compute the value of the loss function,
where L denotes the mean value of the 53 loss function values.

Table 5. The weighted local region: the optimal interval-confidence level of 90%.

Layer
Number

Lower
Limit

Upper
Limit

Interval
Width

Interval
Midpoint L Coverage n1 LRuc LRind LRcc

1 2617 2793 175.11 2705 4.62 0.92 49 0.38 0.67 1.21
2 2625 2796 170.17 2710 4.39 0.89 47 0.10 1.57 1.91
3 2622 2795 173.22 2708 4.40 0.89 47 0.10 1.57 1.91
4 2630 2795 165.20 2712 4.17 0.89 47 0.10 1.57 1.91
5 2632 2795 163.09 2713 4.15 0.89 47 0.10 1.57 1.91
6 2632 2797 164.66 2715 4.17 0.92 47 0.28 0.70 1.14
7 2629 2802 172.92 2715 4.21 0.94 46 0.94 0.40 1.46
8 2627 2803 176.13 2715 4.21 0.96 46 2.28 0.18 2.54
9 2631 2804 173.21 2718 4.08 0.96 45 2.15 0.18 2.42

10 2633 2805 171.64 2719 3.95 0.95 40 1.56 0.21 1.86
11 2630 2808 178.00 2718 3.97 0.95 38 1.34 0.22 1.66
12 2632 2807 174.36 2719 3.85 0.95 38 1.34 0.22 1.66
13 2634 2806 171.08 2720 3.80 0.95 36 1.13 0.23 1.46
14 2630 2808 177.45 2719 3.82 0.94 33 0.83 0.25 1.20
15 2629 2812 183.15 2720 3.87 0.94 32 0.74 0.26 1.12
16 2625 2812 187.29 2718 3.88 0.94 32 0.74 0.26 1.12
17 2622 2817 194.52 2719 3.93 0.97 31 2.24 0.07 2.37
18 2618 2815 196.46 2717 3.95 0.96 26 1.53 0.08 1.69
19 2615 2825 210.03 2720 4.02 0.96 26 1.53 0.08 1.69
20 2611 2827 216.10 2719 4.07 0.95 21 0.89 0.10 1.09

From the above table, the intervals constructed by our method satisfy the target confidence level
and independence. Since the less the loss function value, the better the interval, the results in these
tables mean that the intervals with stratified error estimations are much better than those without
stratified error estimations. Therefore, it is efficient to construct prediction intervals with stratifying
errors. From the tables, with the increasing of the number of layers, the value of L first decreases and
then increases. The reason is that the greater the number of layers, the less the number of errors in each
layer and the lower the accuracy of the estimated error density function. Table 5 and Tables B1 and B2
present that the optimal number of layers with 90% and 95% intervals are 13, the optimal number of
layers with 80% interval is 14 and the loss function values with stratified error distribution estimations
are 18%, 17% and 52% lower than those without stratified error distribution estimations, respectively.
Figures 3–5 plot the prediction intervals with M = 1, 2, · · · , 20. The red lines indicate the upper and
lower limits of intervals with the optimal number of layers, i.e., M = 13 or 14, the black lines indicate
intervals with M = 1 and the green lines indicate intervals with M taking the remaining values.
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5.2.2. The Effect of Point Forecast Methods on the Error Hierarchy

We use the error sample of the RBF neural network point forecasts to repeat the numerical
experiment of Section 5.2.1. The results are shown in Tables B3–B5 (see Appendix B). From L,
the intervals with stratified error estimations are better than those without stratified error estimations.
For point forecasts obtained by different methods, the method of error hierarchy is helpful to obtain
better interval forecasting. However, although all of the intervals pass the unconditional coverage test,
intervals with the 90% confidence level and some intervals with the confidence levels of 80% and 95%
fail to pass the independence and conditional coverage tests, which shows that the intervals obtained
by the RBF neural network errors have poor independence.
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6. Conclusions

In this paper, we deduce the theoretical model of the optimal confidence interval, establish the
algorithm to solve the optimal interval, stratify the historical error data according to the prediction
prices of data, estimate the error distribution by using the nonparametric method, construct the
optimal confidence interval of the future price, use the point forecast errors obtained by the weighted
region method and the RBF neural network methods as samples and simulate the optimal interval
forecast of prices of soybean meal and non-GMO soybean futures. Numerical experiments show that:
(1) the forecast intervals constructed by our method have the smallest loss function value; the loss
function is 20% lower than that of intervals constructed by the equal probability method and is 19%
lower than that of intervals constructed by the shortest interval method; (2) the algorithm to calculate
the optimal prediction interval in this paper is robust for noise with SNR ≥ 100; (3) for error data
obtained by the different point forecast method and for different target confidence levels, the intervals
with stratified error estimations are much better than those without stratified error estimations, and the
loss function value can be reduced by up to 52%. The interval forecast method provided in this paper
can obtain a conclusion that is more in line with individual requirements, improve the accuracy of the
forecasting of agricultural production prices and provide a reference for other economic data forecasts.
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Appendix A.

Proof of Proposition 1. In order to simplify the objective function, from the constraint condition (ii),
we have:

E(Lt|Lt ≤ Yt ≤ Ut) =
w Ut
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r

y ft(y)dy = yFt(y)−
r

Ft(y)dy, from (2) and the constraint condition (i),
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=

(
1
2
+ γln (Ut − Lt)

)
α0 +

1
Ut − Lt

(
w Lt+Ut

2

Lt
Ft(y)dy−

w Ut
Lt+Ut

2
Ft(y)dy

)
.

Therefore, Equation (2) holds true.

Appendix B.

Table B1. The weighted local region: the optimal interval-confidence level of 95%.

Layer
Number

Lower
Limit

Upper
Limit

Interval
Width

Interval
Midpoint L Coverage n1 LRuc LRind LRcc

1 2593 2826 232.86 2710 5.10 0.98 52 1.40 0.04 1.48
2 2605 2823 217.99 2714 4.81 0.98 52 1.40 0.04 1.48
3 2598 2828 230.02 2713 4.85 0.98 52 1.40 0.04 1.48
4 2597 2826 228.81 2711 4.60 0.98 52 1.40 0.04 1.48
5 2601 2825 224.02 2713 4.58 0.98 52 1.40 0.04 1.48
6 2597 2825 227.99 2711 4.61 0.98 50 1.28 0.04 1.36
7 2583 2834 250.66 2708 4.68 0.98 48 1.15 0.04 1.24
8 2575 2855 279.75 2715 4.73 0.98 47 1.09 0.04 1.18
9 2582 2849 266.91 2715 4.56 0.98 46 1.03 0.04 1.12

10 2593 2841 247.81 2717 4.36 0.98 41 0.75 0.05 0.84
11 2585 2854 269.17 2720 4.41 0.98 39 0.64 0.05 0.74
12 2597 2844 247.11 2720 4.25 0.98 39 0.64 0.05 0.74
13 2593 2855 262.37 2724 4.22 0.97 37 0.54 0.06 0.65
14 2590 2865 275.27 2727 4.26 0.97 34 0.40 0.06 0.52
15 2589 2868 278.80 2729 4.31 0.97 33 0.35 0.06 0.48
16 2585 2873 287.37 2729 4.33 0.97 33 0.35 0.06 0.48
17 2585 2875 290.02 2730 4.38 0.97 31 0.27 0.07 0.40
18 2582 2878 295.39 2730 4.40 0.96 26 0.10 0.08 0.26
19 2583 2882 298.74 2732 4.46 0.96 26 0.10 0.08 0.26
20 2583 2884 301.23 2733 4.50 0.95 21 0.01 0.10 0.21

Table B2. The weighted local region: the optimal interval-confidence level of 80%.

Layer
Number

Lower
Limit

Upper
Limit

Interval
Width

Interval
Midpoint L Coverage n1 LRuc LRind LRcc

1 2642 2769 126.34 2705 3.30 0.85 45 0.85 2.53 7.28
2 2646 2774 128.01 2710 2.88 0.83 44 0.31 0.16 4.12
3 2642 2771 129.47 2706 2.89 0.85 45 0.85 2.53 7.28
4 2650 2772 121.69 2711 2.45 0.81 43 0.04 0.06 3.52
5 2652 2772 120.35 2712 2.43 0.81 43 0.04 0.06 3.52
6 2655 2777 121.65 2716 2.47 0.82 42 0.18 0.29 4.04
7 2656 2780 124.53 2718 2.49 0.84 41 0.43 0.74 4.91
8 2658 2785 127.64 2721 2.45 0.79 38 0.02 0.54 1.04
9 2659 2786 126.79 2722 2.20 0.81 38 0.02 1.22 1.67

10 2663 2789 126.53 2726 1.94 0.76 32 0.36 1.63 2.55
11 2661 2791 129.23 2726 1.94 0.80 32 0.00 1.60 2.06
12 2662 2788 126.14 2725 1.73 0.80 32 0.00 1.60 2.06
13 2666 2789 123.31 2727 1.62 0.76 29 0.31 2.41 3.27
14 2662 2790 127.80 2726 1.59 0.77 27 0.17 3.69 4.39
15 2662 2796 133.58 2729 1.67 0.85 29 0.64 2.27 3.24
16 2658 2796 137.58 2727 1.65 0.85 29 0.64 2.27 3.24
17 2658 2800 142.38 2729 1.71 0.88 28 1.26 0.51 2.04
18 2655 2802 146.77 2728 1.73 0.85 23 0.49 0.30 1.12
19 2654 2812 157.88 2733 1.79 0.89 24 1.53 1.19 2.96
20 2652 2815 163.19 2733 1.86 0.91 20 1.96 2.60 4.76
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Table B3. The RBF network: the optimal interval-confidence level of 90%.

Layer
Number

Lower
Limit

Upper
Limit

Interval
Width

Interval
Midpoint L Coverage n1 LRuc LRind LRcc

1 2469 2893 424.76 2681 5.33 0.94 50 1.29 ** 9.36 ** 10.77
2 2475 2883 407.52 2679 5.26 0.94 50 1.29 ** 9.36 ** 10.77
3 2463 2848 385.75 2655 5.13 0.92 49 0.38 ** 18.45 ** 24.25
4 2469 2827 357.77 2648 5.05 0.91 48 0.02 ** 11.80 **16.73
5 2476 2836 360.57 2656 5.06 0.92 49 0.38 ** 18.44 ** 24.25
6 2485 2836 351.40 2660 5.03 0.92 49 0.38 ** 18.44 ** 24.25
7 2485 2837 351.63 2661 4.93 0.92 49 0.38 ** 18.44 ** 24.25
8 2480 2848 368.28 2664 4.96 0.92 49 0.38 ** 18.44 ** 24.25
9 2480 2864 384.58 2672 4.99 0.92 49 0.38 ** 18.44 ** 24.25
10 2481 2871 389.39 2676 4.98 0.92 49 0.38 ** 18.44 ** 24.25
11 2483 2873 390.17 2678 4.99 0.94 50 1.29 ** 9.36 ** 10.77
12 2480 2881 401.04 2680 5.01 0.94 50 1.29 ** 9.36 ** 10.77
13 2487 2886 399.33 2686 5.03 0.94 48 1.11 ** 9.20 * 10.43
14 2493 2885 392.07 2689 5.02 0.94 48 1.11 ** 9.20 * 10.43
15 2495 2882 387.09 2688 5.02 0.94 47 1.02 ** 9.18 * 10.26
16 2498 2873 374.94 2686 4.89 0.94 47 1.02 ** 9.18 * 10.26
17 2498 2871 373.63 2684 4.88 0.92 44 0.16 ** 17.82 ** 23.19
18 2496 2879 383.92 2687 4.95 0.94 44 0.77 ** 8.86 * 9.77
19 2490 2879 389.07 2685 4.94 0.94 44 0.77 ** 8.86 * 9.77
20 2487 2884 397.40 2685 4.97 0.93 43 0.70 ** 8.77 * 9.61

* Denotes that the null hypothesis is rejected at the 0.05 significance (bilateral) level; ** denotes that the null
hypothesis is rejected at the 0.01 significance (bilateral) level.

Table B4. The RBF network: the optimal interval-confidence level of 95%.

Layer
Number

Lower
Limit

Upper
Limit

Interval
Width

Interval
Midpoint L Coverage n1 LRuc LRind LRcc

1 2427 2946 519.10 2686 5.46 0.98 52 1.40 0.04 1.48
2 2434 2936 501.72 2685 5.37 0.98 52 1.40 0.04 1.48
3 2421 2918 496.98 2669 5.20 0.98 52 1.40 0.04 1.48
4 2430 2879 448.59 2654 5.09 0.94 50 0.05 ** 9.36 * 9.52
5 2438 2879 441.37 2658 5.09 0.94 50 0.05 ** 9.36 * 9.52
6 2442 2880 437.20 2661 5.07 0.94 50 0.05 ** 9.36 * 9.52
7 2445 2883 437.66 2664 4.91 0.94 50 0.05 ** 9.36 * 9.52
8 2443 2893 450.22 2668 4.93 0.94 50 0.05 ** 9.36 * 9.52
9 2441 2903 461.81 2672 4.96 0.94 50 0.05 ** 9.36 * 9.52

10 2442 2907 465.45 2674 4.95 0.94 50 0.05 ** 9.36 * 9.52
11 2444 2913 469.27 2678 4.96 0.96 51 0.18 0.16 0.42
12 2441 2918 476.68 2679 4.98 0.98 52 1.40 0.04 1.48
13 2443 2923 479.50 2683 5.01 0.98 50 1.28 0.04 1.36
14 2449 2924 474.97 2686 5.01 0.98 50 1.28 0.04 1.36
15 2453 2921 468.73 2687 5.01 0.98 49 1.21 0.04 1.30
16 2461 2913 452.48 2687 4.82 0.96 48 0.11 0.17 0.37
17 2461 2915 453.87 2688 4.81 0.96 46 0.07 0.18 0.34
18 2459 2920 461.47 2690 4.90 0.98 46 1.03 0.04 1.12
19 2452 2921 468.44 2686 4.87 0.98 46 1.03 0.04 1.12
20 2448 2924 476.20 2686 4.92 0.98 45 0.97 0.05 1.06

* Denotes that the null hypothesis is rejected at the 0.05 significance (bilateral) level; ** denotes that the null
hypothesis is rejected at the 0.01 significance (bilateral) level.
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Table B5. The RBF network: the optimal interval-confidence level of 80%.

Layer
Number

Lower
Limit

Upper
Limit

Interval
Width

Interval
Midpoint L Coverage n1 LRuc LRind LRcc

1 2536 2843 307.42 2689 4.52 0.89 47 2.85 ** 8.15 ** 15.52
2 2533 2835 302.28 2684 4.48 0.89 47 2.85 ** 8.15 ** 15.52
3 2520 2804 283.87 2662 4.36 0.89 47 2.85 ** 8.15 ** 15.52
4 2524 2794 270.41 2659 4.30 0.81 43 0.04 1.25 4.71
5 2525 2796 271.39 2661 4.31 0.81 43 0.04 1.25 4.71
6 2530 2793 262.45 2661 4.28 0.81 43 0.04 1.25 4.71
7 2533 2787 253.94 2660 4.18 0.79 42 0.02 2.36 5.59
8 2533 2794 260.87 2663 4.20 0.81 43 0.04 1.25 4.71
9 2535 2803 267.71 2669 4.21 0.85 45 0.85 3.69 * 8.44

10 2537 2806 269.56 2671 4.20 0.85 45 0.85 3.69 * 8.44
11 2537 2807 269.62 2672 4.20 0.85 45 0.85 3.69 * 8.44
12 2534 2814 279.67 2674 4.23 0.85 45 0.85 3.69 * 8.44
13 2537 2818 281.31 2677 4.25 0.86 44 1.37 * 5.37 ** 10.85
14 2536 2815 279.25 2675 4.24 0.86 44 1.37 * 5.37 ** 10.85
15 2533 2813 279.25 2673 4.24 0.86 43 1.23 * 5.26 * 10.55
16 2531 2803 271.37 2667 4.13 0.86 43 1.23 * 5.26 * 10.55
17 2539 2807 267.59 2673 4.12 0.85 41 0.95 * 5.03 * 9.96
18 2529 2812 282.53 2670 4.20 0.87 41 1.71 * 7.43 ** 13.41
19 2526 2810 283.88 2668 4.18 0.87 41 1.71 * 7.43 ** 13.41
20 2523 2813 290.14 2668 4.21 0.87 40 1.54 * 7.30 ** 13.07

* Denotes that the null hypothesis is rejected at the 0.05 significance (bilateral) level; ** denotes that the null
hypothesis is rejected at the 0.01 significance (bilateral) level.
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