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Abstract: Information-theoretic measures, such as the entropy, the cross-entropy and the Kullback–Leibler
divergence between two mixture models, are core primitives in many signal processing tasks.
Since the Kullback–Leibler divergence of mixtures provably does not admit a closed-form formula,
it is in practice either estimated using costly Monte Carlo stochastic integration, approximated or
bounded using various techniques. We present a fast and generic method that builds algorithmically
closed-form lower and upper bounds on the entropy, the cross-entropy, the Kullback–Leibler and
the α-divergences of mixtures. We illustrate the versatile method by reporting our experiments for
approximating the Kullback–Leibler and the α-divergences between univariate exponential mixtures,
Gaussian mixtures, Rayleigh mixtures and Gamma mixtures.
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1. Introduction

Mixture models are commonly used in signal processing. A typical scenario is to use mixture
models [1–3] to smoothly model histograms. For example, Gaussian Mixture Models (GMMs)
can be used to convert grey-valued images into binary images by building a GMM fitting the
image intensity histogram and then choosing the binarization threshold as the average of the
Gaussian means [1]. Similarly, Rayleigh Mixture Models (RMMs) are often used in ultrasound
imagery [2] to model histograms, and perform segmentation by classification. When using mixtures,
a fundamental primitive is to define a proper statistical distance between them. The Kullback–Leibler
(KL) divergence [4], also called relative entropy or information discrimination, is the most commonly
used distance. Hence the main target of this paper is to faithfully measure the KL divergence.
Let m(x) = ∑k

i=1 wi pi(x) and m′(x) = ∑k′
i=1 w′i p

′
i(x) be two finite statistical density mixtures of k

and k′ components, respectively. Notice that the Cumulative Density Function (CDF) of a mixture is
like its density also a convex combinations of the component CDFs. However, beware that a mixture is
not a sum of random variables (RVs). Indeed, sums of RVs have convolutional densities. In statistics,
the mixture components pi(x) are often parametric: pi(x) = p(x; θi), where θi is a vector of parameters.
For example, a mixture of Gaussians (MoG also used as a shortcut instead of GMM) has each component
distribution parameterized by its mean µi and its covariance matrix Σi (so that the parameter vector is
θi = (µi, Σi)). Let X = {x ∈ R : p(x; θ) > 0} be the support of the component distributions. Denote
by H×(m, m′) = −

∫
X m(x) log m′(x)dx the cross-entropy [4] between two continuous mixtures of
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densities m and m′, and denote by H(m) = H×(m, m) =
∫
X m(x) log 1

m(x)dx = −
∫
X m(x) log m(x)dx

the Shannon entropy [4]. Then the Kullback–Leibler divergence between m and m′ is given by:

KL(m : m′) = H×(m, m′)− H(m) =
∫
X

m(x) log
m(x)
m′(x)

dx ≥ 0. (1)

The notation “:” is used instead of the usual comma “,” notation to emphasize that the distance
is not a metric distance since neither is it symmetric (KL(m : m′) 6= KL(m′ : m)), nor does it satisfy
the triangular inequality [4] of metric distances (KL(m : m′) + KL(m′ : m′′) 6≥ KL(m : m′′)). When the
natural base of the logarithm is chosen, we get a differential entropy measure expressed in nat units.
Alternatively, we can also use the base-2 logarithm (log2 x =

log x
log 2 ) and get the entropy expressed in bit

units. Although the KL divergence is available in closed-form for many distributions (in particular
as equivalent Bregman divergences for exponential families [5], see Appendix C), it was proven
that the Kullback–Leibler divergence between two (univariate) GMMs is not analytic [6] (see also
the particular case of a GMM of two components with the same variance that was analyzed in [7]).
See Appendix A for an analysis. Note that the differential entropy may be negative. For example,
the differential entropy of a univariate Gaussian distribution is log(σ

√
2πe), and is therefore negative

when the standard variance σ < 1√
2πe
≈ 0.242. We consider continuous distributions with entropies

well-defined (entropy may be undefined for singular distributions like Cantor’s distribution [8]).

1.1. Prior Work

Many approximation techniques have been designed to beat the computationally intensive
Monte Carlo (MC) stochastic estimation: K̂Ls(m : m′) = 1

s ∑s
i=1 log m(xi)

m′(xi)
with x1, . . . , xs ∼ m(x)

(s independently and identically distributed (i.i.d.) samples x1, . . . , xs). The MC estimator is
asymptotically consistent, lims→∞ K̂Ls(m : m′) = KL(m : m′), so that the “true value” of the KL
of mixtures is estimated in practice by taking a very large sample (say, s = 109). However, we point
out that the MC estimator gives as output a stochastic approximation, and therefore does not guarantee
deterministic bounds (confidence intervals may be used). Deterministic lower and upper bounds of the
integral can be obtained by various numerical integration techniques using quadrature rules. We refer
to [9–12] for the current state-of-the-art approximation techniques and bounds on the KL of GMMs.
The latest work for computing the entropy of GMMs is [13]. It considers arbitrary finely tuned bounds
of the entropy of isotropic Gaussian mixtures (a case encountered when dealing with KDEs, kernel
density estimators). However, there is a catch in the technique of [13]: It relies on solving the unique
roots of some log-sum-exp equations (See Theorem 1 of [13], p. 3342) that do not admit a closed-form
solution. Thus it is a hybrid method that contrasts with our combinatorial approach. Bounds of the
KL divergence between mixture models can be generalized to bounds of the likelihood function of
mixture models [14], because log-likelihood is just the KL between the empirical distribution and the
mixture model up to a constant shift.

In information geometry [15], a mixture family of linearly independent probability distributions
p1(x), ..., pk(x) is defined by the convex combination of those non-parametric component distributions:
m(x; η) = ∑k

i=1 ηi pi(x) with ηi > 0 and ∑k
i=1 ηi = 1. A mixture family induces a dually flat space

where the Kullback–Leibler divergence is equivalent to a Bregman divergence [5,15] defined on the
η-parameters. However, in that case, the Bregman convex generator F(η) =

∫
m(x; η) log m(x; η)dx

(the Shannon information) is not available in closed-form. Except for the family of multinomial
distributions that is both a mixture family (with closed-form KL(m : m′) = ∑k

i=1 mi log mi
m′i

, the discrete

KL [4]) and an exponential family [15].

1.2. Contributions

In this work, we present a simple and efficient method that builds algorithmically a closed-form
formula that guarantees both deterministic lower and upper bounds on the KL divergence within an
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additive factor of log k + log k′. We then further refine our technique to get improved adaptive bounds.
For univariate GMMs, we get the non-adaptive bounds in O(k log k + k′ log k′) time, and the adaptive
bounds in O(k2 + k′2) time. To illustrate our generic technique, we demonstrate it based on Exponential
Mixture Models (EMMs), Gamma mixtures, RMMs and GMMs. We extend our preliminary results
on KL divergence [16] to other information theoretical measures such as the differential entropy and
α-divergences.

1.3. Paper Outline

The paper is organized as follows. Section 2 describes the algorithmic construction of the
formula using piecewise log-sum-exp inequalities for the cross-entropy and the Kullback–Leibler
divergence. Section 3 instantiates this algorithmic principle to the entropy and discusses related
works. Section 4 extends the proposed bounds to the family of alpha divergences. Section 5 discusses
an extension of the lower bound to f -divergences. Section 6 reports our experimental results on
several mixture families. Finally, Section 7 concludes this work by discussing extensions to other
statistical distances. Appendix A proves that the Kullback–Leibler divergence of mixture models is
not analytic [6]. Appendix B reports the closed-form formula for the KL divergence between scaled
and truncated distributions of the same exponential family [17] (that include Rayleigh, Gaussian and
Gamma distributions among others). Appendix C shows that the KL divergence between two mixtures
can be approximated by a Bregman divergence.

2. A Generic Combinatorial Bounding Algorithm Based on Density Envelopes

Let us bound the cross-entropy H×(m : m′) by deterministic lower and upper bounds,
L×(m : m′) ≤ H×(m : m′) ≤ U×(m : m′), so that the bounds on the Kullback–Leibler divergence
KL(m : m′) = H×(m : m′)− H×(m : m) follows as:

L×(m : m′)−U×(m : m) ≤ KL(m : m′) ≤ U×(m : m′)− L×(m : m). (2)

Since the cross-entropy of two mixtures ∑k
i=1 wi pi(x) and ∑k′

j=1 w′j p
′
j(x):

H×(m : m′) = −
∫
X

(
k

∑
i=1

wi pi(x)

)
log

(
k′

∑
j=1

w′j p
′
j(x)

)
dx (3)

has a log-sum term of positive arguments, we shall use bounds on the log-sum-exp (lse) function [18,19]:

lse
(
{xi}l

i=1

)
= log

(
l

∑
i=1

exi

)
.

We have the following basic inequalities:

max{xi}l
i=1 < lse

(
{xi}l

i=1

)
≤ log l + max{xi}l

i=1. (4)

The left-hand-side (LHS) strict inequality holds because ∑l
i=1 exi > max{exi}l

i=1 = exp
(

max{xi}l
i=1

)
since ex > 0, ∀x ∈ R. The right-hand-side (RHS) inequality follows from the fact that
∑l

i=1 exi ≤ l max{exi}l
i=1 = l exp(max{xi}l

i=1), and equality holds if and only if x1 = · · · = xl . The lse
function is convex but not strictly convex, see exercise 7.9 [20]. It is known [21] that the conjugate of
the lse function is the negative entropy restricted to the probability simplex. The lse function enjoys the
following translation identity property: lse

(
{xi}l

i=1

)
= c + lse

(
{xi − c}l

i=1

)
, ∀c ∈ R. Similarly, we
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can also lower bound the lse function by log l + min{xi}l
i=1. We write equivalently that for l positive

numbers x1, . . . , xl ,

max
{

log max{xi}l
i=1, log l + log min{xi}l

i=1

}
≤ log

l

∑
i=1

xi ≤ log l + log max{xi}l
i=1. (5)

In practice, we seek matching lower and upper bounds that minimize the bound gap. The gap
of that ham-sandwich inequality in Equation (5) is min{log maxi xi

mini xi
, log l}, which is upper bounded

by log l.
A mixture model ∑k′

j=1 w′j p
′
j(x) must satisfy

max
{

max{log w′j p
′
j(x)}k′

j=1, log k′ + min{log w′j p
′
j(x)}k′

j=1

}
≤ log

(
k′

∑
j=1

w′j p
′
j(x)

)
≤ log k′ + max{log w′j p

′
j(x)}k′

j=1 (6)

point-wisely for any x ∈ X . Therefore we shall bound the integral term
∫
X m(x) log

(
∑k′

j=1 w′j p
′
j(x)

)
dx

in Equation (3) using piecewise lse inequalities where the min and max are kept unchanged. We get

L×(m : m′) = −
∫
X

m(x)max{log w′j p
′
j(x)}k′

j=1dx− log k′, (7)

U×(m : m′) = −
∫
X

m(x)max
{

min{log w′j p
′
j(x)}k′

j=1 + log k′, max{log w′j p
′
j(x)}k′

j=1

}
dx. (8)

In order to calculate L×(m : m′) and U×(m : m′) efficiently using closed-form formula, let us
compute the upper and lower envelopes of the k′ real-valued functions {w′j p′j(x)}k′

j=1 defined on

the support X , that is, EU(x) = max{w′j p′j(x)}k′
j=1 and EL(x) = min{w′j p′j(x)}k′

j=1. These envelopes
can be computed exactly using techniques of computational geometry [22,23] provided that we can
calculate the roots of the equation w′r p′r(x) = w′s p′s(x), where w′r p′r(x) and w′s p′s(x) are a pair of
weighted components. (Although this amounts to solve quadratic equations for Gaussian or Rayleigh
distributions, the roots may not always be available in closed form, e.g. in the case of Weibull
distributions.)

Let the envelopes be combinatorially described by ` elementary interval pieces in the form
Ir = (ar, ar+1) partitioning the support X = ]`r=1 Ir (with a1 = minX and a`+1 = maxX ). Observe
that on each interval Ir, the maximum of the functions {w′j p′j(x)}k′

j=1 is given by w′
δ(r)p′

δ(r)(x), where

δ(r) indicates the weighted component dominating all the others, i.e., the arg max of {w′j p′j(x)}k′
j=1 for

any x ∈ Ir, and the minimum of {w′j p′j(x)}k′
j=1 is given by w′

ε(r)p′
ε(r)(x).

To fix ideas, when mixture components are univariate Gaussians, the upper envelope EU(x)
amounts to find equivalently the lower envelope of k′ parabolas (see Figure 1) which has linear
complexity, and can be computed in O(k′ log k′)-time [24], or in output-sensitive time O(k′ log `) [25],
where ` denotes the number of parabola segments in the envelope. When the Gaussian mixture
components have all the same weight and variance (e.g., kernel density estimators), the upper envelope
amounts to find a lower envelope of cones: minj |x− µ′j| (a Voronoi diagram in arbitrary dimension).



Entropy 2016, 18, 442 5 of 25

− log(w′
jp

′
j(x)) w′

jp
′
j(x)

Figure 1. Lower envelope of parabolas corresponding to the upper envelope of weighted components
of a Gaussian mixture with k′ = 3 components.

To proceed once the envelopes have been built, we need to calculate two types of definite integrals
on those elementary intervals: (i) the probability mass in an interval

∫ b
a p(x)dx = Φ(b)−Φ(a) where Φ

denotes the Cumulative Distribution Function (CDF); and (ii) the partial cross-entropy
−
∫ b

a p(x) log p′(x)dx [26]. Thus let us define these two quantities:

Ci,j(a, b) = −
∫ b

a
wi pi(x) log(w′j p

′
j(x))dx, (9)

Mi(a, b) = −
∫ b

a
wi pi(x)dx. (10)

By Equations (7) and (8), we get the bounds of H×(m : m′) as

L×(m : m′) =
`

∑
r=1

k

∑
s=1

Cs,δ(r)(ar, ar+1)− log k′,

U×(m : m′) =
`

∑
r=1

k

∑
s=1

min
{

Cs,δ(r)(ar, ar+1), Cs,ε(r)(ar, ar+1)−Ms(ar, ar+1) log k′
}

. (11)

The size of the lower/upper bound formula depends on the envelope complexity `, the number
k of mixture components, and the closed-form expressions of the integral terms Ci,j(a, b) and Mi(a, b).
In general, when a pair of weighted component densities intersect in at most p points, the envelope
complexity is related to the Davenport–Schinzel sequences [27]. It is quasi-linear for bounded
p = O(1), see [27].

Note that in symbolic computing, the Risch semi-algorithm [28] solves the problem of computing
indefinite integration in terms of elementary functions provided that there exists an oracle (hence the
term “semi-algorithm”) for checking whether an expression is equivalent to zero or not (however it is
unknown whether there exists an algorithm implementing the oracle or not).

We presented the technique by bounding the cross-entropy (and entropy) to deliver lower/upper
bounds on the KL divergence. When only the KL divergence needs to be bounded, we rather consider
the ratio term m(x)

m′(x) . This requires to partition the support X into elementary intervals by overlaying the
critical points of both the lower and upper envelopes of m(x) and m′(x), which can be done in linear time.
In a given elementary interval, since max{k mini{wi pi(x)}, maxi{wi pi(x)}} ≤ m(x) ≤ k maxi{wi pi(x)},
we then consider the inequalities:

max{k mini{wi pi(x)}, maxi{wi pi(x)}}
k′maxj{w′j p′j(x)}

≤ m(x)
m′(x)

≤ k maxi{wi pi(x)}
max{k′minj{w′j p′j(x)}, maxj{w′j p′j(x)}}

. (12)

We now need to compute definite integrals of the form
∫ b

a w1p(x; θ1) log w2 p(x;θ2)
w3 p(x;θ3)

dx (see
Appendix B for explicit formulas when considering scaled and truncated exponential families [17]).
(Thus for exponential families, the ratio of densities removes the auxiliary carrier measure term.)
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We call these bounds CELB and CEUB for Combinatorial Envelope Lower and Upper Bounds,
respectively.

2.1. Tighter Adaptive Bounds

We shall now consider shape-dependent bounds improving over the additive log k + log k′

non-adaptive bounds. This is made possible by a decomposition of the lse function explained as
follows. Let ti(x1, . . . , xk) = log

(
∑k

j=1 exj−xi
)

. By translation identity of the lse function,

lse(x1, . . . , xk) = xi + ti(x1, . . . , xk) (13)

for all i ∈ [k]. Since exj−xi = 1 if j = i, and exj−xi > 0, we have necessarily ti(x1, . . . , xk) > 0 for any
i ∈ [k]. Since Equation (13) is an identity for all i ∈ [k], we minimize the residual ti(x1, . . . , xk) by
maximizing xi. Denoting by x(1), . . . , x(k) the sequence of numbers sorted in non-decreasing order,
the decomposition

lse(x1, . . . , xk) = x(k) + t(k)(x1, . . . , xk) (14)

yields the smallest residual. Since x(j) − x(k) ≤ 0 for all j ∈ [k], we have

t(k) (x1, . . . , xk) = log

(
1+

k−1

∑
j=1

ex(j)−x(k)

)
≤ log k.

This shows the bounds introduced earlier can indeed be improved by a more accurate computation
of the residual term t(k) (x1, . . . , xk).

When considering 1D GMMs, let us now bound t(k)(x1, . . . , xk) in a combinatorial range
Ir = (ar, ar+1). Let δ = δ(r) denote the index of the dominating weighted component in this
range. Then,

∀x ∈ Ir,∀i, exp

(
− log σi −

(x− µi)
2

2σ2
i

+ log wi

)
≤ exp

(
− log σδ −

(x− µδ)
2

2σ2
δ

+ log wδ

)
.

Thus we have:

log m(x) = log
wδ

σδ

√
2π
− (x− µδ)

2

2σ2
δ

+ log

(
1 + ∑

i 6=δ

exp

(
− (x− µi)

2

2σ2
i

+ log
wi
σi

+
(x− µδ)

2

2σ2
δ

− log
wδ

σδ

))
.

Now consider the ratio term:

ρi,δ(x) = exp

(
− (x− µi)

2

2σ2
i

+ log
wiσδ

wδσi
+

(x− µδ)
2

2σ2
δ

)
.

It is maximized in Ir = (ar, ar+1) by maximizing equivalently the following quadratic equation:

li,δ(x) = − (x− µi)
2

2σ2
i

+ log
wiσδ

wδσi
+

(x− µδ)
2

2σ2
δ

.

Setting the derivative to zero (l′i,δ(x) = 0), we get the root (when σi 6= σδ)

xi,δ =

(
µδ

σ2
δ

− µi

σ2
i

)/( 1
σ2

δ

− 1
σ2

i

)
.

If xi,δ ∈ Ir, the ratio ρi,δ(x) can be bounded in the slab Ir by considering the extreme values of the
three element set {ρi,δ(ar), ρi,δ(xi,δ), ρi,δ(ar+1)}. Otherwise ρi,δ(x) is monotonic in Ir, its bounds in Ir
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are given by {ρi,δ(ar), ρi,δ(ar+1)}. In any case, let ρmin
i,δ (r) and ρmax

i,δ (r) represent the resulting lower
and upper bounds of ρi,δ(x) in Ir. Then tδ is bounded in the range Ir by:

0 < log

(
1 + ∑

i 6=δ

ρmin
i,δ (r)

)
≤ tδ ≤ log

(
1 + ∑

i 6=δ

ρmax
i,δ (r)

)
≤ log k.

In practice, we always get better bounds using the shape-dependent technique at the expense of
computing overall O(k2) intersection points of the pairwise densities. We call those bounds CEALB and
CEAUB for Combinatorial Envelope Adaptive Lower Bound and Combinatorial Envelope Adaptive
Upper Bound.

Let us illustrate one scenario where this adaptive technique yields very good approximations.
Consider a GMM with all variance σ2 tending to zero (a mixture of k Diracs). Then in a combinatorial
slab Ir, we have ρmax

i,δ (r)→ 0 for all i 6= δ, and therefore we get tight bounds.
As a related technique, we could also upper bound

∫ ar+1
ar

log m(x)dx by (ar+1− ar) log m(ar, ar+1)

where m(x, x′) denotes the maximal value of the mixture density in the range (x, x′). This maximal
value is either found at the slab extremities, or is a mode of the GMM. It then requires to find the
modes of a GMM [29,30], for which no analytical solution is known in general.

2.2. Another Derivation Using the Arithmetic-Geometric Mean Inequality

Let us start by considering the inequality of arithmetic and geometric weighted means
(AGI, Arithmetic-Geometric Inequality) applied to the mixture component distributions:

m(x) =
k

∑
i=1

wi p(x; θi) ≥
k

∏
i=1

p(x; θi)
wi

with equality holds iff. θ1 = . . . = θk.
To get a tractable formula with a positive remainder of the log-sum term log m(x), we need to

have the log argument greater or equal to 1, and thus we shall write the positive remainder:

R(x) = log

(
m(x)

∏k
i=1 p(x; θi)wi

)
≥ 0.

Therefore, we can decompose the log-sum into a tractable part and a remainder as:

log m(x) =
k

∑
i=1

wi log p(x; θi) + log

(
m(x)

∏k
i=1 p(x; θi)wi

)
. (15)

For exponential families, the first term can be integrated accurately. For the second term,
we notice that ∏k

i=1 p(x; θi)
wi is a distribution in the same exponential family. We denote

p(x; θ0) = ∏k
i=1 p(x; θi)

wi . Then

R(x) = log

(
k

∑
i=1

wi
p(x; θi)

p(x; θ0)

)

As the ratio p(x; θi)/p(x; θ0) can be bounded above and below using techniques in Section 2.1,
R(x) can be correspondingly bounded. Notice the similarity between Equations (14) and (15). The key
difference with the adaptive bounds is that, here we choose p(x; θ0) instead of the dominating
component in m(x) as the “reference distribution” in the decomposition. This subtle difference
is not presented in detail in our experimental studies but discussed here for completeness. Essentially,
the gap of the bounds is up to the difference between the geometric average and the arithmetic average.
In the extreme case that all mixture components are identical, this gap will reach zero. Therefore we
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expect good quality bounds with a small gap when the mixture components are similar as measured
by KL divergence.

2.3. Case Studies

In the following, we instantiate the proposed method for several prominent cases on the mixture
of exponential family distributions.

2.3.1. The Case of Exponential Mixture Models

An exponential distribution has density p(x; λ) = λ exp(−λx) defined on X = [0, ∞) for λ > 0.
Its CDF is Φ(x; λ) = 1− exp(−λx). Any two components w1 p(x; λ1) and w2 p(x; λ2) (with λ1 6= λ2)
have a unique intersection point

x? =
log(w1λ1)− log(w2λ2)

λ1 − λ2
(16)

if x? ≥ 0; otherwise they do not intersect. The basic formulas to evaluate the bounds are

Ci,j(a, b) = log
(

λ′jw
′
j

)
Mi(a, b) + wiλ

′
j

[(
a +

1
λi

)
e−λia −

(
b +

1
λi

)
e−λib

]
, (17)

Mi(a, b) =− wi

(
e−λia − e−λib

)
. (18)

2.3.2. The Case of Rayleigh Mixture Models

A Rayleigh distribution has density p(x; σ) = x
σ2 exp

(
− x2

2σ2

)
, defined on X = [0, ∞) for σ > 0.

Its CDF is Φ(x; σ) = 1− exp
(
− x2

2σ2

)
. Any two components w1 p(x; σ1) and w2 p(x; σ2) (with σ1 6= σ2)

must intersect at x0 = 0 and can have at most one other intersection point

x? =

√√√√log
w1σ2

2
w2σ2

1
/

(
1

2σ2
1
− 1

2σ2
2

)
(19)

if the square root is well defined and x? > 0. We have

Ci,j(a, b) = log
w′j

(σ′j )
2 Mi(a, b) +

wi
2(σ′j )

2

[
(a2 + 2σ2

i )e
− a2

2σ2
i − (b2 + 2σ2

i )e
− b2

2σ2
i

]

− wi

∫ b

a

x
σ2

i
exp

(
− x2

2σ2
i

)
log xdx, (20)

Mi(a, b) =− wi

(
e
− a2

2σ2
i − e

− b2

2σ2
i

)
. (21)

The last term in Equation (20) does not have a simple closed form (it requires the exponential
integral, Ei). One need a numerical integrator to compute it.

2.3.3. The Case of Gaussian Mixture Models

The Gaussian density p(x; µ, σ) = 1√
2πσ

e−(x−µ)2/(2σ2) has support X = R and parameters

µ ∈ R and σ > 0. Its CDF is Φ(x; µ, σ) = 1
2

[
1 + erf( x−µ√

2σ
)
]
, where erf is the Gauss error function.

The intersection point x? of two components w1 p(x; µ1, σ1) and w2 p(x; µ2, σ2) can be obtained by
solving the quadratic equation log (w1 p(x; µ1, σ1)) = log (w2 p(x; µ2, σ2)), which gives at most two
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solutions. As shown in Figure 1, the upper envelope of Gaussian densities corresponds to the lower
envelope of parabolas. We have

Ci,j(a, b) = Mi(a, b)

(
log w′j − log σ′j −

1
2

log(2π)− 1
2(σ′j )

2

(
(µ′j − µi)

2 + σ2
i

))

+
wiσi

2
√

2π(σ′j )
2

(a + µi − 2µ′j)e
− (a−µi)

2

2σ2
i − (b + µi − 2µ′j)e

− (b−µi)
2

2σ2
i

 , (22)

Mi(a, b) =− wi
2

(
erf
(

b− µi√
2σi

)
− erf

(
a− µi√

2σi

))
. (23)

2.3.4. The Case of Gamma Distributions

For simplicity, we only consider gamma distributions with the shape parameter k > 0 fixed and

the scale λ > 0 varying. The density is defined on (0, ∞) as p(x; k, λ) = xk−1e−
x
λ

λkΓ(k) , where Γ(·) is the

gamma function. Its CDF is Φ(x; k, λ) = γ(k, x/λ)/Γ(k), where γ(·, ·) is the lower incomplete gamma
function. Two weighted gamma densities w1 p(x; k, λ1) and w2 p(x; k, λ2) (with λ1 6= λ2) intersect at a
unique point

x? =

(
log

w1

λk
1
− log

w2

λk
2

)/( 1
λ1
− 1

λ2

)
(24)

if x? > 0; otherwise they do not intersect. From straightforward derivations,

Ci,j(a, b) = log
w′j

(λ′j)
kΓ(k)

Mi(a, b) + wi

∫ b

a

xk−1e−
x
λi

λk
i Γ(k)

(
x
λ′j
− (k− 1) log x

)
dx, (25)

Mi(a, b) = − wi
Γ(k)

(
γ

(
k,

b
λi

)
− γ

(
k,

a
λi

))
. (26)

Similar to the case of Rayleigh mixtures, the last term in Equation (25) relies on numerical integration.

3. Upper-Bounding the Differential Entropy of a Mixture

First, consider a finite parametric mixture model m(x) = ∑k
i=1 wi p(x; θi). Using the chain rule of

the entropy, we end up with the well-known lemma:

Lemma 1. The entropy of a d-variate mixture is upper bounded by the sum of the entropy of its marginal
mixtures: H(m) ≤ ∑d

i=1 H(mi), where mi is the 1D marginal mixture with respect to variable xi.

Since the 1D marginals of a multivariate GMM are univariate GMMs, we thus get a loose upper
bound. A generic sample-based probabilistic bound is reported for the entropies of distributions
with given support [31]: The method builds probabilistic upper and lower piecewisely linear CDFs
based on an i.i.d. finite sample set of size n and a given deviation probability threshold. It then builds
algorithmically between those two bounds the maximum entropy distribution [31] with a so-called
string-tightening algorithm.

Instead, we proceed as follows: Consider finite mixtures of component distributions defined
on the full support Rd that have finite component means and variances (like exponential families).
Then we shall use the fact that the maximum entropy distribution with prescribed mean and variance
is a Gaussian distribution, and conclude the upper bound by plugging the mixture mean and variance
in the differential entropy formula of the Gaussian distribution. In general, the maximum entropy
with moment constraints yields as a solution an exponential family.
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Without loss of generality, consider GMMs in the form m(x) = ∑k
i=1 wi p(x; µi, Σi) (Σi = σ2

i
for univariate Gaussians). The mean µ̄ of the mixture is µ̄ = ∑k

i=1 wiµi and the variance is
σ̄2 = E[m2]− E[m]2. Since E[m2] = ∑k

i=1 wi
∫

x2 p(x; µi, Σi)dx = ∑k
i=1 wi

(
µ2

i + σ2
i
)
, we deduce that

σ̄2 =
k

∑
i=1

wi(µ
2
i + σ2

i )−
(

k

∑
i=1

wiµi

)2

=
k

∑
i=1

wi

[
(µi − µ̄)2 + σ2

i

]
.

The entropy of a random variable with a prescribed variance σ̄2 is maximal for the Gaussian
distribution with the same variance σ̄2, see [4]. Since the differential entropy of a Gaussian is
log(σ̄

√
2πe), we deduce that the entropy of the GMM is upper bounded by

H(m) ≤ 1
2

log(2πe) +
1
2

log
k

∑
i=1

wi

[
(µi − µ̄)2 + σ2

i

]
.

This upper bound can be easily generalized to arbitrary dimensionality. We get the following lemma:

Lemma 2. The entropy of a d-variate GMM m(x) = ∑k
i=1 wi p(x; µi, Σi) is upper bounded by

d
2 log(2πe) + 1

2 log det Σ, where Σ = ∑k
i=1 wi(µiµ

>
i + Σi)−

(
∑k

i=1 wiµi

) (
∑k

i=1 wiµ
>
i

)
.

In general, exponential families have finite moments of any order [17]: In particular, we have
E[t(X)] = ∇F(θ) and V[t(X)] = ∇2F(θ). For Gaussian distribution, we have the sufficient statistics
t(x) = (x, x2) so that E[t(X)] = ∇F(θ) yields the mean and variance from the log-normalizer. It is
easy to generalize Lemma 2 to mixtures of exponential family distributions.

Note that this bound (called the Maximum Entropy Upper Bound in [13], MEUB) is tight when
the GMM approximates a single Gaussian. It is fast to compute compared to the bound reported in [9]
that uses Taylor’ s expansion of the log-sum of the mixture density.

A similar argument cannot be applied for a lower bound since a GMM with a given variance
may have entropy tending to −∞. For example, assume the 2-component mixture’s mean is zero, and
that the variance approximates 1 by taking m(x) = 1

2 G(x;−1, ε) + 1
2 G(x; 1, ε) where G denotes the

Gaussian density. Letting ε→ 0, we get the entropy tending to −∞.
We remark that our log-sum-exp inequality technique yields a log 2 additive approximation range

in the case of a Gaussian mixture with two components. It thus generalizes the bounds reported in [7]
to GMMs with arbitrary variances that are not necessarily equal.

To see the bound gap, we have

−∑
r

∫
Ir

m(x)
(

log k + log max
i

wi pi(x)
)

dx ≤ H(m)

≤ −∑
r

∫
Ir

m(x)max
{

log max
i

wi pi(x), log k + log min
i

wi pi(x)
}

dx. (27)

Therefore the gap is at most

∆ = min

{
∑

r

∫
Ir

m(x) log
maxi wi pi(x)
mini wi pi(x)

dx, log k

}

= min

{
∑

s
∑

r

∫
Ir

ws ps(x) log
maxi wi pi(x)
mini wi pi(x)

dx, log k

}
. (28)

Thus to compute the gap error bound of the differential entropy, we need to integrate terms in
the form ∫

wa pa(x) log
wb pb(x)
wc pc(x)

dx.
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See Appendix B for a closed-form formula when dealing with exponential family components.

4. Bounding the α-Divergence

The α-divergence [15,32–34] between m(x) = ∑k
i=1 wi pi(x) and m′(x) = ∑k′

i=1 w′i p
′
i(x) is defined as

Dα

(
m : m′

)
=

1
α(1− α)

(
1−

∫
X

m(x)αm′(x)1−αdx
)

, (29)

which clearly satisfies Dα (m : m′) = D1−α (m′ : m). The α-divergence is a family of information
divergences parametrized by α ∈ R \ {0, 1}. Let α→ 1, we get the KL divergence (see [35] for a proof):

lim
α→1

Dα(m : m′) = KL(m : m′) =
∫
X

m(x) log
m(x)
m′(x)

dx, (30)

and α→ 0 gives the reverse KL divergence:

lim
α→0

Dα(m : m′) = KL(m′ : m).

Other interesting values [33] include α = 1/2 (squared Hellinger distance), α = 2 (Pearson
Chi-square distance), α = −1 (Neyman Chi-square distance), etc. Notably, the Hellinger distance is a
valid distance metric which satisfies non-negativity, symmetry, and the triangle inequality. In general,
Dα(m : m′) only satisfies non-negativity so that Dα (m : m′) ≥ 0 for any m(x) and m′(x). It is
neither symmetric nor admitting the triangle inequality. Minimization of α-divergences allows one to
choose a trade-off between mode fitting and support fitting of the minimizer [36]. The minimizer of
α-divergences including MLE as a special case has interesting connections with transcendental number
theory [37].

To compute Dα (m : m′) for given m(x) and m′(x) reduces to evaluate the Hellinger integral [38,39]:

Hα(m : m′) =
∫
X

m(x)αm′(x)1−αdx, (31)

which in general does not have a closed form, as it was known that the α-divergence of mixture
models is not analytic [6]. Moreover, Hα(m : m′) may diverge making the α-divergence unbounded.
Once Hα(m : m′) can be solved, the Rényi and Tsallis divergences [35] and in general Sharma–Mittal
divergences [40] can be easily computed. Therefore the results presented here directly extend to those
divergence families.

Similar to the case of KL divergence, the Monte Carlo stochastic estimation of Hα(m : m′) can be
computed either as

Ĥn
α

(
m : m′

)
=

1
n

n

∑
i=1

(
m′(xi)

m(xi)

)1−α

,

where x1, . . . , xn ∼ m(x) are i.i.d. samples, or as

Ĥn
α

(
m : m′

)
=

1
n

n

∑
i=1

(
m(xi)

m′(xi)

)α

,

where x1, . . . , xn ∼ m′(x) are i.i.d. In either case, it is consistent so that limn→∞ Ĥn
α (m : m′) = Hα (m : m′).

However, MC estimation requires a large sample and does not guarantee deterministic bounds.
The techniques described in [41] work in practice for very close distributions, and do not apply
between mixture models. We will therefore derive combinatorial bounds for Hα(m : m′). The structure
of this Section is parallel with Section 2 with necessary reformulations for a clear presentation.
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4.1. Basic Bounds

For a pair of given m(x) and m′(x), we only need to derive bounds of Hα(m : m′) in Equation (31)
so that Lα(m : m′) ≤ Hα(m : m′) ≤ Uα(m : m′). Then the α-divergence Dα(m : m′) can be bounded
by a linear transformation of the range [Lα(m : m′), Uα(m : m′)]. In the following we always assume
without loss of generality α ≥ 1/2. Otherwise we can bound Dα(m : m′) by considering equivalently
the bounds of D1−α(m′ : m).

Recall that in each elementary slab Ir, we have

max
{

kwε(r)pε(r)(x), wδ(r)pδ(r)(x)
}
≤ m(x) ≤ kwδ(r)pδ(r)(x). (32)

Notice that kwε(r)pε(r)(x), wδ(r)pδ(r)(x), and kwδ(r)pδ(r)(x) are all single component distributions
up to a scaling coefficient. The general thinking is to bound the multi-component mixture m(x) by
single component distributions in each elementary interval, so that the integral in Equation (31) can be
computed in a piecewise manner.

For the convenience of notation, we rewrite Equation (32) as

cν(r)pν(r)(x) ≤ m(x) ≤ cδ(r)pδ(r)(x), (33)

where
cν(r)pν(r)(x) := kwε(r)pε(r)(x) or wδ(r)pδ(r)(x),

cδ(r)pδ(r)(x) := kwδ(r)pδ(r)(x).

(34)

(35)

If 1/2 ≤ α < 1, then both xα and x1−α are monotonically increasing on R+. Therefore we have

Aα
ν(r),ν′(r)(Ir) ≤

∫
Ir

m(x)αm′(x)1−αdx ≤ Aα
δ(r),δ′(r)(Ir), (36)

where

Aα
i,j(I) =

∫
I
(ci pi(x))

α
(

c′jp
′
j(x)

)1−α
dx, (37)

and I denotes an interval I = (a, b) ⊂ R. The other case α > 1 is similar by noting that xα and x1−α are
monotonically increasing and decreasing on R+, respectively. In conclusion, we obtain the following
bounds of Hα(m : m′):

If 1/2 ≤ α < 1, Lα(m : m′) =
`

∑
r=1

Aα
ν(r),ν′(r)(Ir), Uα(m : m′) =

`

∑
r=1

Aα
δ(r),δ′(r)(Ir); (38)

if α > 1, Lα(m : m′) =
`

∑
r=1

Aα
ν(r),δ′(r)(Ir), Uα(m : m′) =

`

∑
r=1

Aα
δ(r),ν′(r)(Ir). (39)

The remaining problem is to compute the definite integral Aα
i,j(I) in the above equations.

Here we assume all mixture components are in the same exponential family so that
pi(x) = p(x; θi) = h(x) exp

(
θ>i t(x)− F(θi)

)
, where h(x) is a base measure, t(x) is a vector of sufficient

statistics, and the function F is known as the cumulant generating function. Then it is straightforward
from Equation (37) that

Aα
i,j(I) = cα

i (c
′
j)

1−α
∫

I
h(x) exp

((
αθi + (1− α)θ′j

)>
t(x)− αF(θi)− (1− α)F(θ′j)

)
dx. (40)
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If 1/2 ≤ α < 1, then θ̄ = αθi + (1− α)θ′j belongs to the natural parameter spaceMθ . Therefore Aα
i,j(I)

is bounded and can be computed from the CDF of p(x; θ̄) as

Aα
i,j(I) = cα

i (c
′
j)

1−α exp(F
(
θ̄
)
− αF(θi)− (1− α)F(θ′j))

∫
I

p
(
x; θ̄
)

dx. (41)

The other case α > 1 is more difficult: if θ̄ = αθi + (1− α)θ′j still lies inMθ , then Aα
i,j(I) can be

computed by Equation (41). Otherwise we try to solve it by a numerical integrator. This is not ideal as
the integral may diverge, or our approximation may be too loose to conclude. We point the reader
to [42] and Equations (61)–(69) in [35] for related analysis with more details. As computing Aα

i,j(I)
only requires O(1) time, the overall computational complexity (without considering the envelope
computation) is O(`).

4.2. Adaptive Bounds

This section derives the shape-dependent bounds which improve the basic bounds in Section 4.1.
We can rewrite a mixture model m(x) in a slab Ir as

m(x) = wζ(r)pζ(r)(x)

1 + ∑
i 6=ζ(r)

wi pi(x)
wζ(r)pζ(r)(x)

 , (42)

where wζ(r)pζ(r)(x) is a weighted component in m(x) serving as a reference. We only discuss the case
that the reference is chosen as the dominating component, i.e., ζ(r) = δ(r). However it is worth to
note that the proposed bounds do not depend on this particular choice. Therefore the ratio

wi pi(x)
wζ(r)pζ(r)(x)

=
wi

wζ(r)
exp

((
θi − θζ(r)

)>
t(x)− F(θi) + F(θζ(r))

)
(43)

can be bounded in a sub-range of [0, 1] by analyzing the extreme values of t(x) in the slab Ir. This
can be done because t(x) usually consists of polynomial functions with finite critical points which

can be solved easily. Correspondingly the function
(

1 + ∑i 6=ζ(r)
wi pi(x)

wζ(r)pζ(r)(x)

)
in Ir can be bounded in a

subrange of [1, k], denoted as [ωζ(r)(Ir), Ωζ(r)(Ir)]. Hence

ωζ(r)(Ir)wζ(r)pζ(r)(x) ≤ m(x) ≤ Ωζ(r)(Ir)wζ(r)pζ(r)(x). (44)

This forms better bounds of m(x) than Equation (32) because each component in the slab Ir is
analyzed more accurately. Therefore, we refine the fundamental bounds of m(x) by replacing the
Equations (34) and (35) with

cν(r)pν(r)(x) := ωζ(r)(Ir)wζ(r)pζ(r)(x),

cδ(r)pδ(r)(x) := Ωζ(r)(Ir)wζ(r)pζ(r)(x).

(45)

(46)

Then, the improved bounds of Hα are given by Equations (38) and (39) according to the above
replaced definition of cν(r)pν(r)(x) and cδ(r)pδ(r)(x).

To evaluate ωζ(r)(Ir) and Ωζ(r)(Ir) requires iterating through all components in each slab.
Therefore the computational complexity is increased to O (`(k + k′)).

4.3. Variance-Reduced Bounds

This section further improves the proposed bounds based on variance reduction [43].
By assumption, α ≥ 1/2, then m(x)αm′(x)1−α is more similar to m(x) rather than m′(x). The ratio
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m(x)αm′(x)1−α/m(x) is likely to have a small variance when x varies inside a slab Ir, especially when
α is close to 1. We will therefore bound this ratio term in

∫
Ir

m(x)αm′(x)1−αdx =
∫

Ir
m(x)

(
m(x)αm′(x)1−α

m(x)

)
dx =

k

∑
i=1

∫
Ir

wi pi(x)
(

m′(x)
m(x)

)1−α

dx. (47)

No matter α < 1 or α > 1, the function x1−α must be monotonic on R+. In each slab Ir,
(m′(x)/m(x))1−α ranges between these two functions:(

c′
ν′(r)p′

ν′(r)(x)

cδ(r)pδ(r)(x)

)1−α

and

(
c′

δ′(r)p′
δ′(r)(x)

cν(r)pν(r)(x)

)1−α

, (48)

where cν(r)pν(r)(x), cδ(r)pδ(r)(x), c′
ν′(r)p′

ν′(r)(x) and c′
δ′(r)p′

δ′(r)(x) are defined in Equations (45) and (46).
Similar to the definition of Aα

i,j(I) in Equation (37), we define

Bα
i,j,l(I) =

∫
I

wi pi(x)

(
c′l p′l(x)
cj pj(x)

)1−α

dx. (49)

Therefore we have,

Lα(m : m′) = minS , Uα(m : m′) = maxS ,

S =

{
`

∑
r=1

k

∑
i=1

Bα
i,δ(r),ν′(r)(Ir),

`

∑
r=1

k

∑
i=1

Bα
i,ν(r),δ′(r)(Ir)

}
. (50)

The remaining problem is to evaluate Bα
i,j,l(I) in Equation (49). Similar to Section 4.1, assuming

the components are in the same exponential family with respect to the natural parameters θ, we get

Bα
i,j,l(I) =wi

c′1−α
l

c1−α
j

exp
(

F(θ̄)− F(θi)− (1− α)F(θ′l) + (1− α)F(θj)

) ∫
I

p(x; θ̄)dx. (51)

If θ̄ = θi + (1− α)θ′l − (1− α)θj is in the natural parameter space, Bα
i,j,l(I) can be computed from the

CDF of p(x; θ̄); otherwise Bα
i,j,l(I) can be numerically integrated by its definition in Equation (49).

The computational complexity is the same as the bounds in Section 4.2, i.e., O(` (k + k′)).
We have introduced three pairs of deterministic lower and upper bounds that enclose the true

value of α-divergence between univariate mixture models. Thus the gap between the upper and lower
bounds provides the additive approximation factor of the bounds. We conclude by emphasizing
that the presented methodology can be easily generalized to other divergences [35,40] relying on
Hellinger-type integrals Hα,β(p : q) =

∫
p(x)αq(x)βdx like the γ-divergence [44] as well as entropy

measures [45].

5. Lower Bounds of the f -Divergence

The f -divergence between two distributions m(x) and m′(x) (not necessarily mixtures) is defined
for a convex generator f by:

D f (m : m′) =
∫

m(x) f
(

m′(x)
m(x)

)
dx.

If f (x) = − log x, then D f (m : m′) = KL(m : m′).
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Let us partition the support X = ]`r=1 Ir arbitrarily into elementary ranges, which do not necessarily
correspond to the envelopes. Denote by MI the probability mass of a mixture m(x) in the range I:
MI =

∫
I m(x)dx. Then

D f (m : m′) =
`

∑
r=1

MIr

∫
Ir

m(x)
MIr

f
(

m′(x)
m(x)

)
dx.

Note that in range Ir,
m(x)
MIr

is a unit weight distribution. Thus by Jensen’s inequality
f (E[X]) ≤ E[ f (X)], we get

D f (m : m′) ≥
`

∑
r=1

MIr f
(∫

Ir

m(x)
MIr

m′(x)
m(x)

dx
)
=

`

∑
r=1

MIr f

(
M′Ir

MIr

)
. (52)

Notice that the RHS of Equation (52) is the f -divergence between (MI1 , · · · , MI`) and
(M′I1

, · · · , M′I`), denoted by DIf (m : m′). In the special case that ` = 1 and I1 = X , the above
Equation (52) turns out to be the usual Gibbs’ inequality: D f (m : m′) ≥ f (1), and Csiszár generator
is chosen so that f (1) = 0. In conclusion, for a fixed (coarse-grained) countable partition of X , we
recover the well-know information monotonicity [46] of the f -divergences:

D f (m : m′) ≥ DIf (m : m′) ≥ 0.

In practice, we get closed-form lower bounds when MI =
∫ b

a m(x)dx = Φ(b)−Φ(a) is available
in closed-form, where Φ(·) denote the CDF. In particular, if m(x) is a mixture model, then its CDF can
be computed by linearly combining the CDFs of its components.

To wrap up, we have proved that coarse-graining by making a finite partition of the support
X yields a lower bound on the f -divergence by virtue of the information monotonicity. Therefore,
instead of doing Monte Carlo stochastic integration:

D̂n
f (m : m′) =

1
n

n

∑
i=1

f
(

m′(xi)

m(xi)

)
,

with x1, . . . , xn ∼i.i.d. m(x), it could be better to sort those n samples and consider the
coarse-grained partition:

I = (−∞, x(1)] ∪
(
]n−1

i=1 (x(i), x(i+1)]
)
∪ (x(n),+∞)

to get a guaranteed lower bound on the f -divergence. We will call this bound CGQLB for Coarse Graining
Quantization Lower Bound.

Given a budget of n splitting points on the range X , it would be interesting to find the best n
points that maximize the lower bound DIf (m : m′). This is ongoing research.

6. Experiments

We perform an empirical study to verify our theoretical bounds. We simulate four pairs of mixture
models {(EMM1, EMM2), (RMM1, RMM2), (GMM1, GMM2), (GaMM1, GaMM2)} as the test subjects. The component
type is implied by the model name, where GaMM stands for Gamma mixtures. The components of each
mixture model are given as follows.

1. EMM1’s components, in the form (λi, wi), are given by (0.1, 1/3), (0.5, 1/3), (1, 1/3); EMM2’s
components are (2, 0.2), (10, 0.4), (20, 0.4).

2. RMM1’s components, in the form (σi, wi), are given by (0.5, 1/3), (2, 1/3), (10, 1/3); RMM2 consists
of (5, 0.25), (60, 0.25), (100, 0.5).
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3. GMM1’s components, in the form (µi, σi, wi), are (−5, 1, 0.05), (−2, 0.5, 0.1), (5, 0.3, 0.2), (10, 0.5, 0.2),
(15, 0.4, 0.05), (25, 0.5, 0.3), (30, 2, 0.1); GMM2 consists of (−16, 0.5, 0.1), (−12, 0.2, 0.1), (−8, 0.5, 0.1),
(−4, 0.2, 0.1), (0, 0.5, 0.2), (4, 0.2, 0.1), (8, 0.5, 0.1), (12, 0.2, 0.1), (16, 0.5, 0.1).

4. GaMM1’s components, in the form (ki, λi, wi), are (2, 0.5, 1/3), (2, 2, 1/3), (2, 4, 1/3); GaMM2 consists
of (2, 5, 1/3), (2, 8, 1/3), (2, 10, 1/3).

We compare the proposed bounds with Monte Carlo estimation with different sample sizes in the
range {102, 103, 104, 105}. For each sample size configuration, we report the 0.95 confidence interval by
Monte Carlo estimation using the corresponding number of samples. Figure 2a–d shows the input
signals as well as the estimation results, where the proposed bounds CELB, CEUB, CEALB, CEAUB,
CGQLB are presented as horizontal lines, and the Monte Carlo estimations over different sample
sizes are presented as error bars. We can loosely consider the average Monte Carlo output with the
largest sample size (105) as the underlying truth, which is clearly inside our bounds. This serves as an
empirical justification on the correctness of the bounds.

A key observation is that the bounds can be very tight, especially when the underlying KL
divergence has a large magnitude, e.g., KL(RMM2 : RMM1). This is because the gap between the lower
and upper bounds is always guaranteed to be within log k + log k′. Because KL is unbounded [4],
in the general case two mixture models may have a large KL. Then our approximation gap is relatively
very small. On the other hand, we also observed that the bounds in certain cases, e.g., KL(EMM2 : EMM1),
are not as tight as the other cases. When the underlying KL is small, the bounds are not as informative
as the general case.

Comparatively, there is a significant improvement of the shape-dependent bounds (CEALB and
CEAUB) over the combinatorial bounds (CELB and CEUB). In all investigated cases, the adaptive
bounds can roughly shrink the gap by half of its original size at the cost of additional computation.

Note that, the bounds are accurate and must contain the true value. Monte Carlo estimation
gives no guarantee on where the true value is. For example, in estimating KL(GMM1 : GMM2), Monte
Carlo estimation based on 104 samples can go beyond our bounds! It therefore suffers from a larger
estimation error.

CGQLB as a simple-to-implement technique shows surprising good performance in several cases,
e.g., KL(RMM1, RMM2). Although it requires a large number of samples, we can observe that increasing
sample size has limited effect on improving this bound. Therefore, in practice, one may intersect the
range defined by CEALB and CEAUB with the range defined by CGQLB with a small sample size
(e.g., 100) to get better bounds.

We simulates a set of Gaussian mixture models besides the above GMM1 and GMM2. Figure 3 shows
the GMM densities as well as their differential entropy. A detailed explanation of the components of
each GMM model is omitted for brevity.

The key observation is that CEUB (CEAUB) is very tight in most of the investigated cases. This is
because that the upper envelope that is used to compute CEUB (CEAUB) gives a very good estimation
of the input signal.

Notice that MEUB only gives an upper bound of the differential entropy as discussed in Section 3.
In general the proposed bounds are tighter than MEUB. However, this is not the case when the mixture
components are merged together and approximate one single Gaussian (and therefore its entropy can
be well approximated by the Gaussian entropy), as shown in the last line of Figure 3.

For α-divergence, the bounds introduced in Sections 4.1–4.3 are denoted as “Basic”, “Adaptive”
and “VR”, respectively. Figure 4 visualizes these GMMs and plots the estimations of their α-divergences
against α. The red lines mean the upper envelope. The dashed vertical lines mean the elementary
intervals. The components of GMM1 and GMM2 are more separated than GMM3 and GMM4. Therefore these
two pairs present different cases. For a clear presentation, only VR (which is expected to be better
than Basic and Adaptive) is shown. We can see that, visually in the big scale, VR tightly surrounds the
true value.
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Figure 2. Cont.



Entropy 2016, 18, 442 18 of 25

0 10 20 30
0.00

0.05

0.10

0.15

0.20

0.25

0.30
GMM1

−15 −10 −5 0 5 10 15
0.00

0.05

0.10

0.15

0.20
GMM2

102 103 104 105

20

40

60

80

100

120

KL(GMM1 : GMM2)

CELB
CEUB
CEALB
CEAUB
CGQLB

102 103 104 105

6

8

10

12

14

16

18

20
KL(GMM2 : GMM1)

CELB
CEUB
CEALB
CEAUB
CGQLB

(c) KL divergence between two Gaussian mixture models

0 2 4 6 8 10 12 14 16
0.00

0.05

0.10

0.15

0.20

0.25
GaMM1

0 5 10 15 20 25 30 35 40
0.000

0.005

0.010

0.015

0.020

0.025
GaMM2

102 103 104 105

−3

−2

−1

0

1

2

KL(GaMM1 : GaMM2)

CELB
CEUB
CEALB
CEAUB
CGQLB

102 103 104 105

−3

−2

−1

0

1

KL(GaMM2 : GaMM1)

CELB
CEUB
CEALB
CEAUB
CGQLB

(d) KL divergence between two Gamma mixture models

Figure 2. Lower and upper bounds on the KL divergence between mixture models. The y-axis
means KL divergence. Solid/dashed lines represent the combinatorial/adaptive bounds, respectively.
The error-bars show the 0.95 confidence interval by Monte Carlo estimation using the corresponding
sample size (x-axis). The narrow dotted bars show the CGQLB estimation w.r.t. the sample size.
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Figure 3. Lower and upper bounds on the differential entropy of Gaussian mixture models. On the left
of each subfigure is the simulated GMM signal. On the right of each subfigure is the estimation of its
differential entropy. Note that a subset of the bounds coincide with each other in several cases.
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Figure 4. Two pairs of Gaussian Mixture Models and their α-divergences against different values of α.
The “true” value of Dα is estimated by MC using 104 random samples. VR(L) and VR(U) denote the
variation reduced lower and upper bounds, respectively. The range of α is selected for each pair for a
clear visualization.
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For a more quantitative comparison, Table 1 shows the estimated α-divergence by MC, Basic,
Adaptive, and VR. As Dα is defined on R \ {0, 1}, the KL bounds CE(A)LB and CE(A)UB are presented
for α = 0 or 1. Overall, we have the following order of gap size: Basic > Adaptive > VR, and VR is
recommended in general for bounding α-divergences. There are certain cases that the upper VR bound
is looser than Adaptive. In practice one can compute the intersection of these bounds as well as the
trivial bound Dα(m : m′) ≥ 0 to get the best estimation.

Table 1. The estimated Dα and its bounds. The 95% confidence interval is shown for MC.

α MC(102) MC(103) MC(104)
Basic Adaptive VR

L U L U L U

GMM1 & GMM2

0 15.96± 3.9 12.30± 1.0 13.63± 0.3 11.75 15.89 12.96 14.63
0.01 13.36± 2.9 10.63± 0.8 11.66± 0.3 −700.50 11.73 −77.33 11.73 11.40 12.27
0.5 3.57± 0.3 3.47± 0.1 3.47± 0.07 −0.60 3.42 3.01 3.42 3.17 3.51
0.99 40.04± 7.7 37.22± 2.3 38.58± 0.8 −333.90 39.04 5.36 38.98 38.28 38.96

1 104.01± 28 84.96± 7.2 92.57± 2.5 91.44 95.59 92.76 94.41

GMM3 & GMM4

0 0.71± 0.2 0.63± 0.07 0.62± 0.02 0.00 1.76 0.00 1.16
0.01 0.71± 0.2 0.63± 0.07 0.62± 0.02 −179.13 7.63 −38.74 4.96 0.29 1.00
0.5 0.82± 0.3 0.57± 0.1 0.62± 0.04 −5.23 0.93 −0.71 0.85 −0.18 1.19
0.99 0.79± 0.3 0.76± 0.1 0.80± 0.03 −165.72 12.10 −59.76 9.11 0.37 1.28

1 0.80± 0.3 0.77± 0.1 0.81± 0.03 0.00 1.82 0.31 1.40

Note the similarity between KL in Equation (30) and the expression in Equation (47). We give without
a formal analysis that: CEAL(U)B is equivalent to VR at the limit α→ 0 or α→ 1. Experimentally as
we slowly set α→ 1, we can see that VR is consistent with CEAL(U)B.

7. Concluding Remarks and Perspectives

We have presented a fast versatile method to compute bounds on the Kullback–Leibler divergence
between mixtures by building algorithmic formulae. We reported on our experiments for various
mixture models in the exponential family. For univariate GMMs, we get a guaranteed bound of the KL
divergence of two mixtures m and m′ with k and k′ components within an additive approximation factor
of log k + log k′ in O ((k + k′) log(k + k′))-time. Therefore, the larger the KL divergence, the better
the bound when considering a multiplicative (1 + α)-approximation factor, since α =

log k+log k′
KL(m:m′) .

The adaptive bounds are guaranteed to yield better bounds at the expense of computing potentially
O
(
k2 + (k′)2) intersection points of pairwise weighted components.

Our technique also yields the bound for the Jeffreys divergence (the symmetrized KL divergence:
J(m, m′) = KL(m : m′) + KL(m′ : m)) and the Jensen–Shannon divergence [47] (JS):

JS(m, m′) =
1
2

(
KL
(

m :
m + m′

2

)
+ KL

(
m′ :

m + m′

2

))
,

since m+m′
2 is a mixture model with k + k′ components. One advantage of this statistical distance

is that it is symmetric, always bounded by log 2, and its square root yields a metric distance [48].
The log-sum-exp inequalities may also be used to compute some Rényi divergences [35]:

Rα(m, p) =
1

α− 1
log
(∫

m(x)α p(x)1−α

)
dx,

when α is an integer, m(x) a mixture and p(x) a single (component) distribution. Getting fast
guaranteed tight bounds on statistical distances between mixtures opens many avenues. For example,
we may consider building hierarchical mixture models by merging iteratively two mixture components
so that those pairs of components are chosen so that the KL distance between the full mixture and the
simplified mixture is minimized.

In order to be useful, our technique is unfortunately limited to univariate mixtures: indeed,
in higher dimensions, we can still compute the maximization diagram of weighted components
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(an additively weighted Bregman–Voronoi diagram [49,50] for components belonging to the same
exponential family). However, it becomes more complex to compute in the elementary Voronoi
cells V, the functions Ci,j(V) and Mi(V) (in 1D, the Voronoi cells are segments). We may obtain hybrid
algorithms by approximating or estimating these functions. In 2D, it is thus possible to obtain lower
and upper bounds on the Mutual Information [51] (MI) when the joint distribution m(x, y) is a 2D
mixture of Gaussians:

I(M; M′) =
∫

m(x, y) log
m(x, y)

m(x)m′(y)
dxdy.

Indeed, the marginal distributions m(x) and m′(y) are univariate Gaussian mixtures.
A Python code implementing those computational-geometric methods for reproducible research

is available online [52].
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Appendix A. The Kullback–Leibler Divergence of Mixture Models Is Not Analytic [6]

Ideally, we aim at getting a finite length closed-form formula to compute the KL divergence of
finite mixture models. However, this is provably mathematically intractable [6] because of the log-sum
term in the integral, as we shall prove below.

Analytic expressions encompass closed-form formula and may include special functions
(e.g., Gamma function) but do not allow to use limits or integrals. An analytic function f (x)
is a C∞ function (infinitely differentiable) such that around any point x0 the k-order Taylor

series Tk(x) = ∑k
i=0

f (i)(x0)
i! (x− x0)

i converges to f (x): limk→∞ Tk(x) = f (x) for x belonging to a
neighborhood Nr(x0) = {x : |x − x0| ≤ r} of x0, where r is called the radius of convergence.
The analytic property of a function is equivalent to the condition that for each k ∈ N, there exists a

constant c such that
∣∣∣dk f

dxk (x)
∣∣∣ ≤ ck+1k!.

To prove that the KL of mixtures is not analytic (hence does not admit a closed-form formula),
we shall adapt the proof reported in [6] (in Japanese, we thank Professor Aoyagi for sending
us his paper [6]). We shall prove that KL(p : q) is not analytic for p(x) = G(x; 0, 1) and

q(x; w) = (1− w)G(x; 0, 1) + wG(x; 1, 1), where w ∈ (0, 1), and G(x; µ, σ) = 1√
2πσ

exp(− (x−µ)2

2σ2 ) is the
density of a univariate Gaussian of mean µ and standard deviation σ. Let D(w) = KL(p(x) : q(x; w))

denote the KL divergence between these two mixtures (p has a single component and q has
two components).

We have

log
p(x)

q(x; w)
= log

exp
(
− x2

2

)
(1− w) exp

(
− x2

2

)
+ w exp

(
− (x−1)2

2

) = − log(1 + w(ex− 1
2 − 1)). (A1)

Therefore
dkD
dwk =

(−1)k

k

∫
p(x)(ex− 1

2 − 1)dx.

Let x0 be the root of the equation ex− 1
2 − 1 = e

x
2 so that for x ≥ x0, we have ex− 1

2 − 1 ≥ e
x
2 .

It follows that: ∣∣∣∣∣dkD
dwk

∣∣∣∣∣ ≥ 1
k

∫ ∞

x0

p(x)e
kx
2 dx =

1
k

e
k2
8 Ak
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with Ak =
∫ ∞

x0
1√
2π

exp(− x− k
2

2 )dx. When k → ∞, we have Ak → 1. Consider k0 ∈ N such that
Ak0 > 0.9. Then the radius of convergence r is such that:

1
r
≥ lim

k→∞

(
1

kk!
0.9 exp

(
k2

8

)) 1
k

= ∞.

Thus the convergence radius is r = 0, and therefore the KL divergence is not an analytic function
of the parameter w. The KL of mixtures is an example of a non-analytic smooth function. (Notice that
the absolute value is not analytic at 0.)

Appendix B. Closed-Form Formula for the Kullback–Leibler Divergence between Scaled and
Truncated Exponential Families

When computing approximation bounds for the KL divergence between two mixtures m(x) and

m′(x), we end up with the task of computing
∫
D wa pa(x) log w′b p′b(x)

w′c p′c(x)dx where D ⊆ X is a subset of
the full support X . We report a generic formula for computing these formula when the mixture
(scaled and truncated) components belong to the same exponential family [17]. An exponential family
has canonical log-density written as l(x; θ) = log p(x; θ) = θ>t(x)− F(θ) + k(x), where t(x) denotes
the sufficient statistics, F(θ) the log-normalizer (also called cumulant function or partition function),
and k(x) an auxiliary carrier term.

Let KL(w1 p1 : w2 p2 : w3 p3) =
∫
X w1 p1(x) log w2 p2(x)

w3 p3(x)dx = H×(w1 p1 : w3 p3)− H×(w1 p1 : w2 p2).
Since it is a difference of two cross-entropies, we get for three distributions belonging to the same
exponential family [26] the following formula:

KL(w1 p1 : w2 p2 : w3 p3) = w1 log
w2

w3
+ w1(F(θ3)− F(θ2)− (θ3 − θ2)

>∇F(θ1)).

Furthermore, when the support is restricted, say to support range D ⊆ X , let
mD(θ) =

∫
D p(x; θ)dx denote the mass and ˜p(x; θ) = p(x;θ)

mD(θ)
the normalized distribution. Then we have:∫

D
w1 p1(x) log

w2 p2(x)
w3 p3(x)

dx = mD(θ1)(KL(w1 p̃1 : w2 p̃2 : w3 p̃3))− log
w2mD(θ3)

w3mD(θ2)
.

When FD(θ) = F(θ)− log mD(θ) is strictly convex and differentiable then ˜p(x; θ) is an exponential
family and the closed-form formula follows straightforwardly. Otherwise, we still get a closed-form but
need more derivations. For univariate distributions, we write D = (a, b) and mD(θ) =

∫ b
a p(x; θ)dx =

Pθ(b)− Pθ(a) where Pθ(a) =
∫ a p(x; θ)dx denotes the cumulative distribution function.

The usual formula for truncated and scaled Kullback–Leibler divergence is:

KLD(wp(x; θ) : w′p(x; θ′)) = wmD(θ)
(

log
w
w′

+ BF(θ
′ : θ)

)
+ w(θ′ − θ)

>∇mD(θ), (B1)

where BF(θ
′ : θ) is a Bregman divergence [5]:

BF(θ
′ : θ) = F(θ′)− F(θ)− (θ′ − θ)>∇F(θ).

This formula extends the classic formula [5] for full regular exponential families (by setting
w = w′ = 1 and mD(θ) = 1 with ∇mD(θ) = 0).

Similar formulæ are available for the cross-entropy and entropy of exponential families [26].

Appendix C. On the Approximation of KL between Smooth Mixtures by a Bregman
Divergence [5]

Clearly, since Bregman divergences are always finite while KL divergences may diverge, we need
extra conditions to assert that the KL between mixtures can be approximated by Bregman divergences.
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We require that the Jeffreys divergence between mixtures be finite in order to approximate the KL
between mixtures by a Bregman divergence. We loosely derive this observation (Careful derivations
will be reported elsewhere) using two different approaches:

• First, continuous mixture distributions have smooth densities that can be arbitrarily closely
approximated using a single distribution (potentially multi-modal) belonging to the Polynomial
Exponential Families [53,54] (PEFs). A polynomial exponential family of order D has log-likelihood
l(x; θ) ∝ ∑D

i=1 θixi: Therefore, a PEF is an exponential family with polynomial sufficient statistics
t(x) = (x, x2, . . . , xD). However, the log-normalizer FD(θ) = log

∫
exp(θ>t(x))dx of a D-order

PEF is not available in closed-form: It is computationally intractable. Nevertheless, the KL
between two mixtures m(x) and m′(x) can be theoretically approximated closely by a Bregman
divergence between the two corresponding PEFs: KL(m(x) : m′(x)) ' KL(p(x; θ) : p(x; θ′)) =
BFD(θ

′:θ), where θ and θ′ are the natural parameters of the PEF family {p(x; θ)} approximating
m(x) and m′(x), respectively (i.e., m(x) ' p(x; θ) and m′(x) ' p(x; θ′)). Notice that the Bregman
divergence of PEFs has necessarily finite value but the KL of two smooth mixtures can potentially
diverge (infinite value), hence the conditions on Jeffreys divergence to be finite.

• Second, consider two finite mixtures m(x) = ∑k
i=1 wi pi(x) and m′(x) = ∑k′

j=1 w′j p
′
j(x) of k and

k′ components (possibly with heterogeneous components pi(x)’s and p′j(x)’s), respectively.
In information geometry, a mixture family is the set of convex combination of fixed component
densities. Thus in statistics, a mixture is understood as a convex combination of parametric
components while in information geometry a mixture family is the set of convex combination
of fixed components. Let us consider the mixture families {g(x; (w, w′))} generated by the
D = k + k′ fixed components p1(x), . . . , pk(x), p′1(x), . . . , p′k′(x):{

g(x; (w, w′)) =
k

∑
i=1

wi pi(x) +
k′

∑
j=1

w′j p
′
j(x) :

k

∑
i=1

wi +
k′

∑
j=1

w′j = 1

}

We can approximate arbitrarily finely (with respect to total variation) mixture m(x) for any ε > 0
by g(x; α) ' (1− ε)m(x) + εm′(x) with α = ((1− ε)w, εw′) (so that ∑k+k′

i=1 αi = 1) and m′(x) '
g(x; α′) = εm(x) + (1− ε)m′(x) with α′ = (εw, (1− ε)w′) (and ∑k+k′

i=1 α′i = 1). Therefore KL(m(x) :
m′(x)) ' KL(g(x; α) : g(x; α′)) = BF∗(α : α′), where F∗(α) =

∫
g(x; α) log g(x; α)dx is the Shannon

information (negative Shannon entropy) for the composite mixture family. Again, the Bregman
divergence BF∗(α : α′) is necessarily finite but KL(m(x) : m′(x)) between mixtures may be
potentially infinite when the KL integral diverges (hence, the condition on Jeffreys divergence
finiteness). Interestingly, this Shannon information can be arbitrarily closely approximated when
considering isotropic Gaussians [13]. Notice that the convex conjugate F(θ) of the continuous
Shannon neg-entropy F∗(η) is the log-sum-exp function on the inverse soft map.
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