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Abstract: Information theory is used in many branches of science and technology. For instance, to
inform a set of human beings living in a particular region about the fatality of a disease, one makes
use of existing information and then converts it into a mathematical equation for prediction. In
this work, a model of the well-known river blindness disease is created via the Caputo and beta
derivatives. A partial study of stability analysis was presented. The extended system describing
the spread of this disease was solved via two analytical techniques: the Laplace perturbation and
the homotopy decomposition methods. Summaries of the iteration methods used were provided to
derive special solutions to the extended systems. Employing some theoretical parameters, we present
some numerical simulations.
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1. Introduction

Some of the richest areas in rivers are found in the Tropics. In particular in Africa, the Central
and West African countries are blessed with an abundance of rivers. Due to poverty, many residents
of these countries rely intensely on these rivers. For instance, it is very common to find that in many
villages in Cameroon and Chad, people use rivers as their bathing place and also as their source of
drinking water. It is very important to note that water from these rivers is not always healthy and
can cause several diseases. One of the most common diseases found in these areas is the so-called
onchocerciasis. Onchocerciasis, also called river blindness and Robbes disease is an infectious disease
caused by infection with the parasitic worm Onchocerca volvulus [1,2]. This disease is the second most
frequent cause of blindness due to infection, after trachoma [1]. In order to accommodate readers that
are not familiar with this field, we shall mention that the parasite is spread by the bites of black flies
of the genus Simulium (Figure 1) that live near rivers, hence the name of the disease. We shall recall
that, once inside a human host, the worm produces larvae that make their way back out to the skin,
where they can infect the next black fly that bites that person. An investigation done in [3] showed
that usually many bites are required before infection occurs.

An epidemiological study has revealed that about 37 million people are infected with this
parasite [4], of which about 300,000 have been permanently blinded [4]. About 99 percent of
onchocerciasis cases occur in Africa.
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The question that may be asked by readers is perhaps the following: “what does all this have to
do with mathematics?” The answer is simple: all phenomena are space and time measurable, so in
physical problems, observed facts that perhaps cannot be measured exactly can be approximated after
conversion into a mathematical formula. The aim of this paper is therefore based on the mathematical
aspects of the disease, in particular the model underpinning the spread of this disease. We shall
present this model utilizing fractional derivatives. The reason for using fractional derivatives can be
found in many recently published papers in the area of mathematical modelling [5–9]. The physical
interpretation of the fractional derivative concept can be found in [10].
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Figure 1. Female black fly biting a human being. 

  

Figure 1. Female black fly biting a human being.

The mathematical model under consideration here is given as:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

dHsptq
dt

“ ψ` δHVI ` αβHI ´ ξHSVI ´ τH HS

dHIptq
dt

“ HSVI ´ δI HI ´ αβHI ´ ξHSVI ´ τI HI

dVVptq
dt

“ δV HI ´ ρIVI ´ γVS

dVSptq
dt

“ δVS ´ ρIVI ´ δHVI

(1)

With the advantages offered by the concept of fractional derivative and other newly proposed
derivatives, in this paper we shall extend this model within the scope of fractional derivatives as well
as the beta-derivative. Therefore Equation (1) can be converted into the following:

$

’

’

’

&

’

’

’

%

A
0 Dα

t Hsptq “ ψ` δHVI ` αβHI ´ ξHSVI ´ τH HS
A
0 Dα

t Hlptq “ HSVI ´ δI HI ´ αβHI ´ ξHSVI ´ τI HI
A
0 Dα

t VIptq “ δV HI ´ ρIVI ´ γVS
A
0 Dα

t VSptq “ δVS ´ ρIVI ´ δHVI

(2)

where, A
0 Dα

t is the Caputo derivative or the new derivative called beta-derivative. We shall give
in the next section some background relating the use of fractional and beta-derivatives. The aim of
this paper is a comparative study of the beta and fractional derivative for modeling epidemiological
problems. The fractional derivative is mostly used for non-local problems and maybe not suitable
for epidemiological problems. However the fractional order plays an important role in numerical
simulations, therefore a local derivative with fractional order is introduced in this paper to model the
spread of river blindness disease.

2. Some Information about the Beta-Derivative and Caputo Derivative

Definition 1. Let f be a function, such that, f : ra, 8q Ñ R . Then the beta-derivative is defined as:

A
0 Dβ

x p f pxqq “ lim
εÑ0

f
ˆ

x` ε
´

x`
1

Γpβq

¯1´β˙

´ f pxq

ε
(3)

for all x ě a, β P p0, 1s. Then is the limit of the above exists, f is says to be beta-differentiable.
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One can remark that, the above definition does not depend on the interval. If the function is differentiable,
our definition at a point zero is different from zero.

Theorem 1. Assuming that, g ‰ 0 and f are two functions beta-differentiable with β P p0, 1s then, the following
relations can be satisfied:

1´A
0 Dα

xpa f pxq ` bgpxqq “ aA
0 Dα

xp f pxqq ` bA
0 Dα

xp f pxqq for all a and b real number,
2´A

0 Dα
xpcq “ 0 for c any given constant,

3´A
0 Dα

xp f pxqgpxqq “ gpxqA
0 Dα

xp f pxqq ` f pxqA
0 Dα

xpgpxqq,

4´A
0 Dα

x

´ f pxq
gpxq

¯

“
gpxqA

0 Dα
xp f pxqq ´ f pxqA

0 Dα
xpgpxqq

g2x
.

The proofs of the above relations are the same as the one in [11].

Theorem 2. Asuming that f : ra, 8q Ñ R , be a functions such that, f is differentiable and also alpha-differentiable.
Let g be a function defined in the range of f and also differentiable, then we have the following rule:

A
0 Dβ

x pgo f pxqq “ px`
1

Γpβq
q

1´β

f 1pxqg1p f pxqq (4)

Definition 2. Let f : ra, 8q Ñ R is given function, then we propose that the beta-integral of f is:

A
a Iβ

x p f pxqq “

x
ż

a

pt`
1

Γpβq
q

β´1
f ptqdt (5)

The above operator is the inverse operator of the proposed fractional derivative. We shall present to underpin
this statement by the following theorem.

Theorem 3. A
0 Dα

x
“A

0 Iα
x f pxq

‰

“ f pxq for all x ě a with f a given continuous and differentiable function.

Definition 3. The Caputo fractional derivative of a differentiable function is defined as:

Dα
xp f pxqq “

1
Γpn´ αq

x
ż

0

px´ tqn´α´1
p

d
dt
q

n
f ptqdt, n´ 1 ă α ď n (6)

The properties underpinning the use of the Caputo derivative can be found in [5–9]. With all this information
in hand, we shall present in the next section the analysis of this model.

3. Analysis of the Mathematical Model

In this section, we present a discussion strengthening the stability analysis of the model and via two methods.
One will be with the concept of eigenvalues and the other one will be via the reproductive number. One of
the advantages of the Caputo and beta-derivative is that, if the function is a constant, then the Caputo and the
beta-derivative of that function give zero. We can therefore make use of these properties to find the disease-free
equilibrium point and the endemic equilibrium points. At the equilibrium points, we assume that the system
does not depend on time, therefore A

0 Dα
t Hsptq “A

0 Dα
t Hlptq “A

0 Dα
t VIptq “A

0 Dα
t VSptq “ 0 such that:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 “ ψ` δHV I ` αβHI ´ ξHSV I ´ τH HS

0 “ HSV I ´ δI H I ´ αβHI ´ ξHSV I ´ τI H I

0 “ δV HI ´ ρIV I ´ γVS

0 “ δVS ´ ρIV I ´ δHVI

Solving the above system, we obtain first:

V I “
δVS

ρ` δH
, H I “ p

ρ1δ

ρ` δH
´ γqVS (7)
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However, introducing these equations in the system, we obtain the following:

V I “
ψξγδV ´ τHpρS ` γqpρI ` δHqpαβ` τI ` σ` δVq

γ rξpρI ` δHqpρs ` γqpτI ` γq ` δVρSs ` ξγρI δV

VS “
pρI ` δHq rψξγδV ´ τHpρs ` γqpρI ` δHqpαβ` τI ` σ` δVqs

γ rξpρI ` δHq rpρs ` γqpτI ` σqs ` ξ ` ρIδVs ` ξγρI δV

H I “
pρS ` γqpρI ` δHq rψξγδV ´ τHpρs ` γqpρI ` δHqpαβ` τI ` σ` δVqs

γδV rξpρI ` δHq rpρs ` γqpτI ` σqs ` ξ ` ρIδVs ` ξγρI δV

HS “
pρS ` γqpρI ` δHqαβ` τI ` σ` δV

ξγδV

(8)

Hence the disease-free equilibrium is given as:

pHS, H I , VS, V Iq “ p
ψ

τH
, 0, 0, 0q (9)

The stability analysis of this system has been investigated in [12]. Our next concern will be to provide an
approximate solution with two analytical techniques for each case.

4. Analysis of Approximate Solutions

One of the most difficult tasks in non-linear fractional differential equation systems is perhaps the derivation
of exact analytical solutions. That is why in the recent decades, several studies have been done in order to
build some analytical techniques that can be used to provide asymptotic solutions in such systems. We shall
mention some of the recent and efficient ones that have been intensively used, such as the homotopy perturbation
method [11,13], the Adomian Decomposition method [14,15], the homotopy Laplace perturbation method [16],
the Sumudu homotopy perturbation method [17] and the homotopy decomposition method [18]. However, in
this paper we shall use only two of these mentioned techniques, namely the Laplace homotopy perturbation
method and the homotopy decomposition method. The homotopy decomposition method will be used to solve
the system with the beta-derivative and then, the Laplace homotopy perturbation method will be used to provide
the solution of the system with Caputo derivative.

4.1. Solution with the Laplace Homotopy Perturbation Method

This version was first proposed in [16] and has been also used in other research. We shall present the
methodology for solving system (2) with the Caputo fractional derivative:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

C
0 Dα

t Hsptq “ ψ` δHVI ` αβHI ´ ξHSVI ´ τH HS

C
0 Dα

t Hlptq “ HSVI ´ δI HI ´ αβHI ´ ξHSVI ´ τI HI

C
0 Dα

t VIptq “ δV HI ´ ρIVI ´ γVS

C
0 Dα

t VSptq “ δVS ´ ρIVI ´ δHVI

An application of the Laplace transform operator on both sides of the above system leads us to the following:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Hspτq “
1

τα
Hsp0q `

1
τα

Lpψ` δHVI ` αβHI ´ ξHSVI ´ τH HSq

Hlpτq “
1

τα
Hlp0q `

1
τα

LpHSVI ´ δI HI ´ αβHI ´ ξHIVI ´ τI HIq

VIpτq “
1

τα
VIp0q `

1
τα

LpδV HI ´ ρIVI ´ γVSq

VSpτq “
1

τα
VSp0q `

1
τα

LpδVS ´ ρIVI ´ δHVIq

(10)

here, τ is the Laplace variable. An addition application of the inverse Laplace transform on both sides of the
system yields:



Entropy 2016, 18, 40 5 of 14

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Hsptq “ Hsp0q `L´1
"

1
τα

Lpψ` δHVI ` αβHI ´ ξHSVI ´ τH HSq

*

Hlptq “ Hlp0q `L´1
"

1
τα

LpHSVI ´ δI HI ´ αβHI ´ ξHIVI ´ τI HIq

*

VIptq “ VIp0q `L´1
"

1
τα

LpδV HI ´ ρIVI ´ γVSq

*

VSptq “ VSp0q `L´1
"

1
τα

LpδVS ´ ρIVI ´ δHVIq

*

(11)

With the above system in hand, we shall assume that a solution of the above can be obtained in series form
as follows:

Hsptq “
8
ÿ

n“0

Hsnptq, HIptq “
8
ÿ

n“0

HInptq, Vsptq “
8
ÿ

n“0

Vsnptq, VIptq “
8
ÿ

n“0

VInptq (12)

However, replacing the above solution in system (11) and including the embedding parameter p P p0, 1s,
putting together all the terms of the same power of the embedding parameter p we obtain:

p0 :

$

’

’

’

&

’

’

’

%

Hs0ptq “ Hsp0q
Hl0ptq “ Hlp0q
VI0ptq “ VIp0q
VS0ptq “ VSp0q

(13)

p1 :

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Hs1ptq “ L´1
"

1
τα

Lpψ` δHVI0 ` αβHI0 ´ ξHS0VI0 ´ τH HS0q

*

Hl1ptq “ L´1
"

1
τα

LpHS0VI0 ´ δI HI0 ´ αβHI0 ´ ξHI0VI0 ´ τI HI0q

*

VI1ptq “ L´1
"

1
τα

LpδV H0I ´ ρIVI0 ´ γVS0q

*

VS1ptq “ L´1
"

1
τα

LpδVS0 ´ ρIVI0 ´ δHVI0q

*

In general, we shall have the following system of iteration formulas (14):

pn :

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Hsnptq “ L´1

#

1
sα
Lpψ` δHVIpn´1q ` αβHIpn´1q ´ ξ

n´1
ř

j“0
VIpn´j´1qHSj ´ τH HSpn´1qq

+

Hl1ptq “ L´1

#

1
sα
Lp

n´1
ř

j“0
VIpn´j´1qHSj ´ δI HIpn´1q ´ αβHIpn´1q ´ ξ

n´1
ř

j“0
VIpn´j´1qHI j ´ τI HIpn´1qq

+

VI1ptq “ L´1
"

1
sα
LpδV HIpn´1q ´ ρIVIpn´1q ´ γVSpn´1qq

*

VS1ptq “ L´1
"

1
sα
LpδVSpn´1q ´ ρIVIpn´1q ´ δHVIpn´1qq

*

(14)

The above development can be summarized in the following algorithm:

Algorithm 1. This procedure can be used to derive a special solution to system (2) with a Caputo
fractional derivative:

‚ Input:

$

’

’

’

&

’

’

’

%

Hs0ptq “ Hsp0q
Hl0ptq “ Hlp0q
VI0ptq “ VIp0q

VS0ptq “ VSp0q

as preliminary input,

‚ j´number terms in the rough calculation,

‚ Output:

$

’

’

’

&

’

’

’

%

Hsapprptq
Hlapprptq
VIapprptq
VSapprptq

, the approximate solution.

Step 1: Put

$

’

’

’

&

’

’

’

%

Hs0ptq “ Hsptq
Hl0ptq “ Hlp0q
VI0ptq “ VIp0q
VS0ptq “ VSp0q

and

$

’

’

’

&

’

’

’

%

Hsapprptq
Hlapprptq
VIapprptq
VSapprptq

“

$

’

’

’

&

’

’

’

%

Hs0ptq
Hl0ptq
VI0ptq
VS0ptq.

,
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Algorithm 1. Cont.
Step 2: For j “ 1 to n´ 1 do step 3, step 4 and step 5:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Hs1ptq “ L´1
"

1
τα

Lpψ` δHVI0 ` αβHI0 ´ ξHS0VI0 ´ τH HS0q

*

Hl1ptq “ L´1
"

1
τα

LpHS0VI0 ´ δI HI0 ´ αβHI0 ´ ξHI0VI0 ´ τI HI0q

*

VI1ptq “ L´1
"

1
τα

LpδV H0I ´ ρIVI0 ´ γVS0q

*

VS1ptq “ L´1
"

1
τα

LpδVS0 ´ ρIVI0 ´ δHVI0q

*

.

Step 3: Compute:
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Bsnptq “ L´1

#

1
τα

Lpψ` δHVIpn´1q ` αβHIpn´1q ´ ξ
n´1
ř

j“0
VIpn´j´1qHSj ´ τH HSpn´1qq

+

Blnptq “ L´1

#

1
τα

Lp
n´1
ř

j“0
VIpn´j´1qHSj ´ δI HIpn´1q ´ αβHIpn´1q ´ ξ

n´1
ř

j“0
VIpn´j´1qHI j ´ τI HIpn´1qq

+

KInptq “ L´1
"

1
τα

LpδV HIpn´1q ´ ρIVIpn´1q ´ γVSpn´1qq

*

KSnptq “ L´1
"

1
τα

LpδVSpn´1q ´ ρIVIpn´1q ´ δHVIpn´1qq

*

.

Step 4: Compute:
$

’

’

’

&

’

’

’

%

Hspm`1qptq “ Bmsptq ` Hspapprqptq
Hlpm`1qptq “ Bmlptq ` Hlpapprqptq
VIpm`1qptq “ KImptq `VIpapprqptq
VSpm`1qptq “ KSmptq `VSpapprqptq

,

Step 5: Compute:
$

’

’

’

&

’

’

’

%

Hspapprqptq “ HapprSptq ` Hspm`1qptq
Hlpapprqptq “ Hlapprptq ` Hlpm`1qptq
VIpapprqptq “ VIapprptq `VIpm`1qptq

VSpapprqptq “ VSapprptq `VSpm`1qptq.
Stop.

The above algorithm shall be used to derive the special solution of system (2) with the Caputo derivative.
We shall examine the case where the beta-derivative and this are done in the following Section 4.2.

4.2. Solution with the Homotopy Decomposition Method

This technique is used here to derive a special solution to system (2) with the beta-derivative because the
application of the Laplace transform on this derivative does not give satisfactory results. However, we can apply
the inverse operator of this derivative, which is referred to as the beta-integral, in order to transform the ordinary
differential equation into an integral equation such that the idea of homotopy can employed. Therefore applying
the inverse operator on both sides of system (2), we obtain the following system of integral equations:

$

’

’

’

&

’

’

’

%

Hspτq “ Hsp0q `A
0 Iα

t pψ` δHVI ` αβHI ´ ξHSVI ´ τH HSq

Hlpτq “ Hlp0q `A
0 Iα

t pHSVI ´ δI HI ´ αβHI ´ ξHIVI ´ τI HIq

VIpτq “ VIp0q `A
0 Iα

t pδV HI ´ ρIVI ´ γVSq

VSpτq “ VSp0q `A
0 Iα

t pδVS ´ ρIVI ´ δHVIq

(15)

where:

A
0 Iβ

t p f ptqq “

t
ż

0

pτ`
1

Γpβq
q

1´β

f pτqdτ (16)

In addition to this, we shall assume that a solution of the above can be obtained in series form as follows:

Hsptq “
8
ÿ

n“0

Hsnptq, HIptq “
8
ÿ

n“0

HInptq, Vsptq “
8
ÿ

n“0

Vsnptq, VIptq “
8
ÿ

n“0

VInptq (17)
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However, replacing the above solution in system (15) and including the embedding parameter p P p0, 1s,
putting together all the terms of the same power of the embedding parameter p we obtain:

$

’

’

’

&

’

’

’

%

Hs0ptq “ Hsp0q
Hl0ptq “ Hlp0q
VI0ptq “ VIp0q
VS0ptq “ VSp0q

(18)

p1 :

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

Hs1ptq “
t
ş

0
pτ`

1
Γpβq

q

1´β

tψ` δHVI0 ` αβHI0 ´ ξHS0VI0 ´ τH HS0u dτ

Hl1ptq “
t
ş

0
pτ`

1
Γpβq

q

1´β

tHS0VI0 ´ δI HI0 ´ αβHI0 ´ ξHI0VI0 ´ τI HI0u dτ

VI1ptq “
t
ş

0
pτ`

1
Γpβq

q

1´β

pδV H0I ´ ρIVI0 ´ γVS0q dτ

VS1ptq “
t
ş

0
pτ`

1
Γpβq

q

1´β

tδVS0 ´ ρIVI0 ´ δHVI0u dτ

In general, we shall have the following system of iteration formulas:

pn :

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

Hsnptq “
t
ş

0
pτ`

1
Γpβq

q

1´β
#

ψ` δHVIpn´1q ` αβHIpn´1q ´ ξ
n´1
ř

j“0
VIpn´j´1qHSj ´ τH HSpn´1q

+

dτ

Hl1ptq “
t
ş

0
pτ`

1
Γpβq

q

1´β
#

n´1
ř

j“0
VIpn´j´1qHSj ´ δI HIpn´1q ´ αβHIpn´1q ´ ξ

n´1
ř

j“0
VIpn´j´1qHI j ´ τI HIpn´1q

+

dτ

VI1ptq “
t
ş

0
pτ`

1
Γpβq

q

1´β
 

HIpn´1q ´ ρI VIpn´1q ´ γVSpn´1q
(

dτ

VS1ptq “
t
ş

0
pτ`

1
Γpβq

q

1´β
 

δVSpn´1q ´ ρI VIpn´1q ´ δHVIpn´1q
(

dτ

(19)

The overhead elaboration can be restarted in the succeeding procedure.

Algorithm 2. This procedure can be used to derive a special solution to the system two with Atangana’s β-derivative:

‚ Input:

$

’

’

’

&

’

’

’

%

Hs0ptq “ Hsp0q
Hl0ptq “ Hlp0q
VI0ptq “ VIp0q
VS0ptq “ VSp0q

as preliminary input,

‚ j´number terms in the rough calculation,

‚ Output:

$

’

’

’

&

’

’

’

%

Hsapprptq
Hlapprptq
VIapprptq
VSapprptq

, the approximate solution.

Step 1: Put

$

’

’

’

&

’

’

’

%

Hs0ptq “ Hsptq
Hl0ptq “ Hlp0q
VI0ptq “ VIp0q
VS0ptq “ VSp0q

and

$

’

’

’

&

’

’

’

%

Hsapprptq
Hlapprptq
VIapprptq
VSapprptq

“

$

’

’

’

&

’

’

’

%

Hs0ptq
Hl0ptq
VI0ptq

VS0ptq.

,

Step 2: For j “ 1 to n´ 1 do step 3, step 4 and step 5:
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

Hs1ptq “
t
ş

0
pτ`

1
Γpβq

q

1´β

tψ` δHVI0 ` αβHI0 ´ ξHS0VI0 ´ τH HS0u dτ

Hl1ptq “
t
ş

0
pτ`

1
Γpβq

q

1´β

tHS0VI0 ´ δI HI0 ´ αβHI0 ´ ξHI0VI0 ´ τI HI0u dτ

VI1ptq “
t
ş

0
pτ`

1
Γpβq

q

1´β

pδV H0I ´ ρIVI0 ´ γVS0q dτ

VS1ptq “
t
ş

0
pτ`

1
Γpβq

q

1´β

tδVS0 ´ ρIVI0 ´ δHVI0u dτ

.
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Algorithm 2. Cont.
Step 3: Compute:

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

Bsnptq “
t
ş

0
pτ`

1
Γpβq

q

1´β

pψ` δHVIpn´1q ` αβHIpn´1q ´ ξ
n´1
ř

j“0
VIpn´j´1qHSj ´ τH HSpn´1qqdτ

Blnptq “
t
ş

0
pτ`

1
Γpβq

q

1´β
#

n´1
ř

j“0
VIpn´j´1qHSj ´ δI HIpn´1q ´ αβHIpn´1q ´ ξ

n´1
ř

j“0
VIpn´j´1qHI j ´ τI HIpn´1q

+

dτ

KInptq “
t
ş

0
pτ`

1
Γpβq

q

1´β
 

pδV HIpn´1q ´ ρIVIpn´1q ´ γVSpn´1q
(

dτ

KSnptq “
t
ş

0
pτ`

1
Γpβq

q

1´β
 

δVSpn´1q ´ ρIVIpn´1q ´ δHVIpn´1q
(

dτ.

Step 4: Compute:
$

’

’

’

&

’

’

’

%

Hspm`1qptq “ Bmsptq ` Hspapprqptq
Hlpm`1qptq “ Bmlptq ` Hlpapprqptq
VIpm`1qptq “ KImptq `VIpapprqptq

VSpm`1qptq “ KSmptq `VSpapprqptq

,

Step 5: Compute:
$

’

’

’

&

’

’

’

%

Hspapprqptq “ HapprSptq ` Hspm`1qptq
Hlpapprqptq “ Hlapprptq ` Hlpm`1qptq
VIpapprqptq “ VIapprptq `VIpm`1qptq

VSpapprqptq “ VSapprptq `VSpm`1qptq.
Stop.

5. Numerical Results

We shall make use of the above Algorithm 1 and Algorithm 2 to provide an approximate solution of system
(2) with the Caputo fractional derivative and the beta-derivative.

5.1. With the Beta-Derivative

Using Algorithm 2 we have the following series solutions:

$

’

’

’

&

’

’

’

%

Hs0ptq “ a
Hl0ptq “ b
VI0ptq “ d
VS0ptq “ c

(20)

Hs1ptq “
pp

1
Γ rµs

q

´µ

´ pt`
1

Γ rµs
q

´µ

p1` tΓ rµsq2qpbαβ´ acξ ` ψ` cδH ´ aτHq

p´2` µqΓ rµs2

Hl1ptq “
pp

1
Γ rµs

q

´µ

´ pt`
1

Γ rµs
q

´µ

p1` tΓ rµsq2qpad´ bαβ´ bdξ ´ bδi ´ bτiq

p´2` µqΓ rµs2

VS1ptq “
pt`

1
Γ rµs

q

´µ

ppt`
1

Γ rµs
q

µ

p
1

Γ rµs
q

´µ

´ p1` tΓ rµsq2qpcδ´ dpδH ` ρiqq

p´2` µqΓ rµs2

VI1ptq “
pp

1
Γ rµs

q

´µ

´ pt`
1

Γ rµs
q

´µ

p1` tΓ rµsq2qpaδV ´ dpγ` ρiqq

p´2` µqΓ rµs2
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Hl2ptq “ ´
1

2p´2` µq
p

1
Γ rµs

q

4´2µ

p´1{p´1` µqp´pt`
1

Γ rµs
q

2µ

` p
1

Γ rµs
q

2µ

` t2p
1

Γ rµs
q

´2`2µ

` 2tp
1

Γ rµs
q

´1`2µ

q

pt`
1

Γ rµs
q

´2µ

`

2p´pt`
1

Γ rµs
q

µ

` t2p
1

Γ rµs
q

´2`µ

` 2tp
1

Γ rµs
q

´1`µ

` p
1

Γ rµs
q

µ

qpt`
1

Γ rµs
q

´µ

´2` µ
`1{pp´1` µqp´3` 2µqq2p1` tΓ rµsq´2µ

p´1´ 2tµΓ rµs ` t2p3´ 4µqΓ rµs2 ´ 2t3p´1` µqΓ rµs3 ` p1` tΓ rµsq2µ
q

`

pp1` tΓ rµsq´2µ
p´1´ 2tµΓ rµs ` t2p1´ 2µqµΓ rµs2 ´ 4t3p´1` µq2Γ rµs3

`t4p´3` 5µ´ 2µ2qΓ rµs4

`p1` tΓ rµsq2µ
qq

{pp´2` µqp´1` µqp´3` 2µqqqp´adαβ

`bdαβ` bα2β2 ´ adγ´ 2ad2ξ ` 2bdαβξ ` bdγξ ` bd2ξ2 ` dψ` bδ2
i ` d2δH ` a2δV ´ abξδV ´ adρi ` bdξρi

´adτi ` 2bαβτi ` 2bdξτi ` bτ2
i ` δip´ad` 2bαβ` 2bdξ ` 2bτiq ´ adτHqEntropy 2015, 17 11 

 

 

( ) = 12(−2 + ) 1Γ[ ] −2(−2 + ) − + 1Γ[ ] + 1Gamma[ ] + 2 1Gamma[ ]+ 1Gamma[ ] + 1Gamma[ ] 1Gamma[ ]+ 1 (−1 + )⁄ (−2 + ) − + 1Gamma[ ] + 1Gamma[ ] + 1Gamma[ ]+ 2 1Gamma[ ] + 1Gamma[ ] − ( + )
− 2 − + 1Gamma[ ] + 1Gamma[ ] + 2 1Gamma[ ]+ 1Gamma[ ] + 1Gamma[ ] − ( + )− 1 (−1 + )(−3 + 2 )⁄ 2(−2 + )(1 + Gamma[ ]) (−1 − 2 Gamma[ ] + (3 − 4 )Gamma[ ]− 2 (−1 + )Gamma[ ] + (1 + Gamma[ ]) ) − ( + )+ 1 (−1 + )(−3 + 2 )⁄ (1 + Gamma[ ]) (−1 − 2 Gamma[ ] + (1 − 2 ) Gamma[ ]− 4 (−1 + ) Gamma[ ] + (−3 + 5 − 2 )Gamma[ ] + (1 + Gamma[ ]) ) − + ( + )+ 1 (−1 + )(−3 + 2 )⁄ 2 (−2 + )(1 + Gamma[ ]) (−1 − 2 Gamma[ ] + (3 − 4 )Gamma[ ]− 2 (−1 + )Gamma[ ] + (1 + Gamma[ ]) )(− + + + + )+ 1 (−1 + )(−3 + 2 )⁄ (1 + Gamma[ ]) (−1 − 2 Gamma[ ] + (1 − 2 ) Gamma[ ]− 4 (−1 + ) Gamma[ ] + (−3 + 5 − 2 )Gamma[ ] + (1 + Gamma[ ]) )(− + + ++ )+ 1 (−1 + )⁄ (−2 + ) − + 1Gamma[ ] + 1Gamma[ ] + 1Gamma[ ]+ 2 1Gamma[ ] + 1Gamma[ ] − ( + ) − ( + )
− 2 − + 1Gamma[ ] + 1Gamma[ ] + 2 1Gamma[ ]+ 1Gamma[ ] + 1Gamma[ ] − ( + ) − ( + )
− 1 (−1 + )⁄ (−2 + ) − + 1Gamma[ ] + 1Gamma[ ] + 1Gamma[ ]+ 2 1Gamma[ ] + 1Gamma[ ] ( − + + − )
+ 2 − + 1Gamma[ ] + 1Gamma[ ] + 2 1Gamma[ ]+ 1Gamma[ ] + 1Gamma[ ] ( − + + − )+ 1 (−1 + )(−3 + 2 )⁄ 2(−2 + )(1 + Gamma[ ]) (−1 − 2 Gamma[ ] + (3 − 4 )Gamma[ ]− 2 (−1 + )Gamma[ ] + (1 + Gamma[ ]) ) ( − + + − )+ 1 (−1 + )(−3 + 2 )⁄ (1 + Gamma[ ]) (−1 − 2 Gamma[ ] + (1 − 2 ) Gamma[ ]− 4 (−1 + ) Gamma[ ] + (−3 + 5 − 2 )Gamma[ ] + (1 + Gamma[ ]) ) ( − + +− )+ 1 (−1 + )⁄ (−2 + ) − + 1Gamma[ ] + 1Gamma[ ] + 1Gamma[ ]+ 2 1Gamma[ ] + 1Gamma[ ] − − + (− + + − + + )
− 2 − + 1Gamma[ ] + 1Gamma[ ] + 2 1Gamma[ ]+ 1Gamma[ ] + 1Gamma[ ] − − + (− + + − + + )+ 1 (−1 + )(−3 + 2 )⁄ 2(−2 + ) (1 + Gamma[ ]) (1 + 2 Gamma[ ] + (−3 + 4 )Gamma[ ]+ 2 (−1 + )Gamma[ ] − (1 + Gamma[ ]) ) − − + (− + + − + + )− 1 (−1 + )(−3 + 2 )⁄ (1 + Gamma[ ]) (−1 − 2 Gamma[ ] + (1 − 2 ) Gamma[ ]− 4 (−1 + ) Gamma[ ] + (−3 + 5 − 2 )Gamma[ ] + (1 + Gamma[ ]) ) − −+ (− + + − + + )  



Entropy 2016, 18, 40 10 of 14

VI2ptq “ ´
1

2p´2` µq2p´1` µq
pt`

1
Γ rµs

q

´µ

p
1

Γ rµs
q

4´2µ

p1` tΓ rµsq´2µ
ppt`

1
Γ rµs

q

µ

´

4t3p´1` µqpt`
1

Γ rµs
q

µ

Γ rµs3´t4p´1` µqpt`
1

Γ rµs
q

µ

Γ rµs4`

2pt`
1

Γ rµs
q

µ

p1` tΓ rµsqµ ` pt`
1

Γ rµs
q

µ

p1` tΓ rµsq2µ
´4tp

1
Γ rµs

q

´1`µ

p1` tΓ rµsq2µ
´

4p
1

Γ rµs
q

µ

p1` tΓ rµsq2µ
` 2t2p´1` µqpt`

1
Γ rµs

q

µ

Γ rµs2 p´3`p1` tΓ rµsqµq`

2tpt`
1

Γ rµs
q

µ

Γ rµs p2` µp´2` p1` tΓ rµsqµqq ´ µp´2tp
1

Γ rµs
q

´1`µ

p1` tΓ rµsq2µ
´2p

1
Γ rµs

q

µ

p1` tΓ rµsq2µ
`

pt`
1

Γ rµs
q

µ

p1` p1` tΓ rµsq2µ
qqqpdpγ` ρiq

2
` δVpbαβ´ aγ´ adξ ` ψ`dδH ´ aρi ´ aτHqq

VS2ptq “ ´
1

2p´2` µq2p´1` µq
pt`

1
Γ rµs

q

´µ

p
1

Γ rµs
q

4´2µ

p1` tΓ rµsq´2µ
ppt`

1
Γ rµs

q

µ

´

4t3p´1` µqpt`
1

Γ rµs
q

µ

Γ rµs3´t4p´1` µqpt`
1

Γ rµs
q

µ

Γ rµs4 ` 2pt`
1

Γ rµs
q

µ

p1` tΓ rµsqµ`

pt`
1

Γ rµs
q

µ

p1` tΓ rµsq2µ
´4tp

1
Γ rµs

q

´1`µ

p1` tΓ rµsq2µ
´ 4p

1
Γ rµs

q

µ

p1` tΓ rµsq2µ
`

2t2p´1` µqpt`
1

Γ rµs
q

µ

Γ rµs2 p´3`p1` tΓ rµsqµq`

2tpt`
1

Γ rµs
q

µ

Γ rµs p2` µp´2` p1` tΓ rµsqµqq ´ µp´2tp
1

Γ rµs
q

´1`µ

p1` tΓ rµsq2µ
´2p

1
Γ rµs

q

µ

p1` tΓ rµsq2µ
`

pt`
1

Γ rµs
q

µ

p1` p1` tΓ rµsq2µ
qqqpcδ2 ` pdγ´ dδ´ aδVqρi ` dρ2

i`δHp´aδV ` dpγ´ δ` ρiqqq

5.2. With the Caputo Fractional Derivative

In this subsection Algorithm 1 is used to provide an approximation solution of system (2):
$

’

’

’

&

’

’

’

%

Hs0ptq “ a
Hl0ptq “ b
VI0ptq “ d
VS0ptq “ c

(21)

HI1ptq “
tµpad´ bαβ´ bdξ ´ bδi ´ bτiq

Γ r1` µs

VI1ptq “
tµp´dγ` aδV ´ dρiq

Γ r1` µs
, VS1ptq “

tµpcδ´ dδH ´ dρiq

Γ r1` µs

HS1ptq “
tµpbαβ´ adξ ` ψ` dδH ´ aτHq

Γ r1` µs

HI2ptq “ pt2µpbdtµαβγΓ r1` 2µs2 ´ 2ad2tµγξΓ r1` 2µs2 ` bdtµαβγξΓ r1` 2µs2

`bd2tµγξ2Γ r1` 2µs2 ` dtµγψΓ r1` 2µs2 ` adαβΓ r1` µs2 N r1` 3µs´

bα2β2Γ r1` µs2 Γ r1` 3µs ´ bdαβξΓ r1` µs2 Γ r1` 3µs´

bΓ r1` µs2 Γ r1` 3µs δ2
i ´ abtµαβΓ r1` 2µs2 δV ` 2a2dtµξΓ r1` 2µs2 δV´

abtµαβξΓ r1` 2µs2 δV ´ abdtµξ2Γ r1` 2µs2 δV ´ atµψΓ r1` 2µs2 δV`

bdtµαβΓ r1` 2µs2 ρi ´ 2ad2tµξΓ r1` 2µs2 ρi ` bdtµαβξΓ r1` 2µs2 ρi`

´bd2tµξ2Γ r1` 2µs2 ρi ` dtµψΓ r1` 2µs2 ρi ` dtµΓ r1` 2µs2 δHp´aδV ` dpγ` ρiqq`

bdtµγξΓ r1` 2µs2 τi ` adΓ r1` µs2 Γ r1` 3µs τi ´ 2bαβΓ r1` µs2 Γ r1` 3µs τi´

bdξΓ r1` µs2 Γ r1` 3µs τi ´ abtµξΓ r1` 2µs2 δV τi ` bdtµξΓ r1` 2µs2 ρiτi´

bΓ r1` µs2 Γ r1` 3µs τ2
i ` δipbdtµγξΓ r1` 2µs2 ` adΓ r1` µs2 Γ r1` 3µs´

2bαβΓ r1` 3µs ´ bdξΓ r1` µs2 Γ r1` 3µs´

abtµξΓ r1` 2µs2 δV ` bdtµξΓ r1` 2µs2 ρi ´ 2bΓ r1` µs2 Γ r1` 3µs τiq´

adtµγΓ r1` 2µs2 τH ` a2tµΓ r1` 2µs2 δV τH ´ adtµΓ r1` 2µs2 ρiτHqq

{Γ r1` µs2 Γ r1` 2µsΓr1` 3µsq
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HS2ptq “ ptµpbdt2µαβγξΓ r1` 2µs2 ´ ad2t2µγξ2Γ r1` 2µs2 ` dt2µγξψΓ r1` 2µs2`

adtµαβΓ r1` µs2 Γ r1` 3µs ´ btµα2 β2Γ r1` µs2 Γ r1` 3µs´

bdtµαβξΓ r1` µs2 Γ r1` 3µs ` ψΓ r1` µs Γ r1` 2µs Γ r1` 3µs ´ btµαβΓ r1` µs2 Γ r1` 3µs δi

´abt2µαβξΓ r1` 2µs2 δV ` a2dt2µξ2Γ r1` 2µs2 δV ´ at2µξψΓ r1` 2µs2 δV`

bdt2µαβξΓ r1` 2µs2 ρi ´ ad2t2µξ2Γ r1` 2µs2 ρi ` dt2µξψΓ r1` 2µs2 ρi

´btµαβΓ r1` µs2 Γ r1` 3µs τi ´ adt2µγξΓ r1` 2µs2 τH

´btµαβΓ r1` µs2 Γ r1` 3µs τH

`adtµξΓ r1` µs2 Γ r1` 3µs τH ´ tµψΓ r1` µs2 Γ r1` 3µs τH ` a2t2µξΓ r1` 2µs2 δV τH

´adt2µξΓ r1` 2µs2 ρiτH ` atµΓ r1` µs2 Γ r1` 3µs τ2
H ` tµδHpp´adtµξΓ r1` 2µs2

`aΓ r1` µs2 Γ r1` 3µsqδV ` dpdtµγξΓ r1` 2µs2 ´ γΓ r1` µs2 Γ r1` 3µs

`pdtµξΓ r1` 2µs2 ´ Γ r1` µs2 Γ r1` 3µsqρi ´ Γ r1` µs2 Γ r1` 3µs τHqqqq

{pΓ r1` µs2 Γr1` 2µsΓr1` 3µsq

VI2ptq “
t2µpdpγ` ρiq

2
` δVpbαβ´ aγ´ adξ ` ψ` dδH ´ aρi ´ aτHqq

Γ r1` 2µs

VS2ptq “
t2µpcδ2 ` pdγ´ dδ´ aδVqρi ` dρ2

i ` δHp´aδV ` dpγ´ δ` ρiqqq

Γ r1` 2µs

5.3. Numerical Simulations

In this subsection, we use theoretical parameters to simulate the numerical representation of the approximate
solutions as functions of time and also for alpha. The theoretical parameters used here are given in the table below.

Table 1. Theoretical parameters.

Parameters HSp0q VSp0q VSp0q VIp0q γ β δ ξ δH δI δV τH τI ρI ψ

Values 100 0 10 0 1 0.5 1 0.4 0.6 0.9 0.6 0.6 0.5 0.7 10
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Figure 2. Approximate solution for alpha = 0.106.

The graphical representations are depicted in Figures 2–7. It is observed from the graph that, for the above
theoretical parameters, the total population referred here as susceptible will get the disease because of the fast
spread of the infection that affects almost all the people. It is also observed that, in a very short period of time,
the number of infected persons will increase very rapidly. In general the number of susceptible vectors will also
be described and the number of infected vectors will increase, which is actually physically normal. The results
from the figure show that the prediction also depends on the fractional order mu. More precisely, when mu is
closer to 1 and above 0.5, we have a non-realistic prediction, since we assume the initial number of people in
the susceptible population to be 100 and also at the beginning of the infection, we assume to have 10 people
that at that time were not susceptible. However, we have that, for mu above 0.5, we observe that, the number of
humans infected is more than 110 and can even be 250. On the other hand, when mu is less than 0.5 the maximum
number of infected human will be 110 which is very realistic because we will assume that at a particular time, the
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remaining 10 non-susceptible population became susceptible and later get infected. It is perhaps important to
mention that, when mu is 1 we have the ordinary derivative in both cases for the beta-derivative and also the
Caputo derivative, meaning the model with an ordinary derivative does not give good prediction, however with
the newly introduced beta-calculus we have possibility of describing this physical problem more accurately.
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the number of humans infected is more than 110 and can even be 250. On the other hand, when mu is less than 0.5
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Entropy 2016, 18, 40 14 of 14

Caputo derivative, meaning the model with an ordinary derivative does not give good prediction, however with
the newly introduced beta-calculus we have possibility of describing this physical problem more accurately.
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