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Abstract: Selecting a subset of samples to label from a large pool of unlabeled data points, such that
a sufficiently accurate classifier is obtained using a reasonably small training set is a challenging,
yet critical problem. Challenging, since solving this problem includes cumbersome combinatorial
computations, and critical, due to the fact that labeling is an expensive and time-consuming task,
hence we always aim to minimize the number of required labels. While information theoretical
objectives, such as mutual information (MI) between the labels, have been successfully used in
sequential querying, it is not straightforward to generalize these objectives to batch mode. This is
because evaluation and optimization of functions which are trivial in individual querying settings
become intractable for many objectives when we are to select multiple queries. In this paper,
we develop a framework, where we propose efficient ways of evaluating and maximizing the MI
between labels as an objective for batch mode active learning. Our proposed framework efficiently
reduces the computational complexity from an order proportional to the batch size, when no
approximation is applied, to the linear cost. The performance of this framework is evaluated using
data sets from several fields showing that the proposed framework leads to efficient active learning
for most of the data sets.

Keywords: active learning; mutual information; submodular maximization; classification

1. Introduction

In supervised learning, there is a teacher in the form of labels associated to a training set of
samples to enable learning of models for prediction. However, obtaining expert/human/manual
labeling is expensive. Instead of randomly selecting samples for manual annotation (the standard
setting), the goal of active learning is to intelligently select samples for annotation that enables
efficiently learning an accurate classifier with as few labels as possible. Here, the implicit assumptions
are that the labeling costs (in terms of time or financial expense) are the same for all of the queries
and also significantly larger than the computational cost of the querying algorithms. The latter
assumption leads us towards the active learning algorithms that generate smaller batch of queries,
even though they might be computationally more expensive compared to the cheap passive learning.

An active learning setting typically starts with an initial model (from a few labeled samples),
then more samples are selected for label querying. There are two general strategies for querying:
sequential or batch mode. In sequential querying, a single sample is selected for querying at each active
learning step, where each step involves labeling the query and retraining of the model. Batch mode
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querying, on the other hand, allows labeling of multiple samples at each active learning step. Most of
the classical studies in active learning use sequential querying [1–6]. However, oftentimes querying a
batch of samples is more efficient when the experts can label multiple samples in one step, since they
can label more queries at each step without the need to wait for the retraining process. In this paper,
we introduce a batch mode active learning algorithm based on mutual information.

Performing active learning in batch mode introduces new challenges. Since we need to select a
set of queries, one should also make sure that the samples are non-redundant to maximize the amount
of information that they provide. Another related challenge is that selecting a subset of samples based
on a given objective function defined over sets can easily lead to intractable or to non-deterministic
polynomial-time hard (NP-hard) optimization problems.

Recently, different batch mode active learning algorithms have been developed. Besides the
querying strategy, active learning methods also differ based on the criterion they optimize for
selecting queries. [7–9] select samples that reduce model uncertainty. Holub et al. [8] do this directly
using the joint entropy function; Brinker [7] does this indirectly based on the distance of samples to
the classifier’s boundary; and Chen et al. [9] also do this indirectly based on the volume of version
space. Most of these methods need to employ heuristics to introduce diversity among the queries.
Choosing a subset of samples that maximizes the expected model change [10] is another type of
batch selection strategy which works directly with classifier performance, but is usually tied to a
particular classification model and is not general. On the other hand, Azimi et al. [11] develop a
framework which constructs a batch mode variant of any given sequential querying policy, such that
it performs close to the sequential scenario. Their algorithm is based on the restrictive assumption that
any sequential querying outperforms its batch mode correspondent, in the expense of more frequent
model updating. There are also studies that select the queries based on the amount of information
they carry with respect to the underlying data distribution. For example, Hoi et al. [12] use the
Fisher information ratio, which is specifically designed for a logistic regression model; Guo [13] and
Li et al. [14] utilize mutual information between the input feature values of the candidate queries and
the remaining samples, where they used Gaussian Process distribution to model the joint probability
over the instances.

In this paper, we advance the field by introducing a general framework for batch mode active
learning that selects samples based on mutual information (MI) between labels of the candidate query
set and the remaining samples given the current model. Our framework is general, because it can
be applied with any classifier. Also note that we optimize for MI between the labels; in contrast, the
MI in [13] and [14] are based on the input feature values. Our formulation is discriminative; hence,
we do not need to model the distribution of the input features. Another additional benefit is that our
MI-based objective takes redundancy into account naturally.

MI between the labels has been employed in sequential active learning settings [15]; however,
to date, we are not aware of any work that optimizes for this objective directly in batch mode.
This is due to two main hurdles: (1) difficulty in calculating the MI between non-singleton subsets
of labels and (2) its combinatorial optimization problem. We address hurdle (1) by introducing
pessimistic and optimistic versions of estimating MI, both of which can be calculated efficiently in
a greedy fashion (Section 2.2), and hurdle (2) via the popular greedy submodular maximization
algorithm and a stochastic version of it. We show that MI is submodular but non-monotone, and
therefore only the stochastic algorithm has guaranteed tight bounds for maximizing it (Section 2.3).
This stochastic optimization algorithm, which has been not exploited in active learning community
before, will be compared in practice against the former algorithm which has been used widely
in batch querying [9,12,16,17]. Our proposed framework efficiently reduces the computational
complexity from order k (denoting the batch size), when no approximation is applied, to the linear
cost (Section 2.4). Additionally, as suggested by Wei et al. [18], we also use uncertainty sampling to
downsample the unlabeled data as a pre-processing step to further decrease the model complexity
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(Section 2.5). The performance of our proposed algorithms are evaluated using data sets from several
different fields, and make comparisons against entropy-based and random querying benchmarks.

2. Active Learning with Mutual Information

In this section, we introduce our notations and formulate the batch active learning problem with
MI as the objective. Then we provide our solutions to the two hurdles mentioned above.

2.1. Formulation

Let X = {xi}n+m
i=1 ⊆ Rd denote our finite data set where xi is the d-dimensional feature

vector representing the i-th sample. Also let Y = {yi}n+m
i=1 be their respective class labels where

each yi represents the numerical category varying between 1 to c, with c the number of classes.
We distinguish indices of the labeled and unlabeled partitions of the data set byL and U (with |L| = n
and |U | = m), respectively, which are disjoint subsets of {1, ..., n + m}. Note that the true values of the
labels YL are observed and denoted by Y∗L, hence Y = YU ∪ Y∗L. The initial classifier is trained based
on these observed labels.

Labeling unlabeled samples is costly and time-consuming. Given a limited budget for this task,
we wish to select k ≥ 1 queries from U whose labeling leads to a new classifier with a significantly
improved performance. Therefore we need an objective set function f : 2U → R defined over subsets
of the unlabeled indices A ⊆ U . The goal of batch active learning is then to choose a subset A with a
given cardinality k that maximizes the objective given the current model that is trained based on Y∗L.
This can be formulated as the following constrained combinatorial optimization:

A∗ = arg max
A⊆U , |A|=k

f (A). (1)

We aim to choose the queries A whose labels YA give the highest amount of information about labels
of the remaining samples YU−A. In other words, the goal is to maximize the mutual information (MI)
between the random sets YA and YU−A given the observed labels Y∗L and the features X:

fMI(A) = MI(YA, YU−A|X, Y∗L) = H(YA|X, Y∗L)− H(YA|X, Y∗L, YU−A). (2)

Let us focus on the first right hand side term fH(A) := H(YA|X, Y∗L), which is the joint
entropy function used in active learning methods [8]. Note that maximizing fH is equivalent
to minimizing H(YU−A|X, Y∗L, YA) (the actual objective introduced in [8]), since H(YU |X, Y∗L) =

H(YA|X, Y∗L) + H(YU−A|X, Y∗L, YA) and H(YU |X, Y∗L) is a constant with respect to A. This objective
is expensive to calculate due to the complexity of computing the joint posterior P(YA|X, Y∗L).
However, using a point estimation, such as maximum likelihood, to train
the classifier’s parameter θ, one can say that θ is deterministically equal to
the maximum likelihood estimation (MLE) point estimate θ̂n given X and Y∗L.
Then we can rewrite the posterior as P(YA|X, Y∗L) =

∫
P(YA|θ) · δ(θ − θ̂n)dθ = P(YA|θ̂n).

Since in most discriminative classifiers the labels are assumed to be independent given the
parameter, one can write P(YA|θ̂n) = ∏i∈A P(yi|θ̂n). This simplifies the computation of the joint
entropy to the sum of sample entropy contributions:

fH(A) = H(YA|X, Y∗L) = H(YA|θ̂n) = ∑
j∈A

H(yj|θ̂n), (3)

which is straightforward to compute having the pmf’s P(yi|θ̂n). Equation (3) implies that maximizing
fH can be separated into several individual maximizations, hence does not take into account the
redundancy among the selected queries. Thus, in different related studies heuristics are added
to cope with this issue. MI in Equation (2), on the other hand, removes this shortcoming by
introducing a second term which conditions over the unobserved random variable YU−A, as well
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as the observed Y∗L. This conditioning prevents the labels in YA from becoming independent, and
therefore automatically incorporates the diversity among the queries (see next section for details of
evaluating this term).

Unfortunately, maximizing fMI for k > 1 is NP-hard (the optimization hurdle). Relaxing
combinatorial optimizations into continuous spaces is a common technique to make the computations
tractable [13], however these methods still involve a final discretization step that often includes using
heuristics. In the following sections, we introduce our strategies to overcome the practical hurdles in
MI-based active learning algorithms by introducing (1) pessimistic/optimistic approximations of MI;
and (2) submodular maximization algorithms that allow us to perform the computations within the
discrete domain.

2.2. Evaluating Mutual Information

In this Section, we address the hurdle of evaluating MI between non-singleton subset of labels.
This objective, formulated in Equation (2), is also equal to

fMI(A) = H(YU−A|X, Y∗L) − H(YU−A|X, Y∗L, YA), (4)

due to MI’s symmetry. We prefer this equation, since usually we have |YA| = k � |YU | and thus
it leads to a more computationally efficient problem. Note that the first term in the right hand side
of Equation (4) can be evaluated similar to Equation (3). The major difficulty we need to handle
in Equation (4) is the computation of the second term, which requires considering all possible label
assignments to YA. To make this computationally tractable, we propose to use a greedy strategy
based on two variants: pessimistic and optimistic approximations of MI. To see this we focus on the
second term:

H(YU−A|X, Y∗L, YA) = ∑
J∈{1,...,c}|A|

P(YA = J|X, Y∗L) · H(YU−A|X, Y∗L, YA = J) (5)

where {1, ..., c}|A| is the set of all possible class label assignments to the samples in A.
For example, if A has three samples (|A| = 3) and c = 2, then this set would be equal
to
{
{1, 1, 1}, {2, 1, 1}, {1, 2, 1}, {2, 2, 1}, {2, 2, 2}, {1, 2, 2}, {2, 1, 2}, {1, 1, 2}

}
. For each fixed label

permutation J, the classifier should be retrained after adding the new labels YA = J to the
training labels Y∗L in order to compute the conditional entropy H(YU−A|X, Y∗L, YA = J). It is
also evident from the example above that the number of possible assignments J to YA is ck.
Therefore, the number of necessary classifier updates grows exponentially with |YA| = k. This is
computationally very expensive and makes Equation (5) impractical. Alternatively, we can replace
the expectation in Equation (5) with a minimization/maximization to get a pessimistic/optimistic
approximation of MI. Such a replacement enables us to employ efficient greedy approaches to
estimate fMI in a conservative/aggressive manner. The greedy approach that we use here is
compatible with the iterative nature of the optimization Algorithms 1 and 2 (described in Section 2.3).
In the remainder of this Section, we focus on the pessimistic approximation. Similar equations can be
derived for the optimistic case. The first step is replacing the weighted summation in Equation (5) by
a maximization:

f pess
MI (A) = H(YU−A|X, Y∗L)− max

J∈{1,...,c}|A|
H(YU−A|X, Y∗L, YA = J) (6)

Note that f pess
MI (A) is always less than or equal to fMI . Equation (6) still needs the computation

of the conditional entropy for all possible assignments J. However, it enables us to use greedy
approaches to approximate f pess

MI (A) for any candidate query set A ⊆ U , as described below.
Without loss of generality, suppose that A, with size |A| = k (1 ≤ k ≤ m), can be shown

element-wise as A = {u1, ..., uk}. Define At = {u1, ..., ut} for any t ≤ k (hence Ak = A). In the
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first iteration we can evaluate Equation (6) simply for the singleton f pess
MI ({u1}) and store ŷu1 , the

assignment to yu1 which maximizes the conditional entropy in Equation (6):

f pess
M ({u1}) = H(YU−{u1}|X, Y∗L) − max

j∈{1,...,c}
H(YU−{u1}|X, Y∗L, yu1 = j)

= H(YU−{u1}|X, θ̂n) − H(YU−{u1}|X, Y∗L, yu1 = ŷu1), (7)

where we used Equation (3) to substitute the first term with H(YU−{u1}|θ̂n). Note that the second
term in Equation (7) requires c times of retraining the classifier with the newly added class label
yu1 = j for all possible j ∈ {1, ..., c}. In practice, the retraining process can be very time-consuming.
Here, instead of retraining the classifier from scratch, we leverage the current estimate of the
classifier’s parameter vector and take one quasi-Newton step to update this estimate:

θ̃n+1 := θ̂n − H−1
n+1 · gn+1, (8)

where gn+1 and Hn+1 are the gradient vector and Hessian matrix of the log-likelihood function of our
classifier given the labels Y∗L ∪ {yu1 = j}. Then we use the approximation

H(YU−{u1}
∣∣X, Y∗L, yu1 = ŷu1) = H(YU−{u1}

∣∣X, θn+1) ≈ H(YU−{u1}
∣∣X, θ̃n+1). (9)

In Appendix, we derive the update equation in case a multinomial logistic regression is used as
the discriminative classifier. Specifically, we will see that gn+1 and H−1

n+1 can be obtained efficiently
from gn and H−1

n .
If k = 1, we are done. Otherwise, to move from iteration t− 1 to t (1 < t ≤ k), f pess

MI (At−1 ∪ {ut})
will be approximated from the previous iterations:

f pess
MI (At) ≈ H

(
YU−At

∣∣θ̂n
)
− max

j∈{1,...,c}
H
(
YU−At

∣∣X, Y∗L, ŶAt−1 , yut = j
)

, (10)

where ŶAt−1 = {ŷu1 , ..., ŷut−1} are the assignments maximizing the conditional entropy that are
stored from the previous iterations, such that the i-th element ŷui is the assignment stored for
ui = Ai − Ai−1(1 ≤ i ≤ t). Note that Equation (10) is an approximation of the pessimistic MI, as
is defined by Equation (6), however, in order to keep the notations simple we use the same notation
f pess
MI for both. Moreover, similar to Equation (7) there are c time of classifier updates involved in the

computation of Equation (10). To complete iteration t, we make ŷut equal to the assignment to yut that
maximizes the second term in Equation (10) and add it to ŶAt−1 to form ŶAt .

As in the first iteration, the conditional entropy term in Equation (10) is estimated by using the
set of parameters obtained from the quasi-Newton step:

H
(
YU−At

∣∣X, Y∗L, ŶAt−1 , yut = j
)
≈ H

(
YU−At

∣∣X, θ̃n+t
)

, (11)

where
θ̃n+t = θ̃n+t−1 − H−1

n+t · gn+t. (12)

Considering Equations (7) and (10) as the greedy steps of approximating fMI , we see that the
number of necessary classifier updates are c · k, since there are k iterations each of which requires c
times of retraining the classifier. Thus, the computational complexity reduced from the exponential
cost in the exact formulation Equation (5) to the linear cost in the greedy approximation.

Similar to Equation (10), for the optimistic approximation, we will have:

f opt
MI (At) = H

(
YU−At

∣∣θ̂n
)
− min

j∈{1,...,c}
H
(
YU−At

∣∣X, Y∗L, ŶAt−1 , yut = j
)

, (13)
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where ŶAt−1 = {ŷu1 , ..., ŷut−1} is the set of class assignments minimizing the conditional entropy
that are stored from the previous iterations. Clearly, the reduction of the computational complexity
remains the same in the optimistic formulation.

Let us emphasize that, from the definitions of f pess
MI and f opt

MI , we always have the
following inequality

f pess
MI (A) ≤ fMI(A) ≤ f opt

MI (A) , ∀A ⊆ U . (14)

The first (or second) inequality turns to equality, if the results of averaging in conditional
entropy in Equation (5) is equal to maximization (or minimization) involved in the approximations.
This is equivalent to saying that the posterior probability P(YA|X, Y∗L) is a degenerative distribution
concentrated at the assignment YA = J that maximizes (or minimizes) the conditional entropy.
Furthermore, if the posterior is a uniform distribution, giving the same posterior probability to all
possible assignments J ∈ {1, ..., c}|A|, then the averaging, minimization and maximization lead to the
same numerical result and therefore we get f pess

MI = f opt
MI = fMI .

In theory, the value of MI between any two random variables is non-negative. However, because
of the approximations made in computing the pessimistic or optimistic evaluations of MI, it is possible
to get negative values depending on the distribution of the data. Therefore, after going through all
the elements of A in evaluating f pess

MI (or f opt
MI ), we take the maximum between the approximations of

f pess
MI (A) (or f opt

MI (A)) and zero to ensure its non-negativity.

2.3. Randomized vs. Deterministic Submodular Optimizations

In this section, we begin by reviewing the basic definitions regarding submodular set functions,
and see that both fMI and fH satisfy submodularity condition. We then present two methods for
submodular maximization: a deterministic and a randomized approach. The latter is applicable to
submodular and monotone set functions such as fH . But fMI is not monotone in general, hence we
present the randomized approach for this objective.

Definition 1. A set function f : 2U → R is said to be submodular if

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A, B ⊆ U . (15)

We call f supermodular if the inequality in Equation (15) is reversed. In many occasions, it is
easier to use an equivalent definition, which uses the notion of discrete derivative defined as:

ρ f (A, u) := f (A∪ {u})− f (A) , ∀A ⊆ U , u ∈ U . (16)

Proposition 2. Let f : 2U → R be a set function. f is submodular if and only if we have

ρ f (A, u) ≥ ρ f (B, u), ∀A ⊆ B ⊆ U , u ∈ U − B. (17)

This equips us to show the submodularity of joint entropy and MI:

Theorem 3. The set functions fH and fMI , defined in Equations (3) and (2) above, are submodular.

Proof. It is straightforward to check the submodularity of fH and therefore the first term of MI
formulation in Equation (2). It remains to show that g(A) := H(YA|X, Y∗L, YU−A), the second term
with the opposite sign, is supermodular. Let us first write the discrete derivative of the function g:

ρg(A, u) = g(A∪ {u}) − g(A)
= H(YA∪{u}|X, Y∗L, YU−A∪{u}) − H(YA|X, Y∗L, YU−A)

= H(yu|X, Y∗L, YU−A∪{u}), (18)
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which holds for any u /∈ A ⊆ U . Here, we used that the joint entropy of two sets of random variables
A and B can be written as H(A, B) = H(A) + H(B|A). Now take any superset B ⊇ A, which does
not contain u ∈ U . From B ⊇ A, we have YU−A∪{u} ⊆ YU−B∪{u} and therefore ρg(A, u)− ρg(B, u) =
H(yu|X, Y∗L, YU−A∪{u})− H(yu|X, Y∗L, YU−B∪{u}) ≤ 0 implying supermodularity of g.

Although submodular functions can be minimized efficiently, they are NP-hard to maximize [19],
and therefore we have to use approximate algorithms. Next, we briefly discuss the classical
approximate submodular maximization method widely used in batch querying [9,11,12,16,17].
This greedy approach, we call deterministic throughout this paper, is first proposed in the seminal
work of [20] (shown in Algorithm 1) and its performance is analyzed for monotone set functions
as follows:

Definition 4. The set function f : 2U → R is said to be monotone (nondecreasing) if for every A ⊆ B ⊆
U we have f (A) ≤ f (B).

Theorem 5. Let f : 2U → R be a submodular and nondecreasing set function with f (∅) = 0, A be the
output of Algorithm 1 and A∗ be the optimal solution to the problem in Equation (1). Then we have:

f (A) ≥
[

1−
(

k− 1
k

)k
]

f (A∗) ≥
(

1− 1
e

)
f (A∗). (19)

Algorithm 1: The deterministic approach
Inputs: The objective function f , the unlabeled indices U , the query batch size k > 0
Outputs: a subset of unlabeled indices A ⊆ U of size k

/* Initializations */

1 A0 ← ∅
2 U0 ← U

/* Starting the Iterations */

3 for t = 1→ k do
/* Local maximization */

4 ut ← arg max
u∈Ut−1

f (At−1 ∪ {u})

/* Updating the Loop Variables */

5 At ← At−1 ∪ {ut}
6 Ut ← U −At

7 return A = Ak

The proof is given by [20] and [21]. Among the assumptions, f (∅) = 0 can always be assumed
since maximizing a general set function f (A) is equivalent to maximizing its adjusted version
g(A) := f (A)− f (∅) which satisfies g(∅) = 0. Nemhauser et al. [22] also showed that Algorithm 1
gives the optimal approximate solution to the problem in (1) for nondecreasing functions such as fH .
However, fMI is not monotone in general and therefore Theorem 5 is not applicable. To imagine
non-monotonicity of fMI , it suffices to imagine that fMI(∅) = fMI(U ) = 0.

Recently several algorithms have been proposed for approximate maximization of nonnegative
submodular set functions, which are not necessarily monotone. Feige et al. [23] made the first attempt
towards this goal by proposing a (2/5)-approximation algorithm and also proving that 1/2 is the
optimal approximation factor in this case. Buchbinder et al. [24] could achieve this optimal bound in
expectation by proposing a randomized iterative algorithm. However, these algorithms are designed
for unconstrained maximization problems. Later, Buchbinder et al. [25] devised a (1/e)-approximation
randomized algorithm with cardinality constraint, which is more suitable for batch active learning.
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A pseudocode of this approach is shown in Algorithm 2 where instead of selecting the sample with
maximum objective value at each iteration, the best k samples are identified (line 4) and one of them is
chosen randomly (line 5). Such a randomized procedure provides a (1/e)-approximation algorithm
for maximizing a nonnegative submodular set function such as fMI :

Theorem 6. Let f : 2U → R be a submodular nonnegative set function and A be the output of Algorithm 2.
Then if A∗ is the optimal solution to the problem in (1) we have:

E[ f (A)] ≥
(

1− 1
k

)k−1
f (A∗) ≥ 1

e
f (A∗). (20)

The proof can be found in [25] and our supplementary document. In order to be able to select
k samples from Ut to form Mt for all t, it suffices to ensure that the smallest unlabeled set that we
sample from Uk−1 has enough members, i.e., k ≤ |Uk−1| = |U | − k + 1 hence k ≤ (|U |+ 1)/2.

Observe that although the assumptions in Theorem 6 are weaker than those in Theorem 5, the
bound shown in Equation (20) is also looser than that in Equation (19). However, interestingly,
it is proven that inequality Equation (19) will still hold for Algorithm 2 if the monotonicity of f
is satisfied (see the Theorem 3.1. in [25]). Thus, the randomized Algorithm 2 is expected to be
performing similar to Algorithm 1 for monotone functions.

Algorithm 2: The randomized approach
Inputs: The objective function f , the unlabeled indices U , the query batch size k > 0
Outputs: a subset of unlabeled indices A ⊆ U of size k

/* Initializations */

1 A0 ← ∅
2 U0 ← U

/* Starting the Iterations */

3 for t = 1→ k do
/* Selecting k points with highest f values */

4 Mt ← arg max
M⊆Ut−1
|M|=k

∑
u∈M

f (At−1 ∪ {u})

/* Random Selection */

5 ut ← RANDOM(Mt)

/* Updating the Loop Variables */

6 At ← At−1 ∪ {ut}
7 Ut ← U −At

8 return A = Ak

Algorithms 1 and 2 are equivalent for sequential querying (k = 1). Also note that in both
algorithms, the variables ut in iteration t, is determined by deterministic or stochastic maximization of
f (At−1 ∪ {u}). Fortunately, such maximization needs only computations in the form of Equation (10)
or Equation (13) when f = f pess

MI or f opt
MI . These computations can be done easily provided

that the gradient vector gn+t−1 and inverse-Hessian matrix H−1
n+t−1 have been stored from the

previously selected subsetAt−1. The updated gradient and inverse-Hessian that are used to compute
f (At−1 ∪ {u}) are different for each specific u ∈ Ut−1. We only save those associated with the local
maximizer, that is ut, as gn+t and H−1

n+t to be used in the next iteration.



Entropy 2016, 18, 51 9 of 21

2.4. Total Complexity Reduction

We measure the complexity of a given querying algorithm in terms of the required number of
classifier updates. This makes our analysis general and independent of the updating procedure,
which can be done in several possible ways. As we discussed in the last section, we chose to perform
a single step of quasi Newton in Equation (8) but alternatively one can use full training or any other
numerical parameter update.

Consider the following optimization problems:

arg max
A⊆U
|A|=k

fMI(A), (21a)

greedy arg max
A⊆U
|A|=k

f̃MI(A), (21b)

where “greedy arg max” denotes the greedy maximization operator that uses Algorithm 1 or 2 to
maximize the objective, and f̃MI is either f pess

MI or f opt
MI . Note that Equation (21a) formulates the global

maximization of the exact MI function and Equation (21b) shows the optimization in our framework,
that is a greedy maximization of the pessimistic/optimistic MI approximations. In the following
remark, we compare the complexity of solving the two optimizations in Equation (21) in terms of the
number of classifier updates required for obtaining the solutions.

Remark 1. For a fixed k, the number of necessary classifier updates for solving Equation (21a)
increases with order k, whereas for Equation (21b) it changes linearly.

Proof. As is explained in Section 2.2, the number of classifier updates for computing fMI(A) without
any approximations, is ck. Moreover, in order to find the global maximizer of MI, fMI needs to be
evaluated at all subsets of U with size k. There are

(
m
k
)

= O
(

mk
)

of such subsets (recall that
m = |U |). Hence, the total number of classifier update required for global maximization fMI is of
order O

(
(m · c)k

)
.

Now, regarding Equation (21b), recall from Section 2.2 that if gn+t−1 and H−1
n+t−1 are stored from

the previous iteration, computing f̃MI(At−1 ∪ {ut}) needs only c classifier updates. However, despite
the evaluation problem in Section 2.2, in computing line (4) of Algorithms 1 and 2, the next sample
to add, that is ut, is not given. In order to obtain ut, f̃MI is to be evaluated at all the remaining
samples in Ut−1. Since, |Ut−1| = m − t + 1, the number of necessary classifier updates in the t-th
iteration is c · (m− t + 1). Both algorithms run k iterations that results the following total number of
classifier updates:

cm + c(m− 1) + ... + c(m− k + 1) = ck
(

m− k + 1
2

)
= O(ckm).

2.5. Further Speed-Up

Here, we show that the total complexity of our proposed MI-based querying approaches is linear,
in contrast with the exponential cost of the exact formulation which is not practical.

Even after approximating fMI using the pessimistic or optimistic formulations, MI-based
algorithms can be significantly slow for large data sets. In order to further scale up our algorithm,
induced by [18], we first selects a subset of the unlabeled samples by only choosing the most β
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uncertain samples (where β ∈ Z+). We then ran our MI-based algorithm over such filtered data.
More formally, the input set of unlabeled indices to Algorithms 1 and 2 will be

U f = arg max
U⊆U
|U|=β

∑
u∈U

fH({u}). (22)

It is evident that for β = |U | the filtered data will be equal to the original unlabeled pool U f = U .
From now on, we add the adjective filtered to any querying algorithm that is preceded by reduction
of the unlabeled data into the samples with high uncertainty as described above.

3. Results and Discussion

In this section, we show our experimental results over several data sets on three different fields:
medicine Section 3.1, image processing Section 3.2 and music harmony analysis Section 3.3. We ran
our MI-based querying algorithms against entropy-based and random active learning benchmarks.
In the following section, first we describe the data sets that have been used, then we explaining the
experimental settings and present the numerical results.

3.1. Cardiotocography

This data set is downloaded from UCI repository [26] and contains 2126 fetal cardiotocograms
each of which is represented by a 21-dimensional feature vector. The data is categorized into
three classes based on the fetal states: normal, suspect and pathological (therefore c = 3). All the
data samples are first projected into a 15-dimensional principal component analysis (PCA) subspace
obtained from the unlabeled pool. The initial labeled data set chosen randomly in the beginning
of each experiment, consists of 75 samples (25 samples per class). We will refer to this data set as
“Cardio" in the following sections.

3.2. MNIST (Mixed National Institute of Standards and Technology)

This is an image database of handwritten digits 1 to 9 [27]. Here, we only use images for digits 1
to 4, hence c = 4. The data set, consisting of 20× 20 images, is already divided into a testing/training
partitions. In our experiments, these partitions are fixed as given, but each time the initial labeled
data sets are randomly chosen from the training partition. The raw 400-dimensional feature
vectors are projected into 10-dimensional PCA subspace constructed based on the training partition.
After choosing only images of digits from 1 to 4, the size of the testing and training partitions are
4130 and 4159, respectively. We also set the size of our initial labeled data set L0 to 200 (50 samples
per class).

3.3. Bach Choral Harmony

The other data set that we used for evaluating performance of the algorithms contains pitch
information of time events of 60 chorales by Johann Sebastian Bach [28]. Each event is represented
by pitch-wise and meter information and is assigned a chord class label. We selected the events
associated with the five most frequent chords in the data set: D-major, G-major, C-major, F-major
and A-major (hence c = 5); resulting a set of 2221 samples. Discarding pitch class of the bass
notes and the metric information, we used the binary indicators of the pitch classes corresponding
to equal-tempered 12 notes of the chromatic scale. This leads to a set of 12-dimensional binary feature
vectors that are projected into 8-dimensional PCA subspace obtained based on the training data at
each experiment. We will refer to this data set simply as “Bach” in the remaining sections.

3.4. Experimental Settings

From the previous sections, we have two methods of evaluating MI and two optimization
techniques, leading to four different ways of doing MI-based querying, in all of which we used the
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filtered pool of unlabeled samples U f that is obtained with β = 100. Throughout this section, we
distinguish different approaches involved in our experimental settings using the labels listed below:

• Pess-MI-Det: Pessimistic MI f pess
MI with deterministic optimization (Algorithm 1);

• Pess-MI-Rand: Pessimistic MI f pess
MI with randomized optimization (Algorithm 2);

• Opt-MI-Det: Optimistic MI f opt
MI with deterministic optimization (Algorithm 1);

• Opt-MI-Rand: Optimistic MI f opt
MI with randomized optimization (Algorithm 2);

• entropy: Entropy objective fH with deterministic optimization (Algorithm 1);
• random: Random querying.

In sequential querying, where deterministic and randomized optimization algorithms are
equivalent, we use Pess-MI and Opt-MI to refer to the MI-based objectives without mentioning the
optimization type.

In running the querying experiments over all the data sets, we used a linear logistic regression
as the core classifier. In case that the data under consideration is not already divided into
testing/training partitions, we randomly generate such partitions in each experiment with fixed ratio
of 3/7 (testing size to training size). The initial training data set L0 is randomly selected from the
training partition and the rest of the training samples are considered as the unlabeled pool U from
which the queries are to be selected in each querying iteration. Moreover, in each experiment we first
reduce the dimensionality of the data using PCA over the unlabeled pool.

In the experiments, we iteratively select the query batches of either sizes k = 1, 5, 10 or 20, add the
selected queries together with their class labels to the labeled data set and re-calculate the parameters
of the classifier, which in turn, leads to an updated accuracy value based on the testing partition.
For each value of k, we repeated running the experiments for 25 times, each time with a different
random selection of testing/training partitions and a different initial labeled set L0. Hence, in total,
we get 25 accuracy curves for each value of k. Ideally, we want an active learning algorithm whose
accuracy curve increases as fast as possible, i.e., obtaining a more accurate classifier with labeling
fewer number of query batches.

In order to present the performance of the listed algorithms, we calculate the average and
standard deviation (STD) of the 25 accuracy curves for each algorithm. Furthermore, for pairwise
comparison between the MI-based approaches and the benchmarks for a fixed value of k, we perform
two-sample one-tail T-tests over the accuracy values of the competing algorithms. Note that such
hypothesis test can and should be done over the accuracy values calculated after each querying
iteration t separately. Here, the assumption is that the accuracy levels generated from the 25 querying
experiments at iteration t are independent from each other. Let ηt denote the random variable
presenting the accuracy of the updated classifier after t times of running an MI-based querying
algorithm and η′t be a similar random variable for a competing non-MI-based method. Then, we
consider the null and alternative hypotheses to be:

H0 : µ(ηt) ≤ µ(η′t)

H1 : µ(ηt) > µ(η′t) (23)

where µ(ηt) and µ(η′t) are the mean of the random variables ηt and η′t. We perform such T-test for
comparing all modes of MI-based objectives (see the list above) versus the entropy-based and random
querying algorithms. Rejecting the null hypothesis implies that the new accuracy in the t-th iteration
of an MI-based querying is not less than or equal to the case when we use a querying objective other
than the approximating variants of fMI . In other words, obtaining a smaller p-value for a T-test
described above, means that with a higher probability the accuracy of the updated classifier is larger
when using the MI-based approach for querying.
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3.5. Numerical Results

The numerical results of running sequential active learning with different querying algorithms
are shown in Figure 1 and the results of batch active learning with different batch sizes are shown
in Figures 2 (for k = 5), 3 (for k = 10) and 4 (for k = 20). The figures show the average accuracy
curves (first row of each figure), the standard deviation of the accuracy curves (second rows), and
the resulting p-values of the hypothesis tests for comparison between the MI-based approaches and
entropy-based (third rows) or random querying (fourth rows).

As it is mentioned before, the deterministic and randomized optimization algorithms described
in Section 2.3 are equivalent in sequential querying. Therefore, we have only two variants of
MI-based querying in Figure 1. This figure shows that for two data sets (MNIST and Bach) the
MI-based approaches perform similar or sometimes even worse than the entropy-based benchmark.
This can be explained by noting that the main shortcoming of using the entropy objective fh, that
is redundancy among the queries, is meaningful only when we have multiple samples in the batch,
that is k > 1. However, they mostly outperform random querying. Another observation is that
using optimistic approximation of MI gave better results both in terms of average accuracy and the
hypotheses p-values. Recall that the optimistic approximation of MI tries to minimize the entropy
over the class labels of the remaining samples in each iteration, while the pessimistic approximation
uses maximization of this entropy. Hence, our conjecture for this observation is that the optimistic
approach does more aggressive exploitation in comparison with the pessimistic variant, in the sense
of choosing the queries from the set of samples that lead to a lower classifier entropy.

For batch mode active learning, the MI-based approaches generally show better performance.
That is, their accuracy curves grow more rapidly than the benchmarks. When comparing against the
entropy-based approach, for data sets Cardio and Bach, we observe that the p-values are small in the
beginning iterations. Whereas for MNIST data set, low p-values are mostly seen in the middle or
late iterations. Hence, the probability that MI-based variants outperform the entropy is high in early
querying iterations, before the labeled training set becomes large, for the two former data sets, and in
later iterations for MNIST. This behavior can also be seen from the plots of the average accuracy.

Regarding the comparison against the random benchmark, we see from the p-value plots more
conspicuously that MI-based approaches generally outperform random with high confidence soon
after the early iterations. However, the plots for Bach, show that this confidence decrease in late
iterations, which is mainly due to the growth of the accuracies of random to the same level as the
MI-based curves.

Whereas in sequential active learning the optimistic approach did a better job in comparison
with the pessimistic variant, the difference between these two variants shrinks as the size of query
batch increases (and so does the number of required approximation iterations). Our conjecture is
that accumulation of the approximation error makes the performance of optimistic and pessimistic
MI-based querying methods closer to each other, though still better than the benchmarks.
Additionally, there is no significant difference between using deterministic or randomized
optimization algorithms, which might be because of local monotonicity of the approximations fMI .
Also note that although there are large distinctions between MI-based variants when their p-values
are large, we ignore those parts as uninformative regions, since they just imply that the probability of
MI-based approaches outperforming the benchmarks is not high.
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Figure 1. The experimental results of different querying approaches for sequential active learning
(k = 1). (a) Average; (b) Average; (c) Average; (d) STD; (e) STD; (f) STD; (g) p-value: MI vs. Entropy;
(h) p-value: MI vs. Entropy; (i) p-value: MI vs. Entropy; (j) p-value: MI vs. Random; (k) p-value: MI
vs. Random; (l) p-value: MI vs. Random.
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k = 5:
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Figure 2. The experimental results of different querying approaches for batch active learning (k = 5).
(a) Average; (b) Average; (c) Average; (d) STD; (e) STD; (f) STD; (g) p-value: MI vs. Entropy;
(h) p-value: MI vs. Entropy; (i) p-value: MI vs. Entropy; (j) p-value: MI vs. Random; (k) p-value:
MI vs. Random; (l) p-value: MI vs. Random.
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k = 10:
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Figure 3. The experimental results of different querying approaches for batch active learning (k = 10).
(a) Average; (b) Average; (c) Average; (d) STD; (e) STD; (f) STD; (g) p-value: MI vs. Entropy;
(h) p-value: MI vs. Entropy; (i) p-value: MI vs. Entropy; (j) p-value: MI vs. Random; (k) p-value:
MI vs. Random; (l) p-value: MI vs. Random.
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k = 20:
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Figure 4. The experimental results of different querying approaches for batch active learning (k = 20).
(a) Average; (b) Average; (c) Average; (d) STD; (e) STD; (f) STD; (g) p-value: MI vs. Entropy;
(h) p-value: MI vs. Entropy; (i) p-value: MI vs. Entropy; (j) p-value: MI vs. Random; (k) p-value:
MI vs. Random; (l) p-value: MI vs. Random.

4. Conclusions

Active learning based on reducing the model uncertainty is very popular, however most of
the relevant objectives such as entropy and sample margin, do not take into account the diversity
between the queries in case of batch active learning. Working with probabilistic classifiers, one natural
replacement for entropy is mutual information (MI) between the class labels of the candidate queries
and the remaining unlabeled samples. But hurdles in evaluating and efficient optimization of this
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objective has failed its popularity in the learning community. In this paper we presented a framework
for efficient querying based on this objective.

In our framework, we proposed pessimistic and optimistic approximations of MI by replacing
the averaging operator inside the conditional entropy with maximizing and minimizing operators,
respectively. This enabled us to efficiently estimate these values in a greedy fashion. Furthermore, in
a consistent flow with the greedy estimation of MI, the optimization is also done in an iterative
scheme. The iterative nature of the optimization decreased the computational complexity from
O
(
(m · c)k

)
, when no approximation is applied, to O(ckm). Two different modes of optimization

are suggested based on the existing algorithms in submodular maximization literature: one the
classical deterministic greedy approach that has been already used in learning literature, and the
other one a stochastic variant of it that is especially useful when monotonicity is absent in the
submodular objective.

We generated experimental results using various real-world data sets in order to evaluate the
performance of our MI-based querying approaches against the entropy-based and random querying
benchmarks in terms of the accuracy growth rate during the querying iterations. These results show
that MI-based algorithms outperformed the rest in most of the cases, especially when k > 1 (batch
active learning). Furthermore, the optimistic variant outperformed the pessimistic one, especially
for smaller batch sizes. As we increase the number of the queries and therefore the number of
approximating iterations, this difference shrinks.
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Appendix: Update Equation for Multinomial Logistic Regression

In this section, we show that the update equations in Equations (8) and (12), can be efficiently
computed for a multinomial logistic regression. More specifically, we see that the gradient gn+t+1

and the inverse Hessian H−1
n+t+1 in iteration t + 1, can be efficiently computed from gn+t and H−1

n+t in
iteration t.

Multinomial Logistic Regression as a Discriminative Classifier

In a classification problem, with c > 1 denoting the number of classes, a multinomial logistic
regression models the posterior distribution of the class labels given the feature vectors x and a given
(d + 1)(c − 1)-dimensional parameter vector θ = [θ>1 , ..., θ>c−1]

>, where θi = [αi, β>i ]
> (for 1 ≤ i ≤

c− 1), as the following [29]:

P(y = j|x, θ) =
eαj+β>j x

1 + ∑c−1
t=1 eαt+β>t x

, j = 1, ..., c− 1

P(y = c|x, θ) =
1

1 + ∑c−1
t=1 eαt+β>t x

(24)

Now for an indexed feature-label pair (xi, yi = j) define

πij := P(yi = j|xi, θ) , j = 1, ..., c. (25)
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Note that πij, and equivalently the distributions shown in Equation (24), are the likelihood
functions when viewed from the point of view of parameter vector θ. The objective to optimize in
order to find the maximum likelihood estimation (MLE), denoted by θ̂n, given an i.i.d set of training
samples L = {(x1, y∗1), ..., (xn, y∗n)}, is

`(θ;L) :=
n

∑
i=1

P(y∗i |xi, θ) =
n

∑
i=1

c

∑
j=1

1(y∗i = j) log πij, (26)

that is
θ̂n = arg max

θ

`(θ;L).

The subscript n in θ̂n is to emphasize the sample size of the training data using which the MLE
is obtained.

Updating the Gradient Vector

Here, we formulate the gradient vector in terms of the individual log-likelihood functions πi j
and the feature vectors xi, which readily enables us to derive an update equation for the gradient.
The k-th partial gradient (for 1 ≤ k ≤ c− 1) of the log-likelihood evaluated at (xi, y∗i = j) is:

∇k log πij :=
∂ log πij

∂θk
=

[
1(j = k)− πik

]
·
[

1
xi

]
, (27)

where 1(·) is the indicator function. Since 1 ≤ k ≤ c− 1, we always get 1(j = k) = 0 when j = c.
From Eqution (27), we can write the k-th partial gradient of the total log-likelihood

function `(θ;L):

∇k`(θ;L) =
n

∑
i=1

c

∑
j=1

1(y∗i = j)∇k log πij =
n

∑
i=1

[
1(y∗i = k)− πik

]
·
[

1
xi

]
. (28)

The complete gradient vector of the log-likelihood function `(θ;L), denoted by gn, is obtained
by concatenating the partial gradient vectors. It can be written compactly as below:

gn =

 ∇1`(θ;L)
...

∇c−1`(θ;L)

 =
n

∑
i=1

 1(y∗i = 1)− πi1
...

1(y∗i = c− 1)− πi1,c−1

⊗ [ 1
xi

]
, (29)

where ⊗ denotes the Kronecker product. Equation (29) implies that the gradient is additive and the
update equation, after adding a pair (xu1 , yu1) to the training set L is simply equal to

gn+1 = gn +

 1(yu1 = 1)− πu1,1
...

1(yu1 = c− 1)− πu1,c−1

⊗ [ 1
xu1

]
. (30)

Similarly, gn+t in Equation (12) can be obtained by adding a single product to the gradient vector
calculated in the previous iteration:

gn+t = gn+t−1 +

 1(yut = 1)− πut ,1
...

1(yut = c− 1)− πut ,c−1

⊗ [ 1
xut

]
. (31)
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Updating the Inverse Hessian Matrix

Let us first focus on calculating the Hessian matrix using the training set L. From Equation (28)
and after doing some algebra, the partial second derivative of the log-likelihood function with respect
to θk and θk (for 1 ≤ k, s ≤ c− 1) is

∇2
sk`(θ;L) :=

∂2`(θ;L)
∂θk∂θs

=
n

∑
i=1

πik(πis − 1) ·
[

1
xi

] [
1 x>i

]
. (32)

The partial second derivative in Equation (32) form the (s, k)-th block of the total Hessian matrix
Hn, which can be written in a compact manner as below:

Hn =
n

∑
i=1

πi(πi − 1)> ⊗
[

1
xi

] [
1 x>i

]
, (33)

where πi = [πi1, ..., πi,c−1]
> and 1 is a (c − 1)-dimensional vector with all the elements equal to 1.

Therefore, the Hessian matrix also has an additive formulation. The new Hessian matrix Hn+1 after
adding (xu1 , yu1) to the training set is equal to

Hn+1 = Hn + πu1(πu1 − 1)> ⊗
[

1
xu1

] [
1 x>u1

]
= Hn + R1. (34)

Note that the update term R1 in Equation (34) is the Kronecker product of two rank-one matrices,
implying that Hn+1 is a rank-one perturbation of Hn. Therefore, we can use Sherman–Morrison
inversion formula to write the inverse Hessian update equation:

H−1
n+1 = H−1

n +
H−1

n R1H−1
n

1 + tr
[
R1H−1

n

] . (35)

Hence, we do not need to explicitly perform a matrix inversion in order to update the inverse
Hessian matrix. Similarly, for obtaining H−1

n+t from H−1
n+t−1 that is needed in Equation (12), we have:

H−1
n+t = H−1

n+t−1 +
H−1

n+t−1RtH−1
n+t−1

1 + tr
[
RtH−1

n+t−1

] , (36)

where

Rt = πut(πut − 1)> ⊗
[

1
xut

] [
1 x>ut

]
.
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