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Abstract: The Schrödinger equation for a quantum particle in a two-dimensional triangular billiard
can be written as the Helmholtz equation with a Dirichlet boundary condition. We numerically
explore the quantum entanglement of the eigenfunctions of the triangle billiard and its relation
to the irrationality of the triangular geometry. We also study the entanglement dynamics of the
coherent state with its center chosen at the centroid of the different triangle configuration. Using the
von Neumann entropy of entanglement, we quantify the quantum entanglement appearing in the
eigenfunction of the triangular domain. We see a clear correspondence between the irrationality of
the triangle and the average entanglement of the eigenfunctions. The entanglement dynamics of the
coherent state shows a dependence on the geometry of the triangle. The effect of quantum squeezing
on the coherent state is analyzed and it can be utilize to enhance or decrease the entanglement
entropy in a triangular billiard.
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1. Introduction

There are many interesting studies concerning the quantum and classical properties of the
two-dimensional geometries like the Robnik billiard [1,2] and the Bunimovich stadium [3,4].
A quantum particle inside a triangular potential is another interesting problem studied by several
researchers [5–9]. It was Krishnamurthy et al. [10] who found a transformation to map the
three-particle collision problem in one dimension into the problem of a quantum particle inside a
two-dimensional triangular domain. Interestingly, the triangular shaped potential can appear in
several contexts, for example it can appear in the equipotental curves for the Hénon-Heiles system at
the critical energy [11]. The exception in this case is that, inside the boundary the potential behaves
like a two-dimensional harmonic oscillator. However, in the billiard case, the particle has a free
motion inside the triangular shaped domain.

Casati and Prosen describe [7] three classes of triangular billiards: (A) All angles are rational
with π, (B) Only one angle is rational with π, (C) All angles are irrational with π. The dynamics
of type A triangles is not ergodic; in fact, it is pseudointegrable. Type B triangles are generic right
triangles which are ergodic and weakly mixing. Earlier, it was believed that triangular billiards were
only weakly mixing. Casati and Prosen [7] provided the numerical evidences for strong mixing
properties for the type C triangles. Then it was shown in [8] that the irrational triangles may vary
smoothly between the limits of strong mixing and regular behaviors. Furthermore, in [9] it was also
shown that the level statistics of the irrational triangle indeed obey the Gaussian orthogonal ensemble
(GOE) distribution and its intermediate statistics.

On the other hand, there is an increased interest in continuous-variable (CV)
entanglement [12–15]. It is already known, both theoretically and experimentally, that the quantum
entanglement can indeed detect the chaotic behavior appearing in the classical system [16–19].
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Recently it is shown that, by changing the boundary domain from regular to chaotic, the quantum
entanglement can be enhanced in a system [20]. Hence, the classical dynamical properties can be
reflected in the properties of quantum entanglement and as consequence it can be used for the
entanglement enhancement.

In this article, we make a brief review of the three-particle collision system in one dimension and
its relation to the triangular billiard geometry. Then, we explain the quantum entanglement in the
reduced two-particle system, which is identical to the single particle trapped in a two-dimensional
triangular domain. The von Neumann entropy of entanglement is briefly explained, and we
analyze the bipartite entanglement in the ground state eigenfunction. Similarly, we compute the
average entanglement entropy with 500 initial eigenfunctions and relate the entanglement with the
irrationality of the triangular geometry. We observe that the average entanglement entropy depends
on the irrationality of the triangle. We also analyze the entanglement dynamics of the coherent state
and squeezed coherent state with its center chosen at the centroid of the triangle.

2. Model

Let us consider the time independent Schrödinger equation for three hard core particles
restricted to the domain [0 L] with coordinates θ1, θ2 and θ3, which is given by,

− h̄2

2m

i=3

∑
i=1

∂2Ψ
∂ θi

2 = EΨ. (1)

H. R. Krishnamurthy et al. [10] had found a transformation of θi variables into new variables yi,

y1 =
1√
2
(θ1 − θ2) (2)

y2 =

√
2
3

(
1
2
(θ1 + θ2)− θ3

)
(3)

y3 =
1√
3
(θ1 + θ2 + θ3) . (4)

Then they have found that, without loss of generality, restricting the θ-space into the region
θ1 ≥ θ2, θ2 ≥ θ3 and θ3 + 2π ≥ θ1, we can transform the system into a two-dimensional Schrödinger
equation in a triangular domain. In the transformed domain, the equilateral triangle is given on the

y1− y2 plane, which is defined by y1 ≥ 0, y1 ≤
√

3y2, y1√
2
≤ 2π−

√
3
2 y2. The corners of the equilateral

triangle are given by, (0, 0), (
√

2π,
√

2
3 π), (0, 2

√
2
3 π) and the transformed Schrödinger equation can

be written as,

− h̄2

2m

(
∂

∂ y1
2 +

∂

∂ y22

)
Ψ = EΨ. (5)

Here the boundary condition is such that the wavefunction should vanish on the boundary of
the equilateral triangle. Hence the eigenfunctions are given by,

Ψ(y1, y2)m,n =

∣∣∣∣∣∣∣∣
1 1 1

exp (i`( y1√
2
+ y2√

6
)) exp (i`(− y1√

2
+ y2√

6
)) exp (−i` 2y2√

6
)

exp (im( y1√
2
+ y2√

6
)) exp (im− y1√

2
+ y2√

6
)) exp (−im 2y2√

6
)

∣∣∣∣∣∣∣∣ . (6)

The complete three-particle eigenfunction of our problem contains an additional phase factor
exp i(n1 + n2 + n3)

y3√
3

due to the contribution from the third particle, but we can easily ignore it.
Effectively the three-particle problem can be reduced into the two-particle problem. This analytical
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solution is valid only for particles with identical mass, and it corresponds to an equilateral triangle
geometry, which is clearly a pseudointegrable situation. However, the eigenfunctions are not known
for the case of a general triangular geometry. Hence, we analyze a more general case of the triangles.
The two-dimensional Schrödinger equation (Equation (5) can be written in terms of the Helmholtz
equation with a Dirichlet boundary condition,(

∇2 + k2
)

Ψ(y1, y2) = 0, for (y1, y2) in D, (7)

Ψ(y1, y2) = 0, for (y1, y2) on ∂D,

where D is the triangular domain, ∂D defines its boundary and k2 = 2mE/h̄2. Generalizing our
geometry from the simple equilateral triangle to the irrational triangle, the boundary of the domain
∂D can be specified by any two of the angles α, β, γ and the area A. Since the area A is just a scaling
factor we can ignore it by properly scaling the energy eigenvalues.

As we have discussed earlier, the motion of a point particle inside a triangular billiard is
equivalent to the motion of two point particles interacting only through elastic collisions. It can be
seen that the mass ratios of the particle determine the angle α, β and γ of the corresponding triangle
via the relation

tan α =

√
m2 M
m1 m3

, (8)

tan β =

√
m1 M
m2 m3

, (9)

tan γ =

√
m3 M
m1 m2

, (10)

where m1, m2, m3 are the mass of each particle and M = m1 + m2 + m2, which is the total mass
of the three-particle system [7]. Considering the system with identical mass m1 = m2 = m3, the
equilateral triangle domain can be recovered. Hence changing the geometry of the triangle has a
physical meaning associated to it, which is physically equivalent to considering different mass ratios.
In the usual sense, building triangular billiards can be done easily by assigning rational or irrational
values to the ratio between the inner angles of the triangle and π. Here, we follow the approach
used by F. M. de Aguiar et al. [8,9]. In order to construct the irrational triangular billiard, he has
considered acute triangles with sides N, N + 1, and N + 2, where N is an integer. This scheme has
the advantage that each triangle can be solely identified with the parameter N. According to the
theorem given in [21], if q ∈ Q with 0 ≤ q ≤ 1, then, the number cos−1√q/π is rational if and only
if q is 0, 1/4, 1/2, 3/4, or 1. As a corollary [8], it can be observed that the triangles with sides given
by consecutive integers (N, N + 1, N + 2) have all angles irrational with π if 3 ≤ N ≤ ∞. It is well
known that (3, 4, 5) is a Pythagorean triple which implies that at N = 3 we have a right triangle. In
our numerical analysis, we start with N = 3 until the value N = 53. For the higher values of N the
triangle gradually approaches to an equilateral one, and at N = ∞ we get an equilateral triangle .

3. Von Neumann Entropy of Entanglement of the Triangular Eigenfunctions

It is worthwhile to explore the geometrical dependence of entanglement in the eigenfunctions of
the triangular billiard and this is still an unexplored topic. Here we analyze the bipartite entanglement
appearing in the two-dimensional eigenfunction. The particles can be entangled due to the fact that
they interact via collisions. The nature of their collision interaction is reflected in the angles of the
triangular billiard. We take y1 as the horizontal x-axis and y2 as the y-axis. The entanglement between
the wave function of y1 and y2 variables can be easily studied, the wave function associated to y1 and
y2 corresponds to the quantum mechanical state of particle 1 and particle 2. Usually the entanglement
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can be measured either using the linear entropy of entanglement, entanglement witness, concurrence,
logarithmic negativity etc. [13,22]. In order to explore the continuous variable bipartite entanglement,
we are using here the von Neumann entanglement entropy.

Now we need to evaluate the reduced density function using the wavefunction Ψ(y1, y2), in
order to compute the continuous variable entanglement in y1 and y2 variable. The reduced density
function of the first subsystem ρ1 can be obtained by integrating over the second particle mode, and
it can be represented in terms of the bipartite wave function Ψ(y1, y2), i.e.,

ρ1(y1, z1) =
∫

Ψ(y1, y2)Ψ∗(z1, y2)dy2 , (11)

where ρ1(x, z) is the reduced density function of the first subsystem in the continuous position basis
representation. To quantify the entanglement, we use the entanglement entropy defined as the von
Neumann entropy of the reduced density matrix:

Svn(t) = −Tr(ρ1 log ρ1). (12)

Similarly, the von Neumann entropy of entanglement can be written in terms of the eigenvalues
of the reduced density matrix which is given by,

Svn(t) = −∑
i

λi log λi, (13)

where λi are the eigenvalues of the Hermitian kernel ρ1(y1, z1). These eigenvalues are numerically
computed from the Fredholm type I integral equation of ρ1(y1, z1), which is given by∫

ρ1(y1, z1)φi(z1)dz1 = λi φi(y1), (14)

where λi are the eigenvalues with the corresponding Schmidt eigenfunctions φi(x). On the discretized
domain this Schmidt eigenvalue equation can be easily transformed into the matrix eigenvalue
problem, and the diagonalization of the kernel can yield the Schmidt eigenvalues.

4. Geometric Dependence of Entanglement and the Irrationality of the Triangle

The relationship between a quantum chaotic geometry and entanglement is already explored in
different works. The triangular billiard exhibit a peculiar pseudochaotic property which is entirely
different from the normal quantum chaotic billiards. It is well known that there are different stages
of ergodic regime called the ergodic hierarchy. Ergodic hierarchy provides a hierarchy of increasing
degrees of randomness in a system and it is useful in characterising the behaviour of Hamiltonian
dynamical systems [23]. It typically consists of five levels: Sheer Ergodic ⊃ Weak Mixing ⊃ Strong
Mixing ⊃ Kolmogorov ⊃ Bernoulli. Positive K-S entropy or the chaotic property is assured only for
the Kolmogorov and Bernoulli systems while pseudochaos is a partiular case of weak chaos with zero
K-S entropy. In [8,9], it has been shown that the irrational triangular billiard can indeed exhibit the
pseudochaotic property. Taking this into account, we would like to explore how the irrationality of a
triangle or the pseudochaotic can affect the bipartite entanglement of the eigenmodes.

In order to compute the eigenfunctions, we have taken the (N, N + 1, N + 2) sided triangle in the
y1 − y2 plane. The orientation of the triangle is chosen in such a way that the side N + 2 always lies
along the horizontal y1 axis. After properly defining the triangular domain, we have computed the
Hamiltonian matrix of the system and we diagonalized it to obtain the eigenfunctions. In Figure 1, we
have computed the ground state eigenfunctions of the irrational triangle billiard. Figure 1a–d show
the irrational triangles with numbers N = 3, N = 13, N = 23 and N = 33, respectively. It can be easily
seen that, the first triangle shown in Figure 1a is a right triangle, and the triangle shown in Figure 1d
is an approximation of an equilateral triangle, where Figure 1b,c show intermediate geometries.
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Figure 1. The ground state eigenfunctions of the different irrational triangles are shown. Figure 1a–d
show the irrational triangles with numbers N = 3, N = 13, N = 23 and N = 33, respectively. It can
be easily seen that, the first triangle shown in (a) is a right triangle and the triangle shown in (d) is
approximate to an equilateral triangle, where (b) and (c) show intermediate geometries.
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Figure 2. In (a) the von Neumann entropy of entanglement Svn for the ground state eigenfunctions of
the irrational triangles is plotted against the different triangle configurations. It can be easily seen that
in both cases the entanglement entropy reduces as we increase N or as we approach the equilateral
triangle. Red curve shows the exponential fit of data, where the equation of the curve is given by
Svn = Ae−αN + β, where A = 0.01123, α = 0.08247 and β = 0.1227. In (b) the angles of the triangle
θ1, θ2 and θ3 are plotted for different triangle configurations and it can be seen that as N grows, the
angles (θ/π) approaches the rational value of 1/3.

In Figure 2a we have plotted the von Neumann entanglement entropy Svn for the ground state
eigenfunctions by varying the value of the parameter N. We slowly increase N from 3 to 53, and
it is well known that the first triangle is Pythagorean, and as we increase N, it can approach to an
equilateral triangle. As we have already discussed, F. M. de Aguiar [8] had already analyzed the
irrationality of the triangle and he has found that as we increase N the irrationality reduces except
for the fact that it slightly increases until the triangle around N = 10, then it drops to smaller values
as we increase N. In order to compute the value of the entanglement for the equilateral triangle,
or as the limit N → ∞ we have made a scaling analysis of the entanglement entropy Svn. The
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ground state entanglement entropy is approximated by the red curve Svn = Ae−αN + β and the
parameters are determined as A = 0.01123, α = 0.08247 and β = 0.1227 respectively. From the
equation Svn = Ae−αN + β, it can be seen that, as N → ∞ the asymptotic value of the entanglement
entropy Svn → β which is found to be Svn = 0.1227.

In Figure 2b, we have plotted the three angles θ1, θ2 and θ3 of the triangle as a function of the
number N. As the triangle approaches an equilateral one, the angle approaches the rational ratio 1/3
with respect to π.

We have plotted the first 500th excited state eigenfunction of the irrational triangle billiard in
Figure 3. Here Figure 3a–d show the irrational triangles with numbers N = 3, N = 13, N = 23
and N = 33, respectively. In order to have a clear picture, in Figure 4, we have plotted the average
von Neumann entanglement entropy S̄vn for the lowest 500 eigenfunctions. From Figure 4, it can
be easily seen that the average entanglement computed from the first 500 eigenfunctions increases
until N = 10 and later it starts decreasing. In [8], author had studied the relationship between
strong mixing and irrationality of the triangular geometry. He has found that the strong mixing is
indeed related to the irrationality of the triangle and even the level statistics are Gaussian orthogonal
ensemble (GOE) distribution and its intermediate statistics. Note that the system is strongly mixing,
while there is no chaos in the system. In [8], they have shown that the irrationality of the triangle is
maximum at N = 10, then it reduces gradually as it approaches to an equilateral triangle. The average
entanglement entropy follows the same pattern which in accordance with the irrationality measure
of the triangle shown in [8]. Hence, we see a correspondence between the bipartite entanglement and
the irrationality of the triangle geometry.

Figure 3. The 500th excited eigenfunctions of the different irrational triangles are shown in the
figure. It is the highest eigenfunction utilized to compute the average von Neumann entropy of
entanglement. Figure 3a–d show the irrational triangles with numbers N = 3, N = 13, N = 23
and N = 33, respectively. It can be easily seen that, the first triangle shown in (a) is a right triangle
and the triangle shown in (d) is approximately closer to an equilateral triangle, where (b) and (c) show
intermediate ones.



Entropy 2016, 18, 79 7 of 11

0 10 20 30 40 50 60
1.8

1.9

2

2.1

2.2

2.3

N

S̄
v
n

Figure 4. The average von Neumann entropy of entanglement S̄vn is plotted against the different
triangle configurations. It can be easily seen that the entanglement entropy reduces as we increase N
or as we approach the equilateral triangle.

5. Entanglement Entropy for the Coherent States and the Squeezed Coherent States

It is worthwhile to explore the time evolution of the entanglement entropy for a tensor product
coherent state or the squeezed coherent state inside a triangular billiard. One may wonder about the
validity of choosing the harmonic oscillator coherent state or the squeezed coherent state inside the
triangular billiard. Recently, it has gotten the attention to the fact that the chaotic billiard geometries
can indeed be used for the optical fiber cross-section [24,25]. Hence it has practical applications
concerning the light propagation inside a triangular shaped fiber. It has been also shown that the
chaotic billiard geometry can be exploited to generate the classical entanglement in the transverse
modes of a classical electromagnetic field inside an optical fiber [20].

In order to compute the entanglement entropy for the coherent state for different triangular
geometries, it is necessary to fix the center of the wave-packet for different triangular geometries.
For that purpose, we have chosen the centroid of each triangle as the location of the center of the
wave-packet. It is well known that the centroid or geometric center of the triangle can be easily found
by knowing the coordinates of the its vertices. The arithmetic mean position of all the three vertex
points will give the coordinate of the centroid of the triangle. Since we consider the triangles with
sides (N, N + 1, N + 2), the angles can be easily computed using the law of cosines. Since we take
the N + 2 side horizontal to the x-axis, hence the two vertices (0, 0) and (N + 2, 0) are known. We
only need to know the two base angles or the slope with respect to the side N + 2 to determine the
triangle. The point of intersection of the two lines with slope m1 and m2 is used to determine one of
the missing vertex. The equation of the first line is y1 = n1x1, while the equation of the second line is
given by y2 = n2(x2 − (N + 2)). Hence the coordinate of the third vertex is computed by finding the
intersection of both lines and it is given by,

xv3 =
n2(N + 2)
(n2 − n1)

, (15)

yv3 =
n1n2(N + 2)
(n2 − n1))

. (16)

Hence, the coordinate centroid of the triangle (xc, yc) for a given number N is given by,

xc =
n2(N + 2)
3(n2 − n1)

, (17)

yc =
(N + 2)

3
(1 +

n1n2

(n2 − n1)
). (18)
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For our investigation, we use the Hollenhorst and Caves definition of the squeezing
operator [26–28] and we employ the coordinate representation of the squeezed coherent state [29]
for the numerical computations. The squeezed coherent state is defined as

|αk, ζk〉 = D̂(αk)Ŝ(ζk)|0〉 , (19)

where the displacement operator D̂ and the squeezing operator Ŝ is given by

D̂(αk) = exp (αk âk
† − α∗k âk) , (20)

Ŝ(ζk) = exp (
1
2

ζk âk
†2 − 1

2
ζk
∗ âk

2) , (21)

and αk = |αk|eiφk , ζk = |rk| eiθk are complex numbers and αk are related to the phase space variables
(qk, pk) in the following manner

αk =
1√
2h̄

(qk + ipk), (22)

with k = 1, 2, respectively. According to Møller et al. [29], the squeezed coherent state in the x position
basis can be written as

ψ(x, αk, ζk) =
(

1
πh̄

)1/4
(cosh rk + eiθ sinh rk)

−1/2

exp
{
− 1

2h̄

(
cosh rk−eiθ sinh rk
cosh rk+eiθ sinh rk

)
(x− q1)

2 + i
h̄ p1(x− q1/2)

}
.

(23)

The tensor product state of this wavefunction is used to study the classical entanglement
dynamics for different squeezing parameter values. Since q1 and q2 denote the center of the position
coordinate of the coherent state, we can fix it as the centroid of the triangular billiard xc and yc. For
the lowest energy case, we fix p1 = 0 and p2 = 0. Hence the tensor product coherent state can be
written as,

Ψ(y1, y2) =
(

1
πh̄

)1/2
(cosh r1 + eiθ sinh r1)

−1/2
(cosh r2 + eiθ sinh r2)

−1/2

exp
{
− 1

2h̄

(
cosh r1−eiθ sinh r1
cosh r1+eiθ sinh r1

)
(y1 − xc)

2
}
× exp

{
− 1

2h̄

(
cosh r2−eiθ sinh r2
cosh r2+eiθ sinh r2

)
(y2 − yc)

2
}

,

(24)

where xc and yc are given in Equations (17) and (18) respectively. The time evolution of the squeezed
coherent state is performed via the unitary operator U(t) = exp (−it

h̄ Ĥ), where Ĥ is the Hamiltonian
of the system. The wavefunction at any instant t is computed via Ψ(x, y, t) = U(t)Ψ(x, y) and the time
evolution of the entanglement entropy Svn(t) can be easily computed using Equations (11) and (13).

We have plotted in Figure 5 the entanglement entropy Svn(t) for different triangle configurations
N = 3, 4, 5, 6 respectively. The initial coherent state is chosen at the centroid of the each triangle and
the squeezing parameters are taken as zero and the Planck constant h̄ = 0.025. It can be seen that
during the time evolution of the wave packet, the initial tensor product state becomes entangled due
to the collision with the wall of the triangle. A small value of the Planck constant is chosen in such a
way that the wave packet fit inside in the triangular billiard. It can be easily seen that, as we change
the geometry of the triangle the entanglement dynamics changes.
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Figure 5. The time evolution of the entanglement entropy Svn(t) for the coherent state with a center
at the centroid of the triangle is plotted for triangles with different N by fixing the Planck constant
h̄ = 0.025.

In order to further explore the dependence of the quantum entanglement on the geometry of the
triangular billiard, we compute the maximum value of the entanglement SM for different triangular
configurations. In Figure 6a,b we plot the maximum value of the entanglement entropy SM for
different triangle configurations. In both figures (Figure 6a,b), blue lines show the entanglement
maxima for the coherent states with h̄ = 0.1 and h̄ = 0.025 respectively. Similarly the black line shows
the entanglement maxima SM for the negatively squeezed state and the red line shows the positively
squeezed state. In our definition of the wave function, the negatively squeezed state gives a wave
packet spread in the positions coordinates, hence it collides with the walls of the triangular billiard
much faster and the entanglement develop much earlier and it gives a higher entanglement maxima.
According to our definition of the wave packet, the positively squeezed state is highly localized in
the position space and the wave packet takes more time to collide with the walls of the triangle and
it shows a smaller entanglement entropy. From Figure 6b it can be easily seen that, for the coherent
state in the semiclassical limit, we get the similar result obtained for the irrationality of the triangle
with the ground state eigenfunctions. It can be seen that the entanglement entropy is higher for a
triangular configuration with N closer to 10. The entanglement maxima also shows the dependence
on the irrationality of the triangle. We can also see that the squeezing can enhance or reduce the
entanglement which depends on the sign of the quantum squeezing or in other words, it depends on
whether we localize the wave function or spread it in the position coordinate.
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Figure 6. In (a) the maxima of von Neumann entropy of entanglement SM for the squeezed
coherent state chosen at the centroid of the irrational triangles is plotted against the different triangle
configurations with h̄ = 0.1. In (b) the maxima of von Neumann entropy of entanglement SM for the
squeezed coherent state chosen at the centroid of the irrational triangles is plotted against the different
triangle configurations with h̄ = 0.025. It can be easily seen that in both cases the entanglement
entropy reduces as we increase N or as we approach the equilateral triangle.

6. Conclusions

We have seen that the ground state eigenfunction entanglement reduces as we change the
geometry from an irrational Pythagorean triangle to an equilateral triangle. We have also seen that
the average entanglement of the first 500 eigenfunctions also changes as we change the geometry
of the triangle and it is closely related to the irrationality of the triangle.We have also seen that
the entanglement dynamics of the coherent state shows a clear dependence on the geometry of the
triangle. It can also be seen that the quantum squeezing can be utilize to enhance or decrease the
entanglement entropy in a triangular billiard.
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