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Abstract: In the analysis of contingency tables, often one faces two difficult criteria: sampled and
target populations are not identical and prior information translates to the presence of general
linear inequality restrictions. Under these situations, we present new models of estimating cell
probabilities related to four well-known methods of estimation. We prove that each model yields
maximum likelihood estimators under those restrictions. The performance ranking of these methods
under equality restrictions is known. We compare these methods under inequality restrictions in a
simulation study. It reveals that these methods may rank differently under inequality restriction
than with equality. These four methods are also compared while US census data are analyzed.

Keywords: categorical data; inequalities; least square; maximum likelihood; minimum
chi-squared; raking

1. Introduction

When working with a sample contingency table, a researcher might need to adjust it based on
information available from other sources. This information might come from prior surveys, censuses,
established theories or other sources. Often it comes as marginal information such as row and/or
column totals. For example, consider a data set where each subject is cross-classified by income
(low/high) and urbanity (urban/rural), and, marginal information about income and urbanity is
available from a census. One would like to adjust the sample data to conform to the desired margins
from census.

For two-way contingency tables of size (I × J), four well-known [1,2] margin-adjusting methods
for estimating cell probabilities are raking (RAKE), least squares (LSQ), minimum chi-squared
(MCSQ) and maximum likelihood under random sampling (MLRS). Assume that a random sample
{nij, 1 ≤ i ≤ I, 1 ≤ j ≤ J} is available from a multinomial (n, π) probability distribution, where
n = ∑i,j nij, π = (πij, ∀i, j). Let pij =

nij
n denote the sample cell proportions. Then RAKE finds the

estimates {π̂RK
ij } that minimize the discrimination information,

I

∑
i=1

J

∑
j=1

π̂ij ln(
π̂ij

pij
),

under the marginal constraints

∑
j

π̂ij = πi+, ∑
i

π̂ij = π+j, i = 1, . . . , I, j = 1, . . . , J, (1)

where π̂ij denotes the estimators of target cell probabilities πij, ∀i, j, πi+, π+j are known, ∀i, j.
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Under the same constraints (1), the methods LSQ, MCSQ, MLRS find the estimates
{π̂LSQ

ij }, {π̂
MCSQ
ij }, {π̂ML

ij } that minimize

I

∑
i=1

J

∑
j=1

(pij − π̂ij)
2

pij
,

I

∑
i=1

J

∑
j=1

(π̂ij − pij)
2

π̂ij
, −

I

∑
i=1

J

∑
j=1

pij ln(π̂ij),

respectively.
Instead of given marginal totals, one might like to use restrictions of a more general nature.

Consider the survey data [3] from the second National Health and Nutrition Examination Survey
(NHANES II).

Table 1a shows the sample proportions and corresponding census proportions of 2 × 2
contingency tables of income by urbanity, and Table 1b shows the sample proportions and
corresponding census proportions of 2× 2 contingency tables of education by urbanity. We observe
differences in the census and sample values, possibly due to differences in target and sampled
populations. For example, in Table 1a census data, the magnitude of row totals (0.3191 < 0.6809)
is different from that of the sample data (0.5260 > 0.4740). Similarly, in Table 1b census data, the
off-diagonal entries satisfy an order relation (0.2625 > 0.2107), but, in samples, the relation goes in
the opposite direction (0.2360 < 0.2682). If such constraints are known a priori (e.g., from census or
other sources), then it is wiser to incorporate them into the analysis while adjusting the sample data.

Table 1. (a) Probability of income × urbanity and (b) probability of education × urbanity from
NHANES II and the census.

NHANES II Data 1980 census

Income Urban Rural Income Urban Rural
Low 0.3305 0.1955 0.5260 Low 0.2064 0.1127 0.3191
High 0.3200 0.1540 0.4740 High 0.4969 0.1840 0.6809

0.6505 0.3495 1.0 0.7033 0.2967 1.0
(n = 16,547) (n = 50,644,862)

(a)

Education Urban Rural Education Urban Rural
Low 0.4135 0.2682 0.6817 Low 0.4584 0.2107 0.6691
High 0.2360 0.0823 0.3183 High 0.2625 0.0684 0.3309

0.6495 0.3505 1.0 0.7209 0.2791 1.0
(n = 8962) (n = 114,290,384)

(b)

Much prior work (e.g., [2]) assumed that random samples were directly taken from the
target population with known row and column margins (πi+, π+j respectively). However, in practice,
there are situations in which a random sample from the target population is inaccessible. For example,
often sample units are too expensive to locate or unwilling to participate in the survey. In this case,
to estimate the target cell probabilities, we have to take a random sample from a sampled population
that is systematically different from the target population. Clearly, the resulting estimators are
typically biased. Researchers in [3] have studied such discrepancies under marginal row and column
constraints. A similar problem in a regression context can be found in [4].

It is well-known that all four margin-adjusting methods are asymptotically equivalent under
simple random sampling. However, their small sample results can be different. Using simulation
methods, [5] found that MCSQ is best, followed by MLRS, RAKE and LSQ, in order of performance
in average root mean squared error. However, for margin adjusting, [3] found that both RAKE and
MLRS dominate MCSQ; and LSQ is inferior to all three methods when the sampled population
is systematically different from the target population. In this paper, we consider general linear
constraints (not necessarily marginal) under inequality restrictions and study the performance of those



Entropy 2016, 18, 97 3 of 10

four methods. For simulation (Section 4), we have restricted our attention to (2× 2) tables to facilitate
comparison with Little and Wu [3].

2. Solutions from Each Method

First, we vectorize the I × J contingency table of probabilities lexicographically, say, π = (πij)

denote the I J × 1 target population probability vector. Thus, the pair (i, j) = t, for some t, 1 ≤ t ≤ I J.
We assume that the available knowledge of the population can be expressed as r constraints as

ATπ ≤ c, (2)

where A = (aij) denotes an (I J × r), r ≤ I + J − 1, matrix of constants with rank(A) = r, c = (ci)

denotes the (r× 1) corresponding known values vector.
First, we set each of these four methods as an optimization problem. The objective function

f (π) takes the form ∑I J
t=1 πt ln(πt

pt
) for RAKE, ∑I J

t=1
(πt−pt)

2

pt
for LSQ, ∑I J

t=1
(πt−pt)

2

πt
for MCSQ and

−∑I J
t=1 pt ln πt for MLRS, respectively. We seek to minimize the convex function f (π) over a region

` defined as
` = {π | ATπ ≤ c, πt > 0, ∀t, ∑

t
πt = 1}, (3)

and this is known as the primal problem. The Kuhn–Tucker method [6] identifies an equivalent dual
problem that could be substantially easier to solve than the primal problem (for larger I, J).

The Lagrangian of the problem is defined by

L(λ, π) = f (π) + λT(ATπ − c), if λi ≥ 0 for all i, π ∈ `,

and, L(λ, π) = −∞, if λi < 0 for some i, π ∈ `, L(λ, π) = +∞, if π /∈ `, where λ = (λ1, . . . , λr) are
called Lagrange multipliers.

Consider maximization in λ and minimization in π of L(λ, π). Suppose there exists (λ∗, π∗) for
which L(λ, π∗) ≤ L(λ∗, π∗) ≤ L(λ∗, π), ∀λ, π, if and only if

∂L
∂πt

= ∑s[
∂ f (πs)

∂πs
+ ∑r

i=1 λi(ait − ci)] = 0, f or t = 1, 2, . . . , I J, at (λ∗, π∗),

λ∗i (∑t aitπ
∗
t − ci) = 0, 1 ≤ i ≤ r, ATπ∗ − C ≤ 0, λ∗i ≥ 0, 1 ≤ i ≤ r,

(4)

then λ∗ is a Kuhn–Tucker vector and π∗ is an optimal solution of the primal problem, and L(λ∗, π∗) is
the optimal value of the L(λ, π).

More generally, λ∗ is a Kuhn–Tucker vector if and only if −∞ < infπ L(λ∗, π) =

infπ supλ L(λ, π) = supλ infπ L(λ, π). The dual problem is given by supλ g(λ), where the function
g is defined by g(λ) = infπ L(λ, π) [6]. Often, the dual problem has a nice form, and λ∗ can
be found by numerical methods. Then, one can use the relation (4) to find the solution π∗ to the
primal problem.

3. Models Relating the Sampled and Target Populations

Suppose a random sample of size n is taken from the sampled population. For the (i, j)th
cell, let πij, τij be the target and sampled probabilities, respectively. Consider the RAKE model
in Equation (5), below which it specifies how the sampled and target populations are connected.
Theorem 1 shows that the solution to the model in (5) are the maximum likelihood (ML) estimators
under the RAKE model.
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Theorem 1. Suppose the probabilities of target and sampled populations are related by

ln(π∗t /τt) = ∑r
i=1 λ∗i (∑t ait − ci)

ATπ∗ − c ≤ 0, λ∗i (∑t aitπ
∗
t − ci) = 0, λ∗i ≥ 0, 1 ≤ i ≤ r.

(5)

Then π∗t , given by (5), are the maximum likelihood estimates of the cell probabilities πt in the target population.

Proof. Consider the (primal) raking problem of minimizing ∑I J
t=1 πt ln(πt

τt
) subject to ATπ − c ≤ 0.

Using an example from (p. 309, [7]), the Lagrangian for this problem is given by

L(λ, π) =
I J

∑
t=1

πt ln(
πt

τt
) +

r

∑
i=1

λi(∑
t

aitπt − ci), (6)

If λi ≥ 0 for all i, π ∈ `, L(λ, π) = −∞ if λi < 0 for some i, π ∈ `, L(λ, π) = +∞, if π /∈ `.
To find the dual problem, define

g(λ) = inf
π

L(λ, π) = inf
π

I J

∑
t=1

πt ln
[

πt

τt exp[−∑r
i=1 λi(ait − ci)]

]
,

= − ln

[
I J

∑
t=1

τt exp[−
r

∑
i=1

λi(ait − ci)]

]
, (7)

If λi ≥ 0, ∀i, = −∞, if λi < 0 for some i. This follows easily by Jensen’s inequality. The dual
problem is supλ≥0 g(λ) = − infλ≥0 ∑I J

t=1 τt exp [−∑r
i=1 λi(ait − ci)] , from (7).

The dual problem is solved numerically (e.g., using the Newton–Raphson method), and we
obtain the dual solutions λ = λ∗ as functions of τt. Differentiating L in (6) with respect to each
πt and setting equal to zero, the primal solutions of (π̂t) are given by

π̂t = τ̂t exp

[
r

∑
i=1

λ∗i (
I J

∑
t=1

ait − ci)

]
.

Assuming the counts nt follow a multinomial(n, τt, ∀t) distribution, the MLE of τt is given by
τ̂t = pt = nt/n. Since λ̂∗i are functions of pt, hence π̂t are MLEs. Thus, raking yields ML estimates for
the RAKE model (5).

In general, consider the model

(π∗t /τt)α = ∑i=1 λi(∑
I J
t=1 ait − ci)

ATπ∗ − c ≤ 0, λ∗i (∑t aitπ
∗
t − ci) = 0, λ∗i ≥ 0, 1 ≤ i ≤ r.

(8)

By using similar arguments as above, LSQ is ML for the LSQ model obtained by setting α = 1,
MLRS is ML for the MLRS model obtained by setting α = −1, and MCSQ is ML for the MCSQ model
obtained by setting α = −2 in (8). Of course, α→ 0 in (8) corresponds to RAKE.

Theorem 3.1 shows that for any model α, (8) yields MLEs of πt for that model. If πt is generated
from a method different from α in (8), the solution is still available, but it is not MLE under (8).
Hence, it is of interest how these four different methods stack up against each other (as MLE versus not
MLE) in a given situation. To address this issue, a simulation study is conducted in the next section.

4. A Simulation Study

We performed a simulation study to compare the methods in a systematic way. We restrict
our attention to (2 × 2) tables so that comparison with equality [3] is facilitated. In contrast to
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margin-adjusting methods (e.g., [3]) where only one parameter, e.g. π11, is enough to consider, for
inequality constraints one needs to consider all πij, ∀i, j. In this simulation, we have saught solution of
the primal problem itself because the table dimensions (2× 2) are the smallest, and duality approach
does not help much to reduce the necessary computation load.

We have considered two types of inequality restrictions in the simulation: isotonic and nonisotonic
(see [7] for definitions). For each of the 16 designs described below, sample sizes n = 30, 100, 1000
are considered. Thus, in each of 16× 3 = 48 cases, for a given π as the target population vector, we
vary λ and find τ using (8). Then, we take multinomial random samples from this τ and calculate p.
This process is repeated 200 times for each of 48 cases.

For isotonic constraints, we use a tree order as: π11 ≤ {π12, π21}. The initial choices are
π = (π11, π12, π21, π22) = (.232, .232, .232, .304) or (0.231, 0.303, 0.264, 0.202); λ = (λ1, λ2) =

(0.5, 0.5), (0, 0.5), (0.1, 0.1), (0.1, 0.5). [The results from λ = (0.5, 0), (0.5, 0.1) are not reported because
performancewise (0, 0.5) ≈ (0.5, 0), (0.5, 0.1) ≈ (0.1, 0.5)].

For isotonic constraints, closed-form solutions (π∗) are available for all four methods as follows.
The LSQ under tree order is calculated using the algorithm on page 19 of [7], and, MLRS = LSQ.
The RAKE and MCSQ values are given by least square projections of ln p and p2 on to the
constraints of interest, and then applying the inverse of those transformations (see pages 240 and
278 of [7], respectively).

For nonisotonic constraints, we consider the constraints: π11 + π12 ≤ c1, π11 + π21 ≤ c2,
where (c1, c2) = (0.4, 0.6) or (0.6,0.7). Here, we use π = (0.184, 0.216, 0.416, 0.184) or
(0.387, 0.213, 0.313, 0.087) with λ = (λ1, λ2) = (0.5, 0.5), (0, 0.5), (0.1, 0.1), (0.1, 0.5).

With given λ and the target probabilities πij, first we determine the sample probabilities τij using
NEQNF of IMSL libraries of Fortran (version 7, Rogue Wave Software, Inc., Louisville, CO, USA).
Then, a multinomial random sample of size n is taken from the sampled population by using the
multinomial random number generator GGMTN in the IMSL subroutine library, and we calculate p.

Next, π∗ is found for each of four methods. When there is no violation, no adjustment is needed.
When there is a violation, the solution is found by using the subroutine LCONG of IMSL.

After we find the estimates π∗ = {π∗i } for either constraints, we calculate the root mean squared
error of the estimates as RMSE = ∑4

i=1(πi − π∗i )
2, where πi is the true value of the target probability.

To provide a more systematic comparison between these four methods, we compute a relative RMSE
(RRMSE) defined as

RRMSE = 100 ∗ ln(
RMSE
RMSE∗

), (9)

where RMSE∗ is the root mean squared error of the method that is ML under the model
that generated the data, so RMSE = RMSE∗ or RRMSE = 0 for each model under its
corresponding method.

Figures 1–3 give visual comparisons of the methods under each model, for sample sizes
n = 30, 100, 1000, respectively. For each figure the horizontal reference line with 0 RRMSE
corresponds to the ML estimates under the model that was used to generate the data.

As mentoned earlier, for each sample size a total of 16 designs are considered, 1–8 are nonisotonic
and 9–16 are isotonic; these are listed below. These designs are so numbered on the horizontal axis of
each of the Figures 1–3.

1. Nonisotonic; π11 + π12 ≤ 0.4, π11 + π21 ≤ 0.4, π = (0.184, 0.216, 0.416, 0.184) with λ =

(0.5, 0.5); 2. ...λ = (0, 0.5); 3. ...λ = (0.1, 0.1); 4. ...λ = (0.1, 0.5); 5. Nonisotonic; π11 + π12 ≤ 0.6,
π11 + π21 ≤ 0.7, π = (0.387, 0.213, 0.313, 0.087) with λ = (0.5, 0.5); 6. ...λ = (0, 0.5); 7. ...λ =

(0.1, 0.1); 8. ...λ = (0.1, 0.5); 9. Isotonic; π11 ≤ {π12, π21}, π = (0.232, 0.232, 0.232, 0.304) with λ =

(0.5, 0.5); 10. ...λ = (0, 0.5); 11. ...λ = (0.1, 0.1); 12. ...λ = (0.1, 0.5); 13. Isotonic; π11 ≤ {π12, π21},
π = (0.231, 0.303, 0.264, 0.202) with λ = (0.5, 0.5); 14. ...λ = (0, 0.5); 15. ...λ = (0.1, 0.1);
16. ...λ = (0.1, 0.5).
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Overall RMSE of estimators. A crude comparison of the estimators is presented in Table 2, which
gives the average RMSEs for each method over the 16 designs in each of isotonic and nonisotonic
cases. Although the designs are different, this gives some illustration of the performance of the
four methods. The RNDM values are obtained when the sample is taken directly from the target
population. One would expect these values to be smaller than those that were generated from the
sampled population, but we did not find that to be the case in our simulation study although they are
pretty close.
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Figure 1.  RRMSEs for data generated under four models. The horizontal reference line at 0 RRMSE corresponds to ML estimates under the model.
Figure 1. RRMSEs for data generated under four models (a) RAKE, (b) LSQ, (c) MCSQ, (d) MLRS,
when n = 30. The horizontal reference line at 0 RRMSE corresponds to ML estimates under the model.
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Figure 2.  RRMSEs for data generated under four models. The horizontal reference line at 0 RRMSE corresponds to ML estimates under the model.

(a) (b)

Figure 2. RRMSEs for data generated under four models (a) RAKE, (b) LSQ, (c) MCSQ, (d) MLRS,
when n = 100. The horizontal reference line at 0 RRMSE corresponds to ML estimates under
the model.
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Figure 3.  RRMSEs for data generated under four models. The horizontal reference line at 0 RRMSE corresponds to ML estimates under the model.
Figure 3. RRMSEs for data generated under four models (a) RAKE, (b) LSQ, (c) MCSQ, (d) MLRS,
when n = 1000. The horizontal reference line at 0 RRMSE corresponds to ML estimates under
the model.

Table 2. Average root mean square error (RMSE) over all 16 designs by method and model that
generated the data.

Nonisotonic Isotonic
RAKE LSQ MCSQ MLRS RAKE LSQ MCSQ

Rake 0.0032 0.0061 0.0069 0.0034 0.0089 0.0063 0.0076
LSQ 0.0038 0.0060 0.0058 0.0038 0.0069 0.0062 0.0062

MCSQ 0.0037 0.0061 0.0054 0.0038 0.0077 0.0065 0.0061
MLRS 0.0033 0.0068 0.0061 0.0033 0.0109 0.0055 0.0054
RNDM 0.0039 0.0072 0.0069 0.0053 0.0084 0.0080 0.0078

When the target and sampled populations differ, one would expect that the method that is
ML under the model that generated the data would have the lowest RMSE. For nonisotonic cases,
RAKE satisfies this property; although MLRS does not satisfy this property, it follows RAKE closely.
The RAKE estimates had the lowest RMSE under LSQ and MCSQ models as well. Thus, RAKE
estimates seem to perform best, while MLRS follows RAKE very closely in each case. For the isotonic
case, however, a different picture arises. Here, the LSQ estimates had the smallest RMSEs for the data
generated under the RAKE model. Both LSQ and MCSQ estimates had the smallest RMSEs when the
data were generated under the respective models. For MLRS, the MLRS estimates had slightly higher
RMSEs than that of MCSQs.

Figures 1–3 present RRMSEs for data generated under each of the four models for all 16 problems
with n = 30, 100, 1000, respectively. To interpret them, first note that smaller values of c1, c2

mean stronger constraints. In addition, a negative value of RRMSE reflects that bias from model
misspecification is represented by lower variance than the method that is ML for the model that
generated the data.

Certain reasonable patterns emerge from these figures; estimates based on the correct model
dominate other methods when the sample size is large, or when the constraints are isotonic; here, the
bias from model misspecification dominates RMSE. Results from nonisotonic constraints are more
homogeneous. For them, LSQ turned out to be generally larger than MLRS.
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Panel a of the figures summarizes results for the data generated under the RAKE model.
For nonisotonic constraints, RAKE and MLRS performed similarly. For n = 30, 100, LSQ is
slightly inferior to the other methods for the nonisotonic constraints with (c1, c2) = (0.4, 0.6) but
is competitive when (c1, c2) = (0.6, 0.7). RAKE seems to dominate (or close) and MCSQ performs
worst (except when n = 30) of all nonisotonic constraints cases 1–8. RAKE performs slightly worse
for isotonic constraints cases when n = 30, but is best again when n = 100, 1000.

Panel b of the figures summarizes results for data generated under the LSQ model. For all
constraints with n 1000, LSQ and MLRS performed similarly. For n = 30, 100, LSQ is much inferior
to MLRS for the nonisotonic constraints with (c1, c2) = (0.4, 0.6) but performs similarly when
(c1, c2) = (0.6, 0.7). MCSQ performs worst throughout, except for isotonic constraints with n = 30,
when all three methods did better than RAKE, but this turned around when n = 100, 1000.

Panel c of the figures summarizes results for the data generated under the MCSQ model.
Although for isotonic constraints LSQ = MLRS, for nonisotonic constraints, LSQ performed much
worse than MLRS. The MCSQ values were close to the LSQ values for all constraints, except for
isotonic constraints designs 9, 12 with n = 1000 when MCSQ is way off. Rake performed competitively
with MLRS for nonisotonic cases. However, for isotonic constraints, RAKE was outperformed by
other three methods for all n.

Panel d of the figures summarizes results for data generated under the MLRS model. Although
for isotonic constraints MCSQ performed best for all n, with nonisotonic constraints, MCSQ is beaten
by all other methods for n = 100, and by RAKE and MLRS when n = 30. LSQ performed much worse
than MLRS for all nonisotonic cases. MLRS performed best for nonisotonic constraints and was close
to best (MCSQ) for isotonic constraints, for all n.

5. Applying Four Methods to Real World Data

In this section, we illustrate the four methods studied in this paper using the data from [3] on the
second National Health and Nutrition Examination Survey (NHANES q). The data are presented in
Table 1.

It is not hard to observe that in Table 1a the sample cell and marginal proportions differ
considerably from the census (see Section 1). From the census values for the income case from
Table 1a, we see π11 + π12 = 0.3191. Hence, it is reasonable to consider π11 + π12 ≤ 0.32; observing
similar other discrepancies, we consider the following three inequality restrictions:

π11 + π12 ≤ 0.32
π12 + π22 ≤ 0.30
π11 − 2π12 ≤ 0

, (10)

and for the education case, we consider {
π11 + π12 ≤ .67
π11 + π21 ≥ .72

. (11)

For each problem, the estimates and RMSEs are computed and the results are displayed in
Table 3. We consider the census proportions as the target probabilities {πij}.

Let NHANES q data be our sample proportions {pij}. Let {π̂ij} be the estimates under
the constraints in (10), also under (11) (considered separately). Below, we define the adjusted
RMSE, the unadjusted RMSE, and the proportional unexplained root mean square error (PURMSE),
where “adjusted” means estimates under constraints, and “unadjusted” means unrestricted
sample proportions.

adjusted RMSE =
√

∑
i

∑
j
(π̂ij − πij)2, (12)
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unadjusted RMSE =
√

∑
i

∑
j
(pij − πij)2, (13)

PURMSE = 100 ∗ unadjusted RMSE− adjusted RMSE
unadjusted RMSE

. (14)

Table 3. Proportional unexplained root mean square error (PURMSE) values for different methods
under inequality restrictions for Income and education.

Variable RAKE LSQ MCSQ MLRS

Income 92.88 92.88 98.50 96.84
Education 94.58 88.36 93.96 94.24

The larger value of PURMSE means that the adjusted MSEs are smaller than the unadjusted,
which subsequently means that the used constraints give estimates that are quite close to the target
values. Table 3 shows that all four methods perform well. Among all methods, LSQ performs
comparatively the worst.

6. Conclusions

The paper [3] compared four margin-adjusting methods using equality constraints of known
marginal totals for (I × J) contingency tables. Here, under general linear inequality constraints,
theoretical models are proposed for the differences between the sampled and target populations.
To compare the performance of these four methods, a simulation is performed for the case of
I = J = 2. Based on this simulation, we find that the performance of the methods depends on
the specific type of constraints. For nonisotonic constraints, we find RAKE to perform the best, with
MLRS being a close second. The MCSQ and LSQ perform worse, of which MCSQ is slightly better
than LSQ. These findings are parallel to those of [3].

However, we also find that the performance ranking of the methods changes for isotonic
constraints (tree order). Here, MCSQ and LSQ (= MLRS) perform better than RAKE. In addition,
MCSQ is slightly better than LSQ (= MLRS). These results are very different from those of [3].

The theoretical models for the differences between the sampled and target populations, and the
corresponding methods and techniques described can be extended to higher dimensions in a similar
manner as in Theorem 1.

As opposed to the case under equality restrictions, the distribution of estimators under
inequality constraints is not known; hence, their mean and standard errors are also not tractable.
It is difficult to explain the different behavior of the estimators under isotonic and non-isotonic
constraints as seen in simulation. It is well-known that estimators under isotonic constraints have
special properties of partial order relations.

We have fixed the values of c1, c2 earlier in the simulation keeping in par with applications.
This makes the choices of πij restricted under inequality constraints. Note that with equality
constraints, once we fix π11, all values of πij are fixed. This is not the case under inequality constraints.
The choices of πij, λi have to be such that the optimization problem has a solution.
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