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Abstract: In this paper, we investigate the effects of spin squeezing on two-coupled quantum
kicked tops, which have been previously shown to exhibit a quantum signature of chaos in terms of
entanglement dynamics. Our results show that initial spin squeezing can lead to an enhancement in
both the entanglement rate and the asymptotic entanglement for kicked tops when the initial state
resides in the regular islands within a mixed classical phase space. On the other hand, we found a
reduction in these two quantities if we were to choose the initial state deep inside the chaotic sea.
More importantly, we have uncovered that an application of periodic spin squeezing can yield the
maximum attainable entanglement entropy, albeit this is achieved at a reduced entanglement rate.
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1. Introduction

The quantum kicked top is an important model for the fundamental study of quantum
chaos [1–4]. It is a paradigm that is fruitful for both analytical and numerical investigations on the
influence of classical chaos on various quantum features [5,6]. The manner in which chaos manifests
itself in quantum mechanics has been demonstrated through the spectral properties of the generating
Hamiltonian [7], hypersensitivity to perturbations [2], fidelity decay [8,9], phase space scarring [10]
and entanglement [3,11–17]. Current research has found that the production rate of entanglement
between two systems can be enhanced not only by increasing the coupling strength between the tops;
it can also be raised by initializing the states of the quantum system within its corresponding classical
chaotic phase space in the semi-classical regime [11]. In fact, entanglement is of primary interest in
recent years due to its possible applications in the field of quantum information processing and its
relevance to the design of quantum devices [18,19].

On the other hand, squeezing is a technique that redistributes the uncertainty within a state such
that the subsequent measurements of one of a set of non-compatible observables can be enhanced
and made more accurate. The idea of squeezing has been applied experimentally to improve the
precision of measurement devices, for example in Ramsey spectroscopy [20], atomic clocks [21–23]
and gravitational-wave detectors [24]. In addition, squeezing has also been employed for the purpose
of detecting quantum entanglement [25,26]. All of these applications of squeezing have pointed to
its important role in advancing the development of technologies and systems based on the theory of
quantum mechanics.

The close relationship between squeezing and quantum entanglement brings up the question of
how the active application of spin squeezing can affect the entanglement of two coupled quantum
kicked tops. To answer this question, we have built upon the model and results of Miller and
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Sakar [12], who have demonstrated that the rate of entanglement increase for the coupled kicked
tops is intrinsically dependent on its classical chaotic dynamics. Our contribution in this paper is the
inclusion of an additional spin squeezing procedure by Kitagawa and Ueda [27] to our model, where
we either squeeze the spin initially before time evolution or squeeze the spin periodically. Our results
show the efficacy of using spin squeezing to boost the generation of entanglement entropy, especially
by means of periodic squeezing.

Our paper is organized as follow. In Section 2, we provide the technical details of the
two-coupled quantum kicked tops with regards to their initial state, time evolution and the spin
squeezing procedure. In Section 3, we discuss the corresponding classical dynamics and phase space
of the quantum kicked tops, as well as the semi-classical representation based on the Husimi Q
function. In Section 4, we give the mathematical preliminaries and definitions that are required for a
quantitative definition of quantum entanglement, and in Section 5, we proceed to present and discuss
our numerical results. Finally, Section 6 concludes the paper.

2. Two-Coupled Quantum Kicked Tops

2.1. Kicked Tops

The kicked top is a simple dynamical system characterized by the state of its angular momentum.
It is an excellent model for the theoretical and experimental study on quantum chaos in lieu of its
association with a finite-dimensional quantum Hilbert space and a corresponding classical phase
space that is low-dimensional [2,3,28]. The Hamiltonian of a quantum kicked top takes the form:

Ĥ(t) =
π

2τ
Ĵy +

k
2j

Ĵ2
z

∞

∑
n=−∞

δ(t− nτ) (1)

with the first term representing the precession of the top at an angular frequency of π/2 about
the y-axis. The second term indicates that the top is being kicked regularly at a fixed period τ,
leading to an impulsive rotation about the z-axis, which is proportional to the dimensionless factor
k/j. Specifically, k is the strength of the kick, while j is simply the quantum number of the system.
By working in discrete time and setting τ to one, the time evolution of the kicked top can be
determined through the following unitary operator:

Û′ = Û′kÛ′f = exp(− ik
2j

Ĵ2
z ) exp(−i

π

2
Ĵy) (2)

In this paper, our principal interest is on coupled kicked top systems. In particular, we are
interested in the effects of squeezing the initial states of the kicked tops on their entanglement
dynamics. For this investigation, we require the Hamiltonian of a two-coupled quantum kicked top
system, which involves a sum of the Hamiltonian of each kicked top plus an additional term on the
spin-spin interaction:

Ĥ(t) =
π

2τ
Ĵy1 +

k
2j

Ĵ2
z1

∞

∑
n=−∞

δ (t− nτ) +
π

2τ
Ĵy2

+
k
2j

Ĵ2
z2

∞

∑
n=−∞

δ (t− nτ) +
kε

j
Ĵz1 Ĵz2

∞

∑
n=−∞

δ (t− nτ) (3)

Note that the strength of the interaction is proportional to the dimensionless constant kε/j, with
ε being the coupling constant between the two tops. With this formulation, the unitary time evolution
is then given by:

Û = Ûε12Ûc1Ûc2 = Ûk1Ûk1Ûε12Û f1Û f2 (4)
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and the details of the various terms are stated below:

Ûcr := Ûkr Û fr (5)

Û fr := exp
(
− iπ

2
Ĵyr

)
(6)

Ûkr := exp
(
− ik

2j
Ĵ2
zr

)
(7)

Ûε12 = exp
(
− ikε

j
Ĵz1 Ĵz2

)
(8)

Note that the index r is to be taken as either one or two from now on.

2.2. Initial States

Coherent states are the most “classical” states, and they are thus directly relevant to our
investigation of quantum-classical correspondence. In particular, the directed angular momentum
states |θ0, φ0〉 [2,28,29] are the coherent states of the quantum kicked top system. Such states are also
widely known as the atomic coherent states, and they are of main interest as initial quantum states in
this paper. They can be simply generated by applying a rotation operator on the eigenstate |j, j〉:

|θ0, φ0〉 = exp
[
iθ0
(

Ĵx sin φ0 − Ĵy cos φ0
)]
|j, j〉 (9)

The result can be further expressed in terms of the |j, m〉 basis after performing Taylor expansion,
and it is found that [30]:

|θ0, φ0〉 = (1 + γγ∗)−j
j

∑
m=−j

γj−m

√(
2j

j + m

)
|j, m〉 (10)

where:

γ = exp (iφ0) tan
(

θ0

2

)
(11)

By taking a direct product of these individual kicked top states, we obtain the initial states of our
two-coupled kicked top system:

|ψ (0)〉 = |θ01 , φ01〉 ⊗ |θ02 , φ02〉 (12)

2.3. Quantum Kicked Top Evolution

To initialize the state of our quantum kicked tops, Equation (10) is first used to generate the initial
state of each of the two separate kicked top. The initial state of the entire system is then obtained
through a tensor product of these individual states according to Equation (12). The quantum state
of the kicked top at a future time step is then determined by the unitary time evolution operator
given by Equation (4) acting on the quantum state at a previous time step starting with the initial
state. This allows the kicked top to evolve at a discrete time step of nτ (for n = 0, 1, 2, . . .). In the
Schrödinger picture, the time evolution of the quantum state of the kicked tops at time step n then
takes the following form:

〈s1, s2|ψ (n)〉
= 〈s1, s2|U |ψ (n− 1)〉 (13)

=
+j

∑
s′1=−j

+j

∑
s′2=−j

〈s1, s2|Uε12 |s
′
1, s′2〉 〈s′1, s′2|Uc1Uc2 |ψ (n− 1)〉 (14)
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where |s′1, s′2〉 and |s1, s2〉 are arbitrary states. Note that we have dropped j1 and j2 from the notation
|j1, m1, j2, m2〉, since they are fixed at 80. The term 〈s1, s2|Uε12 |s′1, s′2〉 can be easily simplified using
the fact that the initial states are in the Jz basis, i.e.,

Ĵz |m〉 = m |m〉 (15)

This leads to:

〈s1, s2|ψ (n)〉

=
+j

∑
s′1=−j

+j

∑
s′2=−j

exp
(
− ikε

j
s′1s′2

)
〈s1, s2|s′1, s′2〉 〈s′1, s′2|Uc1Uc2 |ψ (n− 1)〉

= exp
(
− ikε

j
s1s2

)
〈s1, s2|Uc1Uc2 |ψ (n− 1)〉 (16)

The last term of Equation (16) can be evaluated as follows:

〈s1, s2|Uc1Uc2 |ψ (n− 1)〉

=
+j

∑
m1=−j

+j

∑
m2=−j

〈s1|Uc1 |m1〉 〈s2|Uc2 |m2〉 〈m1, m2|ψ (n− 1)〉 (17)

Both 〈s1|Uc1 |m1〉 and 〈s2|Uc1 |m2〉 are then determined using Equation (5):

〈sr|Ucr |mr〉 = 〈sr|Ukr U fr |mr〉 (18)

= exp
(
− ik

2j
s2

r

)
〈sr|U fr |mr〉 (19)

Using the fact that U fr is a rotational unitary group operator, we are able to evaluate and obtain
the following result [31,32]:

〈sr|U fr |mr〉 =
(−1)sr−mr

2j

(
2j

j− sr

)1/2( 2j
j + mr

)−1/2
(20)

×∑
ν

(−1)ν

(
j− sr

ν

)(
j + sr

ν + sr −mr

)
(21)

This expression can also be expressed in the following alternative form by expanding upon the
binomial coefficient:

〈sr|U fr |mr〉 =
(−1)sr−mr

2j ∑
ν

(−1)ν

√
(j− sr)!(j + sr)!(j + mr)!(j−mr)!

ν!(j− sr − ν)!(j + mr − ν)!(ν + sr −mr)!
(22)

Note that the summation across ν is performed for all values of ν, such that the denominator of
Equation (22) is finite. Furthermore, the factorial of a negative integer is taken to be infinite based on
the relation between the factorial and the gamma function.

2.4. Spin Squeezing

Quantum squeezing has the effect of reducing the uncertainty in an observable while increasing
the uncertainty of its non-commuting counterpart. For our quantum kicked tops system, we apply
squeezing to the coherent angular momentum or spin states of the tops either at the initial instant or
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at a periodic interval. Our system is considered squeezed when the variance of one of its observables
satisfies the following inequality [33]: (

∆ Ĵ2
i

)
≤
∣∣〈 Ĵk

〉∣∣ /2 (23)

in relation to the quantum uncertainty product:(
∆ Ĵ2

i

) (
∆ Ĵ2

j

)
≥
∣∣〈 Ĵk

〉∣∣2 /4 (24)

with i, j and k being components in any three orthogonal directions. This perspective is in line with
the definition of spin squeezing proposed by Kitagawa and Ueda [27]. In their paper, they proposed
that it is possible to minimize fluctuations in one spin direction at the expense of enhancing the
fluctuations in the other directions. In other words, a spin is considered squeezed only if the variance
of a spin component normal to the mean spin vector is less than the standard quantum limit, which
has been shown by Kitagawa and Ueda to be S/2 for a system with S spin.

In order for squeezing to occur, a nonlinear interaction is needed as a linear interaction simply
rotates the spin vectors and does not establish quantum correlations among them. This leads us to
employ a class of unitary operators with a nonlinear Hamiltonian for our squeezing operation:

Ĥ = h̄F
(

Ĵz
)

(25)

where F
(

Ĵz
)

is a nonlinear function of the z-axis angular momentum operator, and thus:

Ûs (β) = exp
[
−iβF

(
Ĵz
)]

(26)

If we were to consider the lowest-order nonlinear interaction term for the Hamiltonian:

F
(

Ĵz
)
= χ Ĵ2

z (27)

with χ being a constant of proportionality, we obtain an interaction that causes a twist in the quantum
fluctuations and is analogous to self-phase modulation in a photonic system. This gives rise to the
one-axis twisting squeeze operator:

Ûs (µ) = exp
(
−iµ Ĵ2

z /2
)

(28)

with the factor:
µ ≡ 2χβ (29)

quantifying the degree and strength of squeezing of the squeeze operator. By adjusting µ, we create
spin squeezed states as follows:

|θ01 , φ01〉s ⊗ |θ02 , φ02〉s =
(
Ûs1 (µ)⊗ Ûs2 (µ)

)
|ψ (0)〉

= exp
(
−iµ Ĵ2

z1
/2
)
|θ01 , φ01〉 ⊗ exp

(
−iµ Ĵ2

z2
/2
)
|θ02 , φ02〉 (30)

and:

|θ(nτ)1
, φ(nτ)1

〉
s
⊗ |θ(nτ)2

, φ(nτ)2
〉

s
=

(
Ûs1 (µ)⊗ Ûs2 (µ)

)
|ψ (nτ)〉

= exp
(
−iµ Ĵ2

z1
/2
)
|θ(nτ)1

, φ(nτ)1
〉

⊗ exp
(
−iµ Ĵ2

z2
/2
)
|θ(nτ)2

, φ(nτ)2
〉 (31)
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Note that the former spin squeezed state results from initial spin squeezing, while the latter
periodic spin squeezing with period τ at n = 0, 1, 2, . . . , where squeezing has been performed at the
same factor µ for both tops. In addition, since our directed angular momentum states are expressed
in terms of the Jz basis, the application of Us(µ) on state |m〉 for a top is equivalent to the same state
being acted upon by:

Ûs = exp
(
−iµm2/2

)
(32)

This simplifies the computation of the squeezing operator, as well as the consequential tensor
product state.

Let us illustrate the effect of µ on spin state squeezing for a single top on a quasiprobability
distribution based on the Husimi Q function plotted using the QuTiP toolbox (Version 3.1.0) [34,35].
First, an unsqueezed kicked top possesses a state with quantum fluctuations that follow a Gaussian
distribution. In this case, the cross-section of the quasiprobability distribution is circular with a high
probability in the center that reduces as it goes outwards, as shown in Figure 1. By using this spin
coherent state with the squeezing operator given by Equation (28) at µ = 0.2, we obtain a squeezed
state which is stretched in both the x- and y-directions, as shown in Figure 2. It is important to note
that too large a µ is inappropriate, as the resulting spin squeezed state can be broken up, as shown
in Figure 3 for µ = 10. In this paper, we have fixed µ = 0.2, as the resulting state is substantially
squeezed to sample a wider range of the quantum states in the Hilbert space without the state being
broken up.

Figure 1. The quasiprobability density of the coherent state based on the spin Q function is shown
here mapped onto a sphere, which is its phase space. The state follows a Gaussian distribution, and
the area of the plot indicates the uncertainty of the state. Note that j = 80.
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Figure 2. The quasiprobability density of the spin squeezed state after the coherent state has been
acted on by the one-axis twisting squeeze operator with µ = 0.2. Note that the resulting state is
elongated and stretched in both the x- and y-direction. Note that j = 80.

Figure 3. The quasiprobability density of the state after the action of the one-axis twisting squeeze
operator on the coherent state at µ = 10. The state has split into multiple islands, which is not suitable
for our study of quantum-classical correspondence, since the integrity of a squeezed state has been
destroyed. Note that j = 80.

Mathematically, the spin Q function is defined as:

Q(θ, φ) =
1
π
〈α| ρ̂ |α〉 (33)

where ρ̂ is the density matrix of the system:

ρ̂ = |ψ(0)〉 〈ψ(0)| (34)

and α is given by:

α = x + iy

= sin θ cos φ + i sin θ sin φ (35)
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3. Quantum-Classical Correspondence

It is possible to rescale the angular momentum variables and, through the Heisenberg equations
obtained, a set of classical equations of the two-coupled kicked tops in terms of c-number variables.
Nonetheless, in analogy to the approach of Miller and Sarkar, we shall consider a single decoupled
classical kicked top instead and exploit its phase space for our theoretical analysis on the problem of
the quantum-classical correspondence of the two-coupled quantum kicked tops with spin squeezing.
In this context, by first defining the classical variables:

~V = (X, Y, Z) :=
~J
j
(

Ĵx, Ĵy, Ĵz
)

(36)

and setting the angle of precession about the y-axis to π/2, the following recursion relation for a
single kicked top has been obtained:

X′ = Z cos(kX) + Y sin(kX)

Y′ = −Z cos(kX) + Y sin(kX)

Z′ = −X (37)

at the classical limit, as well as negligible coupling between the two tops. By re-expressing these
variables in terms of [29]:

θ = arccos Z

φ = arctan
Y
X

(38)

which lie on the surface of a unit sphere, we can make a direct correspondence between the classical
and the quantum states. In terms of θ and φ, which corresponds to the direct angular momentum
state, we have plotted the phase space map of the kicked top using Equations (37) and (38) with an
iteration of over 105 kicks (see Figure 4). This classical phase portrait shows the stroboscopic time
evolution of the kicked top with the period of the kicks being matched to the discrete time evolution
of the top. In this paper, we have fixed the parameter k to three. In this regime, the classical dynamics
of the kicked top exhibits a mixture of regular and chaotic dynamics. This is evident through the
presence of both regular islands and a chaotic sea in Figure 4. We have chosen six different initial
conditions to sample different regions of the phase space for our simulation. Specifically, we have
selected two points within the regular island and four points at various positions in the chaotic region.
Two of the points, (φ = 0.63, θ = 2.10) and (φ = 0.63, θ = 2.00), are chosen, such that they are close to
the edge that separates regions of chaos and regularity.
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Figure 4. Phase space map for k = 3 with six initial conditions marked in the plot. Note that
the triangle markers represent the coordinates of the regular kicked tops, while the square markers
represent the coordinates of the chaotic kicked top.

4. Quantification of Entanglement

There are various ways to quantify entanglement, such as the use of Bell’s inequalities and
concurrence [36]. Since our states of consideration are pure states, we shall employ the von Neumann
entropy of the subsystem state as our measure of entanglement. For this calculation, we first obtain
the time-evolved state of the two-coupled quantum kicked top |ψ (n)〉 at time step n, from which we
yield the density matrix ρ of the system as follows:

ρ (n) = |ψ (n)〉 〈ψ (n)| (39)

We then determine the reduced density matrix by taking a partial trace of the density matrix over
one of the subsystem. For example, in order to obtain the reduced density matrix of the first kicked
top, we perform a partial trace over the density matrix with respect to the second kicked top:

ρ1(n) = Tr2 [ρ (n)] (40)

Alternatively, the reduced density matrix can also be obtained directly from the state of the
system. In this case, the reduced density matrix can be represented in the matrix form as follows:

〈m1| ρ1 |n1〉 =
+j

∑
n2=−j

〈m1, n2|ψ (n)〉 〈ψ (n) |n1, n2〉 (41)

The entanglement entropy of the system is then calculated from the von Neumann entropy of
the reduced density matrix of the first kicked top in the following manner:

E (n) := −Tr1 [ρ1 (n) ln ρ1 (n)] (42)
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This calculation can be simplified by first diagonalizing the reduced density matrix ρ1(n) to
obtain the set of 2j + 1 eigenvalues λi(n). This leads to the following entanglement entropy of the
two-coupled kicked tops at time step n:

E (n) = −
+j

∑
i=−j

λi(n) ln λi(n) (43)

5. Results and Discussion

5.1. Entanglement without Spin Squeezing

We first investigate the entanglement dynamics of the two-coupled quantum kicked tops
without spin squeezing. Note that we have adopted a value of ε = 0.001/3 for the coupling coefficient
of the tops, since this value gives a reasonable rate of entanglement increase between the tops in our
simulation studies. We have also set the coupled kicked tops at the parameter value k = 3. For the
time-evolution of the kicked tops, we first consider three types of initial states: (i) the regular-regular
|θr, φr〉⊗ |θr, φr〉; (ii) the regular-chaotic |θr, φr〉⊗ |θc, φc〉; and (iii) the chaotic-chaotic |θc, φc〉⊗ |θc, φc〉,
where (θr, φr) = (2.25, 0.63) and (θc, φc) = (0.89, 0.63). From our simulations, we observe that the
entanglement increases at a linear rate, but the entanglement rate of the |θc, φc〉 ⊗ |θc, φc〉 initial state
is much greater than the other two cases when at least one of the tops is regular (see Figure 5).
This result shows that starting with initial quantum states, which correspond to chaotic states of
the kicked tops in the classical regime, has the propensity of enhancing the entanglement dynamics
in the quantum regime.

Figure 5. A plot of the entanglement dynamics of the kicked tops evolution without spin squeezing.
The entanglement rate for the kicked tops with a regular-regular initial state is extremely low over the
100 time steps. The case where at least one of the tops is chaotic has a slight increase in entanglement
rate, while the entanglement rate is highest for the chaotic-chaotic initial state.

Our results agree with that by Miller and Sarkar [12]. In their paper, they have shown a linear rate
of increase of entanglement. By computing beyond n = 100, we have further observed a saturation
of the von Neumann entropy. The asymptotic von Neumann entropy is expected to fall below the
statistical bound of ln

(
e−1/2N

)
, where N is the dimension of the Hilbert space [37]. As the spin

Hilbert space is of dimension 161 for j = 80, this gives a maximum theoretical value of 4.58 for the
entanglement of the system, which is close to our observed value of four (see Figure 6).
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Figure 6. A plot of the entanglement dynamics of the kicked tops for a total of 3× 103 time steps.
The entanglement rates are linear initially, but approach saturation subsequently. Our simulation
results show that only the kicked tops starting with the chaotic-chaotic initial state are near to the
maximum statistical bound of 4.58 for the entanglement entropy.

A qualitative explanation of the connection between entanglement enhancement and the
dynamical behavior of the corresponding initial classical states can be understood as follows.
While the kicked tops are initialized in a quantum state, our consideration of high j puts the system in
a semi-classical regime, such that a classical analogue of the initial state becomes relevant. From this
viewpoint of the classical analogue, we can perceive the states to be initialized within δθ and δφ of
(θ0, φ0). For a top with regular dynamics, the trajectories are periodic or quasi-periodic. This implies
that the two tops are evolving with rather similar dynamics without being easily distinguishable, and
according to the notion of quantum relative entropy, the distinguishability of the dynamics is related
to the entanglement between the two tops. A less distinguishable dynamics implies a lower level of
entanglement entropy, which happens in the regular case. On the other hand, when the motion of
the two tops are chaotic, any small variations in the kicked tops would result in a large difference in
their trajectories over time. Thus, the dynamics of the two tops become more and more differentiated
with time, and based on quantum relative entropy, a faster rate of initial increase with a higher level
of entanglement entropy eventually attained at the long time limit is to be expected.

5.2. Initial Spin Squeezing and Periodic Spin Squeezing

Let us now squeeze the directed angular momentum coherent state either initially or periodically
to observe its effect on the resulting entanglement dynamics of the two-coupled kicked tops.
For this, we shall only concern ourselves with the case where the squeezing operator acts on either
the regular-regular or the chaotic-chaotic initial states, as the entanglement dynamics from the
regular-chaotic state is expected to be intermediate between these two extremes.

By first squeezing the initial state according to Equation (30) for the regular-regular state, we
observe a substantial enhancement of the entanglement dynamics of the kicked tops against that
when there is no initial spin squeezing (see Figure 7). In fact, the linear increase of the entanglement
entropy here seems to correspond to that of the chaotic-chaotic initial state without spin squeezing.
On the other hand, no drastic changes happen for the entanglement dynamics after the chaotic-chaotic
initial state is squeezed based on Equation (30), as illustrated in Figure 8. Instead, we observe a
slight decrease in the entanglement entropy in comparison to the case when no initial spin squeezing
is performed on the chaotic-chaotic state. Moreover, the result here actually corresponds to the
initial spin squeezed regular-regular case. We have performed further simulation runs for the spin
squeezed chaotic-chaotic initial state for a total of 3 × 103 time steps to study the eventual trend
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of the entanglement dynamics (see Figure 9). The results clearly show a reduced entanglement
entropy compared to that when the chaotic-chaotic initial state is not spin squeezed. A qualitative
explanation of these observations is as follows. Through spin squeezing, we have stretched and
elongated the initial state, as illustrated in Figure 2. Since we are in the semi-classical regime, there is
good quantum-classical correspondence between the quantum and classical states. From this context,
a stretching of the quantum states corresponds to a stretching of the classical states. This argument
implies that a stretched classical regular initial state would sample the chaotic part of the classical
phase space in addition to the regular part, and by linking back to the quantum phase space through
the correspondence principle, we can now envisage an enhancement in entanglement entropy as
observed in our computation, since there are now chaotic elements in the initial state. Conversely, we
understand why there is a drop in entanglement entropy for the initial spin squeezed chaotic state
because of the additional sampling of regular initial states due to the stretching.

A study carried out by Song et al. [38] has shown that the squeezing effects of spin squeezed
states decay over time. Furthermore, they have found that the spin squeezing effects decay faster
when the dynamics of the quantum kicked top correspond to the classical chaotic regime versus
the regular regime. This observation has led us to the idea of squeezing the time-evolved quantum
state periodically according to Equation (31). Interestingly, we notice that with periodic squeezing,
the entanglement rate is lower than when the quantum kicked-top has its initial state squeezed or
non-squeezed. However, squeezing periodically gives rise to an eventual asymptotic entanglement
entropy that is higher than the other two cases (see Figure 10). This can be understood qualitatively
as before based on quantum-classical correspondence. Periodic squeezing causes the state to elongate
and overlap a larger range of stable islands during the initial phase, whose consequence is a
lower rate of entanglement of the quantum kicked top relative to the two cases. Subsequently,
the continuous stretching of the quantum state due to periodic squeezing samples the chaotic sea
increasingly, which explains the observation of higher entanglement entropy asymptotically. In fact,
the above results are consistent and continue to apply when the initial states indicated in Figure 4
are employed. As illustrated in Figure 10, periodic squeezing is again observed to drive the state
towards a maximum asymptotic entanglement entropy better than the case with initial squeezing or
no squeezing.

Figure 7. A comparison between the entanglement dynamics of quantum kicked tops for the case
of the non-squeezed and spin-squeezed initial regular-regular state with µ = 0.2. The effect of spin
squeezing on the state leads to a substantial increase in entanglement that is comparable to the chaotic
quantum kicked top without spin squeezing.
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Figure 8. A comparison between the entanglement dynamics of quantum kicked tops for the case of
the non-squeezed and spin-squeezed initial chaotic-chaotic state with µ = 0.2. While the kicked tops
with initial spin squeezing is observed to entangle at a faster rate in the beginning, its entanglement
eventually drops below the case without spin squeezing.

Figure 9. The entanglement dynamics of Figure 8 is extended to a total of 3 × 103 time steps.
The asymptotic entanglement entropy of the kicked tops is observed to be lower for the initial
spin-squeezed case compared to the case of no squeezing. The squeezing parameter is taken to be
µ = 0.2, and the initial states φ = 0.63 and θ = 0.89.
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(b)

(c)

Figure 10. Cont.
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(d)

(e)

(f)

Figure 10. A comparison of the entanglement dynamics for the six different initial conditions
indicated in the phase space map of Figure 4. The squeezing parameter is set to be µ = 0.2.
The dynamical behavior for the entanglement dynamics with no squeezing, with periodic spin
squeezing and with initial spin squeezing is consistent with respect to the various regions of the
phase space map. In particular, periodic squeezing is again shown to be most effective in generating
entanglement for the various initial conditions. Note that the blue line represents no squeezing, the
red line initial squeezing and the green line periodic squeezing. (a) φ = 0.63, θ = 2.25; (b) φ = 0.63,
θ = 2.10; (c) φ = 0.63, θ = 0.89; (d) φ = −1.50, θ = 1.90; (e) φ = 0.63, θ = 2.00; (f) φ = 0.63, θ = 1.60.
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The above argument can be further supported by the consideration of quantum kicked-tops that
operate in a full chaotic phase space. According to our previous qualitative analysis, we would expect
the three cases of no squeezing, initial squeezing and periodic squeezing to give the same initial rate of
entanglement increase, as well as asymptotic entanglement entropy, since no stable islands are present
to dampen the entanglement within a full chaotic phase space. This expectation is indeed panned out
in our simulations for the three cases where we not only observe the entanglement dynamics of the
kicked tops to evolve at the same rate and with the same asymptotic entanglement entropy, they
have also converged towards the maximum entanglement entropy of 4.58 for the system, as shown
in Figure 11.

We next investigate the effect of j on the quantum-classical correspondence for the kicked-top
systems (see Figure 12). We observe that at the deep quantum regime where j = 5, the entanglement
dynamics is highly fluctuating with both initial and periodic squeezing, consistently giving higher
entanglement entropy relative to that of no squeezing. As the system approaches the semi-classical
regime at j = 40, the entanglement dynamics due to no squeezing becomes comparable to initial
squeezing, while periodic squeezing is found to surpass these two cases. At the semi-classical regime
of j = 80 or j = 100, we observe consistent results as those of j = 80 discussed earlier. Note that we
did not increase j beyond 100 due to computational memory limitations.

Figure 11. A comparison of the entanglement dynamics for the three cases of no squeezing, periodic
spin squeezing and initial spin squeezing, when the kicked tops are in the full chaotic regime at
k = 7.2. The entanglement rate and asymptotic entanglement entropy for the three cases are found
to match closely with each other and converge to the statistical bound of 4.58 in the asymptotic limit.
The points are plotted sporadically in order to better show the two curves. The squeezing parameter
is set to be µ = 0.2, and the initial state chosen is φ = 0.63 and θ = 0.89.
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(a)
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(c)

Figure 12. Cont.
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(d)

Figure 12. A comparison of the entanglement dynamics for systems of different j. The squeezing
parameter is µ = 0.2 and t he initial state chosen here is φ = 0.63 and θ = 0.89. Note that the blue line
represents no squeezing, the red line initial squeezing and the green line periodic squeezing. (a) j = 5;
(b) j = 40; (c) j = 80; (d) j = 100.

Finally, we employ the method of quantum power density spectrum [15,39,40] to further analyze
the effects of squeezing on the entanglement dynamics of the kicked tops. Note that the quantum
power density spectrum is computed by first determining the inner product of the quantum state
|ψ(t)〉 at time t with the quantum state |ψ(0)〉 at the initial time t = 0; after which, Fourier transform
is performed on the results to obtain the quantum power density spectrum ρnn against the energy
components En.

For the case of no squeezing, we observe that ρnn has few components for the regular state,
but a large number of components for the chaotic state (see Figure 13a,b). This is to be expected,
since the number of significant components of ρnn is directly related to the degree of entanglement
of the system. By squeezing the initial regular state, the number of significant components of ρnn

increases (compare Figure 13a,c), while squeezing the chaotic initial state reduces the ρnn components
(compare Figure 13b,d). This supports our earlier claim that initial squeezing of the regular state
enhances entanglement, while the same operation on the chaotic state suppresses entanglement.
As for periodic squeezing, the much larger number of components of ρnn for both the regular and
chaotic state (see Figure 13e,f) predicts a larger entanglement entropy, which is indeed observed in
our earlier simulation results.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. The quantum power density spectrum of the regular initial state (θ = 2.25, φ = 0.63)
and the chaotic initial state (θ = 0.89, φ = 0.63) with no squeezing, with initial squeezing and
with periodic squeezing. (a) Regular state with no squeezing; (b) chaotic state with no squeezing;
(c) regular state with initial squeezing; (d) chaotic state with initial squeezing; (e) regular state with
periodic squeezing; (f) chaotic state with periodic squeezing. The act of squeezing is observed to
cause the quantum power density spectrum of the regular state in (c,e) to approach the spectrum
for a chaotic state. In (d), initial squeezing of a chaotic state leads to a spectrum that corresponds
to that which arises from a more regular state, a result that is also observed with respect to the
entanglement dynamics.
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6. Conclusions

In summary, we have investigated the effects of spin squeezing on two-coupled quantum kicked
top systems. Our studies have allowed us to probe into the interesting interface in physics between
the classical and quantum domain with respect to chaos and entanglement, respectively. While chaos
is purely a classical dynamical behavior and entanglement a solely quantum mechanical effect, our
investigations have demonstrated that these two physical entities are intimately connected in the
semi-classical regime. In particular, we have shown that the effects of spin squeezing have an
important impact on the entanglement between the two quantum kicked tops operating within a
classical mixed phase space based on the notion of quantum-classical correspondence. We found that
the rate of entanglement is enhanced through initial spin squeezing if the classical analogue of the
kicked tops’ initial quantum state resides in the regular domain and a slight drop if it resides in the
chaotic domain. In addition, our idea of periodic spin squeezing is found to drive the system to attain
maximum saturating entanglement entropy quicker than the case of no spin squeezing and initial
spin squeezing. Further analysis based on the quantum power density spectrum also yields the same
behavior as that of entanglement dynamics, where we observe periodic squeezing to contribute to the
largest increase in spectral components, while initial squeezing enhances or suppresses the number of
spectral components depending on whether the initial state is regular or chaotic. Our approach thus
provides a means to enhance the entanglement of a quantumN qubits system through exploiting the
underlying dynamical behavior of an equivalent set of kicked tops in the classical domain.

There are two aspects of this work that we will leave for future studies. The first relates to the
observation of oscillatory behavior in the entanglement dynamics for the cases of initial squeezing
(refer to Figure 10a–f) and no squeezing, where the latter is only applicable for initial states lying
at the edge between the regular and chaotic region of phase space (see Figure 10b–e). We surmise
that this phenomenon arises from the intermittent sampling of the quantum states on the regular and
chaotic region of the corresponding classical phase space. The affirmation of this explanation would
require further analytical and numerical work. The second aspect concerns possible experimental
realization on the theoretical ideas explored in this paper. It is interesting that a quantum kicked
top has been experimentally achieved by Chaudhury et al. [3] by trapping and laser cooling an
ensemble of 133Cs atoms. The atom can be prepared in the spin-coherent state by means of magnetic
field pulses, while the twisting is induced through the AC Stark shift in a laser tuned field. Spin
squeezing could be achieved by probing the light that interacts with the atoms in the optical cavity.
The major challenge would be to isolate two cesium atoms and to induce them to interact with each
other (perhaps within a trapping potential), such that we can elucidate their entanglement dynamics
and perform quantum-classical correspondence with spin squeezing. Such an experimental design is
beyond the scope of this paper and will be pursued in our future studies.
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