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Abstract:

 This present study describes the entropy generation on magnetohydrodynamic (MHD) blood flow of a nanofluid induced by peristaltic waves. The governing equation of continuity, equation of motion, nano-particle and entropy equations are solved by neglecting the inertial forces and taking long wavelength approximation. The resulting highly non-linear coupled partial differential equation has been solved analytically with the help of perturbation method. Mathematical and graphical results of all the physical parameters for velocity, concentration, temperature, and entropy are also presented. Numerical computation has been used to evaluate the expression for the pressure rise and friction forces. Currently, magnetohydrodynamics is applicable in pumping the fluids for pulsating and non-pulsating continuous flows in different microchannel designs and it also very helpful to control the flow.
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1. Introduction


Nanotechnology is the most important driving force for the major thermal engineering, biology, and industrial applications. In 1995, Choi [1] introduced the term that dilutes suspension of ultrafine particles in common liquids, named as nanofluids. Nanofluids can improve the thermal conductivity of the mixture. Nanofluid dynamics also find diverse applications in medical science and energetic. Basically, it is a fluid which is synthesized by dispersing the nano-particle in the base fluid, such as biofluids, oil, lubricants, and water. More examples include various types of heat exchangers [2,3], microchannel [4,5,6] and car radiators [7,8]. Another important mechanism of fluid transport which can be achieved through the progressive wave of contraction or expansion which spreads along the length of a distensible tube or channel containing different types of fluid is known as peristaltic flow. The movement of chyme in the gastrointestinal routs, swallowing food through the esophagus, and the movement of the ovum in the female fallopian tube are prominent examples of peristaltic flow. Peristaltic flow can also be found in industrial applications, such as in pumping for the transport of corrosive and sterile fluids. Due to these important applications, peristaltic flow has been the subject of intensive studies in both theoretical and experimental domains alike [9,10,11,12,13].



The main objectives of peristaltic motion are to investigate the secondary fluid motion as a possible fluid mixing mechanism and fluid motion within the pump. Moreover, peristaltic motion in physiological sciences has opened a new dimension for researchers to manipulate their equipment for attaining better output in their respective field of interest. One of the most important fields in these areas is peristaltic blood flow. In fact, the basic idea of peristalsis in blood circulation was given by Nicoll [14] by explaining that the minute vessels of most vascular systems retain the power of contraction and expansion. Although, at that time he could not assign the word peristalsis, but this approach inspired the researchers to investigate experimentally, as well as theoretically. The rate at which kidney cells execute the regulation of the volume of water or salts in the body is affected by using drugs; similarly, the rate at which blood flows through arteries may also be affected or slowed down by the drugs. It is important to note that there is a significant difference between restoration and reparation. By using drugs, the damaged structures or function of a human body can be repaired only but restoration is not possible. Many researchers have studied various aspects of blood flow in normal diseases arteries and blood flow in arteries having a single stenosis. Blair [15] used the available experimental results on human blood and verified by plotting the square root of the strain-rate against the square root of the shear stress that the linearity with a non-zero value for the intercept on the stress axis. Blood flow through an arterial segment having multiple stenosis was investigated by Misra et al. [16]. He derived volumetric flow rate and pressure distribution and concluded that the wall shear stress and pressure drops are at a maximum at the throat of each stenosis and a minimum at the ends of each stenosis. Another important development in the history of bio-fluids is the investigation of nanoparticle separation technology which can be used to isolate a wide range of nanoparticles out of plasma with a minimum amount of manipulation [17]. This latest discovery enables researchers to study the mathematical modeling of drug delivery nanoparticle systems in blood flow. Table 1 shows the composition of blood and main features in a healthy human body. Some more investigations dealing with blood flow modeling can be viewed in the available references [18,19,20,21].


Table 1. Composition of blood and main features in a healthy adult male [22].


	Plasma/Living Cells
	Range





	Erythrocytes
	4.5–5.2 × 106/mm3



	Protids
	70–80 g/L



	Leukocytes
	4–10 × 103/mm3



	Ions
	295–310 mEq/L



	Eosinophils
	1%–2%



	Lipids
	5–7 g/L



	Lymphocytes
	20%–40%



	Glucids
	0.8–1.1 g/L



	Neutrophils
	40%–70%



	Osmotic pressure
	280–300 mOsm



	Basophils
	0.5%–1%



	pH
	7.39–7.41



	Monocytes
	2%–10%



	Hematocrit
	41%–47%



	Platelets
	2–4 × 105/mm3









The presence of a magnetic field in the study of peristaltic flow is of great interest with regards to certain problems of physiological fluids such as blood, blood pump machines. Abbas et al. [22] solved a fundamental problem of magnetohydrodynamic (MHD) peristaltic blood flow of nanofluids in a non-uniform channel. This was the motivation towards estimating blood flow in arteries during electromagnetic hyperthermia. Computational study on LDL transfer from blood flow to the wall tissues of arteries has been studied by Wade and Karino [23]. Agrawal and Anwaruddin [24] studied a mathematical model of MHD peristaltic blood flow through a channel with flexible walls. They observed that the effect of a magnetic field can be utilized as a blood pump in carrying out cardiac operations. Sud et al. [25] explored the effect of a moving magnetic field on blood flow. Further, Abbasi et al. [26] developed a mathematical model of peristaltic transport of MHD fluid by considering variable viscosity. Some relevant studies to magnetic field models can be found from the list of references [27,28,29,30].



During the past few years, the analysis of various physiological systems has been reported by various scientist. However, physiological systems are quite difficult and complicated even though they depict a certain amount of linearity. They also show unpredictable and chaotic behavior. Furthermore, in such types of systems, the analysis of heat and mass transfer involves great interest which arises due to its complex combination of stochastic and deterministic physiological processes. Another such type of system in human blood is oscillation. While a human body performs its normal daily routine, ambulatory blood pressure is a clinical procedure to analyze the blood pressure for every 20 to 30 min during 24 to 48 h. Blood flow enhances when a person performs different physical activities and in such types of situations, blood circulation remains unstable. When the environmental temperature rises up to 20 °C, then heat transfer takes place from the skin through the process of evaporation, and when the temperature falls below 20 °C then human body loses heat through conduction and radiation processes. In such types of cases, entropy plays an important role to scrutinize such systems. Entropy generation comprises of two main parts; (i) frictional factors, and (ii) thermal irreversibility. Bejan [31,32] originally formulated the analysis of entropy generation and found various applications, such as two-phase flows [33], MHD pumps, and electric generators [34]. More studies on entropy generation are available in references [35,36]. However, in none of the studies mentioned above are the peristaltic flow problems with entropy generation. There are very few attempts in which the entropy generation of the peristaltic flow of nanofluids is taken into account in the presence of a magnetic field. In fact, the presence of magnetic fields introduces additional dissipation that must be considered to supply the necessary input power to perform the required task. This can be acquired by minimizing entropy generation in the processes. It is necessary to minimize the entropy generation in energy optimization problems. Moreover, to assess the intrinsic irreversibilities in microfluidics and to investigate optimized operation conditions, entropy generation appears as a convenient tool.



With the above analysis in mind, the aim of the present investigation is to study the MHD peristaltic blood flow of nanofluid with entropy generation through a porous medium. The governing flow problem is modeled by taking the approximation of the long wavelength and creeping flow regime. The solution for the resulting non-linear partial differential equations is solved with the help of the homotopy perturbation method (HPM). The impact of various pertinent parameters for pressure rise, friction force, temperature profile, concentration profile, and entropy are plotted and discussed in detail.




2. Mathematical Formulation


Let us suppose the unsteady irrotational, hydromagnetic flow of a non-Newtonian Williamson fluid, being incompressible and electrically-conducting by an external magnetic field, applied through a two-dimensional non-uniform porous channel having a sinusoidal wave moving down towards its walls. We have selected a Cartesian coordinate system for the channel in such a way that [image: there is no content] is taken along the axial direction and [image: there is no content] is taken along the transverse direction as shown in Figure 1. The geometry of the governing flow problem can be described as:


[image: there is no content]



(1)




where:


[image: there is no content]










Figure 1. Geometry of the problem.
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The governing equation of motion, continuity, thermal energy, and the nano-particle fraction for the peristaltic nanofluid of blood can be written as [22]:


[image: there is no content]



(2)






[image: there is no content]



(3)






[image: there is no content]



(4)






[image: there is no content]



(5)






[image: there is no content]



(6)







Under the approximation of Rosseland for radiation, the radiative heat flux [image: there is no content]is defined as:


[image: there is no content]



(7)







Let us consider that temperature within the nano-particle blood flow is very small, such that the term [image: there is no content] can be expanded about a free stream temperature [image: there is no content] as:


[image: there is no content]



(8)







After neglecting the higher order terms in the above equation it can be written as:


[image: there is no content]



(9)







Using Equations (7)–(9) we get:


[image: there is no content]



(10)







The extra stress tensor for Williamson fluid are defined as:


[image: there is no content]



(11)




where:


[image: there is no content]











In the above equation we have considered [image: there is no content] and [image: there is no content]. Now, it is convenient to define the non-dimensional quantities:


 [image: Entropy 18 00117 i001]



(12)







Let us consider the creeping flow under the assumptions of the long wavelength and low Reynolds number approximations. Using Equation (12) in Equations (2)–(6) we get the resulting equations in simplified form as:


[image: there is no content]



(13)






[image: there is no content]



(14)






[image: there is no content]



(15)







Subject to the respective boundary conditions:


[image: there is no content]



(16)






[image: there is no content]



(17)




where [image: there is no content]




3. Entropy Generation Analysis


Entropy generation is derived from the energy and entropy balance for the case of heat and mass transfer. In the presence of a magnetic field it can be written as [36,37,38]:


 [image: Entropy 18 00117 i002]



(18)







A characteristic entropy generation is given by as:


Sg=Kf(T1−T0)2T02b˜02.



(19)







Using Equations (12) and (18), the dimensionless entropy generation number can be expressed as follows:


 [image: Entropy 18 00117 i003]



(20)




where [image: there is no content] are the Brinkman number, dimensionless temperature difference, concentration difference, constant parameter, and diffusive coefficient, which are represented as:


 [image: Entropy 18 00117 i004]



(21)







For a nanofluid, the viscosity model can be defined as [37]:


[image: there is no content]



(22)




where [image: there is no content]the viscosity of base fluid, and [image: there is no content] is the solid volume fraction which is valid for[image: there is no content]. When the thermal conductivity of the particle is over 100 times larger than that of base fluid then the thermal conductivity in the sense of macroscopic effective medium theory known as the Maxwell model given as [37]:


 [image: Entropy 18 00117 i005]



(23)




here, [image: there is no content], [image: there is no content] are the thermal conductivities of the nano-particle and nanofluid; [image: there is no content]and [image: there is no content] are the electrical conductivity of the nano-particle and base fluid, respectively.




4. Solution of the Problem


The solution of the above non-linear coupled partial differential equation can be solved with the help of the homotopy perturbation method (HPM). The homotopy for Equations (13)–(15) can be written as:


[image: there is no content]



(24)






[image: there is no content]



(25)






[image: there is no content]



(26)







The linear operators [image: there is no content] are taken in the following form:


[image: there is no content]



(27)






[image: there is no content]



(28)




and the initial guess for the above linear operators are defined as:


[image: there is no content]



(29)






[image: there is no content]



(30)







Defining the following expansion:


[image: there is no content]



(31)






[image: there is no content]



(32)






[image: there is no content]



(33)







Using Equations (31)–(33) in Equations (24)–(26), and comparing the powers of [image: there is no content], we get a system of linear differential equations with their relevant boundary conditions. According to scheme of HPM, we obtained the solution as [image: there is no content], we get:


[image: there is no content]



(34)






[image: there is no content]



(35)






[image: there is no content]



(36)







The solution of the velocity profile, temperature profile, and nano-particle concentration are written in simplified form as:


 [image: Entropy 18 00117 i006]



(37)
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(38)
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(39)




where [image: there is no content]



The instantaneous volume rate is defined as:


[image: there is no content]



(40)







The non-dimensional form of the pressure rise [image: there is no content] and friction force [image: there is no content] along the wall with a length of the non-uniform channel[image: there is no content]is given by:


[image: there is no content]



(41)






[image: there is no content]



(42)








5. Numerical Results and Discussion


In this section influence of different parameters of interest are investigated graphically. To discuss the above results more vigorously, we assume that for instantaneous volume flow rate [image: there is no content] is periodic in [image: there is no content]and is defined by:


[image: there is no content]








where [image: there is no content] describes the average time flow over one period of the wave. With the help of this form [image: there is no content], we will numerically compute the pressure rise [image: there is no content] and friction force [image: there is no content]over the length [image: there is no content] of the non-uniform channel. A graphical demonstration for temperature profile, concentration distribution, pressure rise, friction force, and entropy generation are plotted for all of the physical parameters, such as Brownian motion ([image: there is no content], Prandtl number [image: there is no content], thermophoresis parameter [image: there is no content], chemical reaction parameter ([image: there is no content], heat source/sink parameter [image: there is no content], Hartmann number [image: there is no content]porosity parameter [image: there is no content]Brinkman number [image: there is no content], dimensionless temperature difference [image: there is no content], concentration difference [image: there is no content], constant parameter [image: there is no content], and diffusive coefficient [image: there is no content]



From Figure 2 it can be observed that temperature profile is increasing throughout the domain with the increase in the parameters [image: there is no content] and [image: there is no content]. According to Equations (14) and (15), the thermophoresis parameter is directly proportional to the temperature profile; thus, with the increase in [image: there is no content]temperature profile increases. Figure 3 shows that the temperature profile also increases when [image: there is no content] and [image: there is no content] increase. Brownian motion creates micro-mixing which raises the thermal conductivity while an increase in the [image: there is no content] thinner thermal boundary layer forms. It can be observed from Figure 4a that, when the chemical parameter increases, the concentration profile shows opposite behavior near the walls of the channel. The concentration profile describes the same behavior for [image: there is no content] and [image: there is no content] in Figure 4b and Figure 5a. Entropy generation is plotted in Figure 5b, Figure 6 and Figure 7 for different values of [image: there is no content]. It has been investigated that the behavior of entropy generation is increasing with the increment in [image: there is no content] and remains uniform throughout the domain. In Figure 7b we can observe that the behavior is opposite when the parameter [image: there is no content] increases. The reason behind these behaviors of entropy generation is that the Brinkman parameter is directly proportional to the square of the velocity profile of the flow; hence, entropy generation increases with the increase in [image: there is no content] while [image: there is no content] is inversely proportional to the velocity distribution which causes a decrease in entropy generation for larger values of [image: there is no content]. Additionally, it is important to note that [image: there is no content] is the ratio of the dimensionless concentration difference to the dimensionless temperature difference. The parameters [image: there is no content] and [image: there is no content] indicate the contribution of mass transfer to the entropy generation. Figure 8, Figure 9 and Figure 10a are displayed to analyze the pressure rise corresponding to the variation of the numerical values of the different parameters [image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content] and[image: there is no content]. In Figure 8a, it is noticed that the pressure rise is decreasing with the increase in [image: there is no content] while, in Figure 8b, it is concluded that its behavior is opposite for [image: there is no content]. It can be analyzed from Figure 9a that the pressure rise increases when the porosity parameter [image: there is no content] increases. It can also be seen from Figure 9b that when the Hartmann number [image: there is no content] increases, then the pressure rise decreases. This phenomena describes the fact that a suitable magnetic field can be applied to control the pressure and the pressure decreasing means that the flow can pass easily without imposing higher pressure. It is concluded from Figure 9a that the pressure rise increases with the increase in the Weissenberg number [image: there is no content]. The graphical results for friction forces are plotted in Figure 10b, Figure 11 and Figure 12. It can be observed from all of these figures that the friction forces show completely opposite behavior for all the physical parameters as compared to the pressure rise.


Figure 2. Temperature distribution for various values of [image: there is no content] and [image: there is no content] when [image: there is no content]



[image: Entropy 18 00117 g002 1024]





Figure 3. Temperature distribution for various values of [image: there is no content] and [image: there is no content] when [image: there is no content]



[image: Entropy 18 00117 g003 1024]





Figure 4. Concentration distribution for various values of [image: there is no content] and [image: there is no content] when [image: there is no content]



[image: Entropy 18 00117 g004 1024]





Figure 5. (a) Concentration distribution for various values of[image: there is no content]; and (b) entropy generation for various values of [image: there is no content] when [image: there is no content]



[image: Entropy 18 00117 g005 1024]





Figure 6. Entropy generation for various values of [image: there is no content] and [image: there is no content] when [image: there is no content]



[image: Entropy 18 00117 g006 1024]





Figure 7. Entropy generation for various values of [image: there is no content] and [image: there is no content] when [image: there is no content]



[image: Entropy 18 00117 g007 1024]





Figure 8. Pressure rise for various values of [image: there is no content] and [image: there is no content] when [image: there is no content]



[image: Entropy 18 00117 g008 1024]





Figure 9. Pressure rise for various values of [image: there is no content] and [image: there is no content] when [image: there is no content]



[image: Entropy 18 00117 g009 1024]





Figure 10. (a) Pressure rise for various values of [image: there is no content]and (b) friction forces for various values of [image: there is no content] when [image: there is no content]
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Figure 11. Friction forces for various values of [image: there is no content] and [image: there is no content] when [image: there is no content]
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Figure 12. Friction forces for various values of [image: there is no content] and [image: there is no content] when [image: there is no content]



[image: Entropy 18 00117 g012 1024]






Moreover, In Equation (13), by taking [image: there is no content]the present results can be reduced to the results obtained by Shapiro et al. [39] and Srivastava and Srivastava [40] for a Newtonian fluid case (Power Law index [image: there is no content]). Moreover, Equation (13) can also reduce to the same results obtained by Gupta and Seshadri [41] by taking [image: there is no content] The present analysis can also be reduced to the similar results obtained by Mekheimer [42] for a Newtonian fluid (couple stres parameter [image: there is no content]) by taking [image: there is no content] The graphical results are shown in Figure 13.


Figure 13. (a) Comparison of pressure rise; (b) Comparison of velocity profile.
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6. Conclusions


In this article, entropy generation on MHD blood flow of a nanofluid induced by a sinusoidal wave has been investigated. The governing equation for the blood flow problem is modeled with the help of continuity, momentum, and nano-particle equations. The resulting nonlinear coupled partial differential equation has been solved with the help of the homotopy perturbation method (HPM). The expressions for pressure rise and friction forces are calculated numerically with the help of computational software Mathematica (10.3v). The major outcomes for the present analysis are:

	
The temperature profile increases with the increase in [image: there is no content] and [image: there is no content], while friction force reduces with the increment of these parameters.



	
The concentration distribution for chemical reactions parameter is opposite near the walls.



	
The temperature profile and velocity profile play vital roles to measure entropy generation by increases in [image: there is no content].



	
The pressure rise increases with the increase in density Grashof number and thermal Grashof number, but its behavior is opposite for friction forces, which indicates the fact that with the increase in these parameters, pressure rise can be controlled and can also enhance peristaltic pumping performance.



	
The pressure rise also increases for nanofluid thermal conductivity, Weissenberg number, and Hartmann number, but friction force behavior for these parameters are totally different. It provides a great importance at the time of surgery and critical operations to control excessive bleeding.



	
The present analysis can also be reduced to a Newtonian nanofluid by taking [image: there is no content] as a special case for our study.
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Nomenclature




	[image: there is no content]
	velocity components [image: there is no content]



	[image: there is no content]
	Cartesian coordinate [image: there is no content]



	[image: there is no content]
	pressure in fixed frame [image: there is no content]



	[image: there is no content]
	wave amplitude [image: there is no content]



	[image: there is no content]
	width of the channel [image: there is no content]



	[image: there is no content]
	wave velocity [image: there is no content]



	[image: there is no content]
	Prandtl number



	[image: there is no content]
	Reynolds number



	[image: there is no content]
	time [image: there is no content]



	[image: there is no content]
	basic density Grashof number



	[image: there is no content]
	thermal Grashof number



	[image: there is no content]
	Brownian motion parameter



	[image: there is no content]
	thermophoresis parameter



	[image: there is no content]
	constant



	[image: there is no content]
	Rivilin Erickson tensor



	[image: there is no content]
	magnetic field [image: there is no content]



	[image: there is no content]
	Weissenberg number



	[image: there is no content]
	radiation parameter



	[image: there is no content]
	volume flow rate [image: there is no content]



	[image: there is no content]
	temperature [image: there is no content] and concentration



	[image: there is no content]
	Temperature at centre and at the wall



	[image: there is no content]
	Nanoparticle fraction at centre and at the wall



	[image: there is no content]
	Brinkman number



	[image: there is no content]
	Perturbation parameter



	[image: there is no content]
	acceleration due to gravity [image: there is no content]



	[image: there is no content]
	Brownian diffusion coefficient [image: there is no content]



	[image: there is no content]
	thermophoretic diffusion coefficient [image: there is no content]



	[image: there is no content]
	mean absorption constant



	[image: there is no content]
	Hartman number



	[image: there is no content]
	stress tensor



	[image: there is no content]
	porosity parameter





Greek Symbols




	[image: there is no content]
	chemical reaction parameter



	[image: there is no content]
	nanofluid thermal conductivity [image: there is no content]



	[image: there is no content]
	heat source/sink parameter



	[image: there is no content]
	viscosity of the fluid [image: there is no content]



	[image: there is no content]
	nano-particle volume fraction



	[image: there is no content]
	electrical conductivity [image: there is no content]



	[image: there is no content]
	dimensionless temperature difference



	[image: there is no content]
	concentration difference



	[image: there is no content]
	constant parameter



	[image: there is no content]
	diffusive coefficient



	[image: there is no content]
	Second invariant tensor



	[image: there is no content]
	wave number [image: there is no content]



	[image: there is no content]
	Stefan Boltzmann constant



	[image: there is no content]
	effective heat capacity of nanoparticle [image: there is no content]



	[image: there is no content]
	nanofluid kinematic viscosity [image: there is no content]



	[image: there is no content]
	nanoparticle mass density [image: there is no content]



	[image: there is no content]
	fluid density [image: there is no content]



	[image: there is no content]
	fluid density at the reference temperature [image: there is no content]



	[image: there is no content]
	volumetric expansion coefficient of the fluid



	[image: there is no content]
	heat capacity of fluid [image: there is no content]



	[image: there is no content]
	wavelength [image: there is no content]



	[image: there is no content]
	Amplitude ratio
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