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Abstract: Quantum theory has been applied in a number of fields outside physics, e.g., cognitive
science and information retrieval (IR). Recently, it has been shown that quantum theory can subsume
various key IR models into a single mathematical formalism of Hilbert vector spaces. While a series
of quantum-inspired IR models has been proposed, limited effort has been devoted to verify the
existence of the quantum-like phenomenon in real users’ information retrieval processes, from a
real user study perspective. In this paper, we aim to explore and model the quantum interference
in users’ relevance judgement about documents, caused by the presentation order of documents.
A user study in the context of IR tasks have been carried out. The existence of the quantum
interference is tested by the violation of the law of total probability and the validity of the order
effect. Our main findings are: (1) there is an apparent judging discrepancy across different users
and document presentation orders, and empirical data have violated the law of total probability;
(2) most search trials recorded in the user study show the existence of the order effect, and the
incompatible decision perspectives in the quantum question (QQ) model are valid in some trials.
We further explain the judgement discrepancy in more depth, in terms of four effects (comparison,
unfamiliarity, attraction and repulsion) and also analyse the dynamics of document relevance
judgement in terms of the evolution of the information need subspace.

Keywords: quantum cognition; relevance judgement discrepancy; quantum interference;
order effect

1. Introduction

Quantum theory has been applied in many fields outside physics, e.g., cognitive science [1–5]
and information retrieval [6]. Quantum cognition has been attracting increasing attention for
explaining some non-classical phenomena [7–12]. The quantum framework built upon the quantum
probability theory uses a new mathematical formulation for constructing models of human
judgement and decision-making [13,14]. The axioms of the classical probability theory, such as the
axiom of Boolean logic and the law of total probability, do not always hold in the framework of
quantum probability. On the other hand, recent work using the Bayesian model comparison method
has revealed that the quantum cognition model with an interference term is more competitive with
its accuracy, parsimony and robustness [15,16].

In information retrieval (IR), van Rijsbergen for the first time proposed that the quantum
theory can be used to axiomatize the geometric, probabilistic and logic-based IR models within a
single mathematical formalism in complex Hilbert vector spaces [6], and various key concepts from
quantum mechanics find their analogy in the IR field. Following van Rijsbergen’s pioneering work,
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a body of quantum or quantum-like frameworks have recently been developed to formalize retrieval
models and have achieved significant improvements [17–20]. Piwowarski et al. [21] attempted to find
an effective quantum representation of documents and queries for measuring the relevance between
them. Zuccon and Azzopardi [17] proposed a quantum probability ranking principle (QPRP), which
incorporates the inter-document dependency as a kind of interference effect. Sordoni et al. [22]
developed a quantum language model (QLM), which achieves an improvement over the traditional
language model. More recently, Li et al. [23] extended QLM and applied it to the session search.
Xie et al. [24] formulated the quantum entanglement in QLM and achieve good retrieval performance.

While many quantum-inspired IR models have been proposed, limited efforts have been devoted
to exploring the quantum-like phenomenon (e.g., quantum interference) in the real users’ IR processes
from a real user study perspective. Motivated by the quantum interference-based user study [8], there
has been some research [25–27] that tries to validate the existence of quantum-like phenomenon and
to explain the IR process from the user cognition point of view. Zhang et al. [25] proposed to use the
probabilistic automata to model the transition of user’s relevance judgement states. Wang et al. [26]
conducted experiments that revealed the relevance judgement discrepancy between participants who
simultaneously make the relevance judgement of documents on two topics. Their results show that
the relevance degree of a topic is greatly affected by the companion topic’s relevance. Despite these
recent advances, we believe that the research in this area needs to be investigated in-depth with a
well-designed methodology and more convincing real user studies.

In this paper, we aim to investigate and understand the phenomenon of quantum-like
interference in document relevance judgement via an extensive user study. In order to explain the
effect of the document presentation order on the interference in the search process, we will focus
on the following research questions: (1) Does there exist any interference in relevance judgement of
documents? If yes, is it a quantum interference? (2) Why is the judgement of relevance dynamic?
What is the cause for such dynamics?

To the best of our knowledge, no previous study has investigated the order effect from a quantum
point of view for the document relevance judgement. The verification of the existence of quantum
interference will be based on the law of total probability and the order effect. We will also adopt
the q-test, which is an effective test method to examine the existence of incompatible decisions in the
quantum question (QQ) model [28] that assumes that only the question order influences the question
context [29]. In our user study, to simulate a real search environment, a web browser-based system
is built to present the textual stimulus and to collect users’ rating data. Participants are randomly
divided into two groups. For a given query term, each group will judge the relevance of the same
documents, but in different presenting order. The experimental results reveal the existence of the
quantum-like interference: (1) most of the search trials show an apparent judging discrepancy and
the violation of the total probability law; (2) most of the queries show order effects in the χ2 test; and
the q-test for some cases in the process of relevance judgement is valid, but other cases that show an
apparent order effect do not follow the q-test due to more complex context than the QQ model.

To interpret the judgement discrepancy and the order effect in-depth, this paper will study
four effects, i.e., the comparison effect, the unfamiliarity effect, the attraction effect and therepulsion
effect. These four effects to some extent are rooted in the indetermination of relevance in the human
mind. Specifically, the comparison effect utilizes the reference points model derived from psychology
to explain an intuitive phenomenon. Unfamiliarity effect reveals that lack of background knowledge
leads to an interference in the process of document relevance judgement. We further analyse the
dynamics of document relevance judgements and propose to study the attraction effect and repulsion
effect, by the evolution of the information need subspace. The information need evolves after a
series of relevance judgement about documents and is not only about the original query, but contains
many complex cognitive reconstruction. Inspired by the subspace projection in quantum theory, the
dynamic information need model can be an approach to capture the complex cognitive interference
process in information retrieval.
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2. Background

2.1. Relevance in Information Retrieval

The definition of relevance is a key concept in the IR field. Document relevance judgement is a
task for the user to judge whether or not a document is relevant to a query or topic. In the earlier
literature, the relevance is mainly concerned about the topical relevance. Recently, this concept has
evolved with the development of IR applications. Schamber et al. [30] re-examined the concept of
relevance with a multidimensional, dynamic and user-centric perspective. We may have not reached
any consensus on the definition of “relevance”, but the properties of relevance, such as dynamics and
multidimensionality, have been accepted by most people. Dynamics means that users’s perception of
relevance can change over time in the process of interaction with the IR system. Multidimensionality
refers to that relevance being perceived by many aspects and perspectives. For example, people
not only expect that the system can return more relevant and large-scale documents, but also need
well-organized results, which contain a variety of fresh and authoritative information.

Basically, there are two classes of relevance: subjective or system-based relevance and subjective
or human (user)-based relevance [31]. The former is a static concept, while the latter is treated as a
subjective individualized mental experience that involves cognitive restructuring [32]. In fact, most
of the current information processing systems do not employ effective user models. The real-time
cognitive process is more complex, and it is irrational to build a static and rigid IR system for users
who have higher and higher expectations.

2.2. Quantum-Inspired IR Research

Van Rijsbergen’s pioneering work [6] introduces the quantum theory (QT) into the IR field
and subsumes the major IR models into a single mathematical formalism in Hilbert vector spaces.
Recently, researchers applied QT in many areas, such as lexical semantic spaces [33], document
re-rank by the quantum probability ranking principle (QPRP) [17], the quantum language model
(QLM) [22], a QLM-based session search model [23], etc.

The different judgements of documents caused by different presenting order were studied from
a classical perspective [34,35]. Eisenberg and Barry [36] find that the judgements are influenced when
documents are presented to judges in a high to low rank or a low to high rank. The approach
of QPRP [17,37] presents a document ranking principle inspired by the quantum interference
phenomenon, which assumes that the optimal selection of a document in each rank position should
consider the influence of previously-selected documents. However, they do not validate the existence
of the interference phenomenon from the users’ perspective and account for the interference. To some
extent, our work can provide additional evidence for the necessity of QPRP from the perspective of
user study.

The interference phenomenon in IR has been studied by dynamic relevance judgement [25]
and topic interference [26]. Zhang et al. [25] proposed to adopt a probabilistic automaton to
model the transition of user judgement states. They use a transition matrix to represent the
judgement interference effect of the previous document on the current one. However, the probabilistic
automaton framework is a generalization of the concept of the Markov model, which is not in
the quantum framework (due to the utilization of unitary transformation [38], the quantum finite
automaton [39] may be more powerful to model such dynamic process, which is valuable for future
study). Wang et al. [26] showed that the relevance of a topic to a document is greatly affected
by the companion topic’s relevance, and the degree of the impact differs with respect to different
companion topics. They think that the judgement of a document may be only interfered with by a
different reference point of another topic’s relevance degrees. The participants should simultaneously
make the relevance judgement of the two topics, and the judgement may be affected by a significant
comparison effect, but without an order effect. Recently, a study on the interference between different
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dimensions of the relevance [31] of a document had been carried out [27]. They put forward an
experimental framework for examining whether dimensions of relevance interact via an order effect
and find that the user may judge different dimensions of relevance based on an incompatible decision
perspective (two decisions are incompatible if they have to be made sequentially, and the order
does matter).

2.3. Classical and Quantum Probability Measurement

In this section, we will point out the limit of the classical probability theory by introducing
some non-classical phenomena, which concern the complex cognition process in humans’ minds.
In addition, the quantum probability measurement will be preliminarily introduced. The advantages
of quantum probability compared to classical probability theory for explaining the interference effect
will also be expounded.

2.3.1. Classical Probability Measurement

Researchers used to apply the classic probability theory derived from Kolmogorov axioms [40] to
decision models. The classical probability theory relies on a set-theoretic representation and assigns
the events as subsets. Therefore, the probability framework in the Kolmogorov theory should obey
some classical axioms, like the distributive axiom and the law of total probability. For example, {A, B}
represents different events, and B is the complementary set of B. We have:

p(A) = p(A ∩ B) ∪ p(A ∩ B) = p(B)p(A|B) + p(B)p(A|B) (1)

The law of total probability is violated in some non-classical phenomena. For example, the
categorization-decision experiments [9] show that the probability of attacking in the decision-alone
condition is higher than both the probabilities of attacking after different categorizations, resulting in
a violation of the law of total probability (LTP). Classical models, like Markov [41] and Markov-like
models [25], have been proposed to explain such dynamic phenomena, but fail to explain the violation
of the law of total probability [15,42].

In the prisoner dilemma game [43], 97% of the players will defect when told the opponent
defected, and 84% of them will defect when informed that he or she cooperated. However, when
they do not know the opponent’s decision, only 63% will defect. We get the probability of defecting
given the condition that participants were told the opponent’ decision as p′(d):

p′(d) ≡ p(od, d) + p(oc, d) = p(od) ∗ p(d|od) + p(oc) ∗ p(d|oc) (2)

where od means the event that the opponent would defect and oc means the event that the opponent
would cooperate.

The probability of defection under unknown conditions when the participants do not know the
participants is denoted as p(d). If the law of total probability is valid, we have:

p(d) = p′(d) (3)

However, according to the empirical data, p(d) is lower than the probability of each
possible case (e.g., p(od, d) or p(oc, d)) [43]. Thus, the defection probability under the
“known condition” is evidently higher than the probability under the “unknown condition”
(i.e., p′(d) > p(d)), which violates the law of total probability. The classical probability theory fails
to explain these non-classical cognition phenomena, like this prisoner dilemma game. In this paper,
we also find some similar non-classical cognition phenomena in users’ relevance judgement process
when searching for information. In order to better understand the cognitive process of user’ relevance
judgement in information retrieval, we introduce the quantum probability theory, which has been
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theoretically proven to be able to consistently explain the non-classical cognition phenomena, e.g.,
the violation of LTP.

2.3.2. Quantum Probability Theory

Quantum probability theory is defined by von Neumann [44] with the projective geometric.
Different from the classical probability, which defines events as subsets in a sample space, quantum
probability theory defines events as subspaces in a vector space. In absence of the measurement and
observation, the initial system (described by a wave function) is in a superposed state, which is based
on the superposition principle. A wave function, which is governed by the linear Schrödinger equation,
is designed to describe the behaviour of a wave in any space or at any time. The behaviour of a wave
function can be reconsidered as a superposition of (possibly infinitely many) other wave functions
of certain type-stationary states whose behaviour is particularly simple (for all linear systems,
the net response at a given place and time caused by two or more stimuli is the sum of the responses,
which would have been caused by each stimulus individually [45]). Instead of the classical
superposition of two realistic physical systems, the quantum superposition principle admits the
possibility of the coexistence of multiple exclusive possible states simultaneously in a single system.

Considering an electron with two possible configurations (up and down), the two mutually
exclusive elementary outcomes are considered as two basis states, which are denoted as |↑〉
and |↓〉, respectively. Before the measurement (observation), the configuration of an electron is
indeterminate. Quantum mechanics describes the physical system of a qubit with a superposed state
between |↑〉 and |↓〉.

|S〉 = α |↑〉+ β |↓〉 (4)

where α and β are complex numbers, and α2 + β2 = 1.
Von Neumann postulates that the measurement will lead to a collapse of the current vector

state [44]. Recently, Conte [46,47] has proven this postulate solely based on the mathematical
framework of traditional Clifford algebra, which results in a self-consistent formulation of
quantum theory. In the projective measurement (projective measurement is one kind of quantum
measurement [48]), after a measurement, the current superposed state will collapse onto a basis vector
with a probability that is determined by the squared length of the projection from the state vector to
the basis. Then, the current state of the system is updated as |↑〉 or |↓〉. Each observation is theorized
as projecting state vector |S〉 onto the subspace, which represents the event |↑〉 or |↓〉. The operator
of the collapse to a basis is called “projector”. Π↑ = |↑〉 〈↑| represents the projector for the basis |↑〉,
and Π↓ = |↓〉 〈↓| represents the projector for the basis |↓〉. The probability of observing event |↑〉 is
calculated as ||Π↑S||2, where both |↑〉 and |S〉 are unit vectors, so the length of the projection also can
be denoted as the inner product between |↑〉 and |S〉: ||Π↑S|| = | 〈S| ↑〉 |.

The probabilities of the events (up or down) are derived from the squared magnitudes of the
amplitudes: α2 for the up configuration and α2 for the down configuration. For the guarantee of
the probability normalization, we have α2 + β2 = 1. For the sake of visualization, in the projective
measurement, as shown in Figure 1a, real numbers (rather than complex numbers) are adopted as the
probability amplitudes. Then, the probability is computed by the squared length of the projection.
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(a) Projection and “collapse” (b) Prisoner dilemma game

Figure 1. Two examples of the judgement and decision by quantum probability theory. (a) An example
of projection: when measuring, the state |S〉 will “collapse” onto the “down” basis |↓〉 with the
probability that is determined by the squared length of the projection; (b) the case of the prisoner
dilemma game: when the player does not know the opponent’s action, he or she may chose to
defectwith a low probability. If he or she is informed about the opponent’s action, he or she will
become more greedy and be more likely to defect.

2.4. Quantum Cognition and Quantum Interference

Beyond microscopic physics, the quantum or quantum-like phenomena in the cognition process
have been evidenced by the pioneering research of Conte and Khrennikov [49–53]. Cognition is “the
mental action or process of acquiring knowledge and understanding through thought, experience,
and the senses” [54]. As Aristotle said, the knowledge one can acquire and the organizing power
one can use constitute the two parts of information [55]. The concept of information is illuminated
by Deutsch [56], who also get the conclusion “the world is made of qubit”. We cannot separate
the information of the outside world from mental entities [57]. As human beings, we have cognitive
structures and functions and are able to not only receive inputs from the outside, but also process such
information by performing semantic acts with our willing awareness [58]. Costa de Beauregard [59]
proposes that such symmetry between the knowing awareness and the willing awareness upon
information is equivalent to the symmetry of the quantum collapse [60,61], which provides the
possibility that the cognitive process obeys the basic rules of quantum mechanics. In the quantum
cognition, the wave function represents the knowledge factor that engages our cognitive function [58],
and projectors represent logic statements and, thus, directly relate information with our perceptive
and cognitive functions. Quantum mechanics relates logic and mental entities, which is also
supported by a number of results [62–64] indicating the possible intrinsic logical origin of quantum
mechanics. Some recent works [65–68] have also elaborated the important role of quantum mechanics
at a perceptive and cognitive level.

Moreover, the quantum waves may be considered as probability waves or information waves
based on the qubit-world statements [56,69]. It may be inherent that the probability concept is both
objective and subjective. Humans’ minds can simultaneously consider multiple potential choices
with each single decision or judgement before the actual response to the outside. There exists
an intrinsic indetermination (e.g., an intrinsic doubt or an inner conflict) that characterizes the
cognitive status of the subject in the decision or judgement [13]. After the response to the outside,
the superposed states in the mind would collapse to a basis state.
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In the bidimensional case of a cognitive decision situation with potential states |+〉 and |−〉,
the potential state of cognition awareness will be given by the superposition:

|S〉 = α |+〉+ β |−〉 (5)

where α and β represent probability amplitudes, so that |α|2 = ‖Π+ |S〉 ‖2 and |β|2 = ‖Π− |S〉 ‖2

are the probability of cognitive awareness |+〉 and |−〉, respectively. For the normalization,
|α|2 + |β|2 = 1.

In the non-classical phenomenon of humans’ subjective attitude, the quantum theory provides
a geometric approach [4,27,29,70,71] to the probability measurement. A person’s belief about the
subjective attitude on the decision or question is presented by a state vector in a multidimensional
Hilbert space, while a potential decision or response is represented by a subspace of the Hilbert space.
Each response can lead to a “projection” of the current belief state on the corresponding subspace.

In the game of the prisoner dilemma, if the player does not know the result of the opponent,
he or she may have expectations that both of them chose to cooperate and get a minimum
punishment. When told the action of the opponent, he or she will become unworried and greedy.
Whatever the opponent will chose, he or she will make a conservative decision to defect.

In this cognitive process, it is inappropriate to only consider the conditional probability in
a static context like Equation (2). The probabilities also depend on the dynamic context, which
may change the state of the mental entity whose basic representative is consciousness. For the
participant, the acquirement of the information (knowledge) about the opponent’s action will lead
to a semantic act, which can largely affect the following decision-making bias in his or her mind.
This influence is modelled as a collapse of the wave function, which represents the knowledge factor
of the participants [58]. The introduction of quantum collapse brings the cognitive process from
a superimposed linear dynamics to a new dynamics in which semantics is involved, thus really
involving the information and directly relating the mental entities [68].

When told the result that the opponent will defect, the current context of the participant’s
decision will be changed. Technically speaking, the belief state (wave function) |S〉 projects onto
the basis “the opponent defects” with a probability ||ΠodS||2, which is the squared length of the
projection from |S〉 to |Sod〉 (see Figure 1b). Then, the player makes his or her own decision under
the belief state |Sod〉, and the probability of defection is ||ΠdSod||2. According to the derivation in
Appendix (inspired by [4]), we get the probability of defection in the two-stage condition (when told
the opponent’s decision) as:

p′(d) =‖ΠdΠodS‖2 + ‖ΠdΠocS‖2

=| 〈Sod|S〉 |2 ∗ | 〈Sd|Sod〉 |2 + | 〈Soc|S〉 |2 ∗ | 〈Sd|Soc〉 |2
(6)

In the unknown condition, we get the probability of defection as:

p(d) =| 〈Sd|S〉 |2 = ‖ΠdS‖2

=(〈Sod|S〉 ∗ 〈Sd|Sod〉+ 〈Soc|S〉 ∗ 〈Sd|Soc〉)2

=| 〈Sod|S〉 |2 ∗ | 〈Sd|Sod〉 |2 + | 〈Soc|S〉 |2 ∗ | 〈Sd|Soc〉 |2

+ 2| 〈Sod|S〉 〈Sd|Sod〉 〈Soc|S〉 〈Sd|Soc〉 |cos(θ)

(7)

Compared to Equation (6), the additional term 2 〈Sod|S〉 〈Sd|Sod〉 〈Soc|S〉 〈Sd|Soc〉 cos(θ) is
called the interference term [4,15,42], which allows the quantum probability theory to explain the
violation of the law of total probability. The presence of the aforementioned interference term has
been verified in many experiments [11,13,49,50,72–74].

For the sake of simplification and intuition, we describe the events and their corresponding
probabilities in the real vector space. As shown in Figure 1b, it provides a coarse way to visually
reflect the interference effect to some extent. There are two pairs of orthogonal bases, one for the
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player’s action (defect or cooperate) and the other for the opponent’s decision that is told (the
opponent cooperated or defected). Both the lengths of the projection (i.e., ΠdΠodS and ΠdΠocS)
on the basis “defect” in the two-stage condition are higher than the projection ΠdS (directly on
the defect basis) under the unknown condition, which is consistent with the empirical data in
the prisoner dilemma game [43]. It also implies that the interference effect works, which means
‖ΠdΠodS‖2 + ‖ΠdΠocS‖2 > ‖ΠdS‖2. In other words, different “paths” lead to different final
probabilities. The sum of both probabilities of the path S 7→ Sod 7→ Sd and the path S 7→ Soc 7→ Sd is
different from the probability of path S 7→ Sd.

The change in cognitive states that results from making one decision or judgement can cause a
person to respond differently to the subsequent one, which leads to an order effect [75,76]. The order
effect can be found in many scenarios. For example, Moore [77] proposes an interesting poll in public
opinions on the characters of Bill Clinton and Al Gore. Participants were asked two question, and
people showed a great difference on the answers while in different orders. The order effect may
be a specialization of the interference phenomenon. In the poll, if the question A is firstly asked,
the answers to the question B will be affected by the previous answers. While in the opposite order,
the action of answering question B will cause interference with the question A.

Trueblood et al. [76] propose an explanation of the order effect inspired by the incompatibility,
which requires simultaneous observation in quantum mechanics [78]. The explanations [76] try to
explore the potential to model the scenarios in which the two related questions are raised in order,
which may not be simultaneously considered.

In the perspective of the incompatibility of cognition [76], the order effect is due to the
incompatibility of two measurements. Let A and B denote the two measurements. Since the operation
of projections cannot commute, we get:

‖ΠAΠBS‖2 6= ‖ΠBΠAS‖2 (8)

In quantum cognition, quantum interference is derived from the complex probability
amplitudes. In the IR task, however, the intuitive meaning of the complex field can hardly be found.
For the sake of computational feasibility, most IR models only adopt the real field of the probability
amplitudes [17,22,79]. Therefore, in our IR approach to quantum interference, we can employ the
subspace projection in the real vector space, which can reflect the interference effect to some extent.

3. Methodology

In this section, we describe the methodology of how to explore the existence of the quantum
interference in the process of document relevance judgement and how to interpret such an
interference based on the subspace projections of the information need. In the users’ perspective,
the concept of “relevance” may have some properties of subjectivity and dynamics. Thus, there may
be many cognitive interferences in the process of relevance judgement. Section 3.1 introduces how we
examine the existence of the quantum interference in a common IR scenario, and then, we develop a
method to describe the evolution of information need in Section 3.2.

3.1. Verification of Quantum Interference

3.1.1. Test of the Law of the Total Probability

The probability derived from Kolmogorov axioms obeys the law of total probability (LTP).
Imagine in this scenario that there are two groups of users to judge two documents dA and dB.
Participants from the first group should judge dA and then dB, while participants from the second
group should judge dB only. We denote rA as the event that a participant judges dA as “relevant”,
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rA as the event that a participant judges dA as “not relevant” and similarly for rB and rB. For the first
group, we have:

p′(rB) ≡ p(rA) ∗ p(rB|rA) + p(rA) ∗ p(rB|rA) (9)

where p(rB|rA) means the probability that a participant who has judged dA as “relevant” will judge
dB as “relevant” and p(rB|rA) means the probability that a participant who has judged the dA as “not
relevant” will judge the dB as “relevant”. For the second group, the process of judgement on dB is
in the non-comparative context (in this paper, the non-comparative context of a document means the
scenario in which users have never judged any documents before judging the current document).
We denote the relevance probability of dB as p(rB). In this paper, we want to test the equation:

p(rB) = p′(rB) (10)

which is derived from the law of total probability. If p(rB) is significantly bigger (smaller) than both
p(rB|rA) and p(rB|rA) simultaneously, there will be no possibility to satisfy the law of total probability.

3.1.2. Test of the Order Effect and Incompatibility

There is a specialized interference phenomenon named the “order effect”, which is introduced
in Section 2.4. Imagine a relevance judgement scenario in which there are two groups of users to
judge two documents dA and dB. Participants from the first group should judge dA and then dB, while
participants from the second group should judge dB and then dA. With a given query, participates
from two groups will judge the relevance of document A and B in different order, one for the AB order
and the other for the BA order. There will be four types of event for the first group, ArBr, ArBn, AnBr
and AnBn, where ArBn is denoted as the event of rating “relevant” firstly and then “not relevant”
in AB order, and so forth. Analogously, there will be four types of event for the second group, BrAr,
BrAn, BnAr and BnAn, while BrAn is denoted as the event of rating “relevant” firstly and then
“not relevant” in BA order, and so forth.

An order effect is determined by comparing the agreement rates in a non-comparative context vs.
a comparative context. In a classical perspective, the proportions of subjects with the judgement ArBr,
ArBn, AnBr and AnBn in Group 1 should be approximately equal to the proportions of subjects with
the judgement BrAr, BnAr, BrAn and BnAn in Group 2. An order effect occurs when the proportion
of subjects with the four classes differs between the AB order and the BA order. A two-tailed χ2 test
of equality of four proportions between populations will be carried out to test the order effect.

For the application of human’s answers to attitude questions, the quantum question order model
(QQ model) [29] has achieved success. Wang et al. [29] propose a q-test, which can determine whether
the order effect can be explained by the QQ model based on an incompatible decision perspective.
Although recent works [68,80] claim that the feasibility of the QQ model on the order effect may be an
open question, some empirical data have revealed that there is a high statistical association between
the result of the q-test and the order effect [28]. In this paper, we want to explore whether the q-test
for the QQ model is valid in the scenarios of document relevance judgement.

The q-test is an a priori, parameter-free and precise test of the quantum question model
for examining whether the two events are incompatible [27,29]. The quantum question equality
(QQ equality) is shown as Equation (11):

p(ArBn) + p(AnBr) = p(BrAn) + p(BnAr) (11)

This prediction of QQ equality can be tested as follows. Let pAB = p(ArBn) + p(AnBr) be the
probability of having different answers to the two questions in the AB order and pBA = p(BrAn) +
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p(BnAr) be the probability of having different answers to the two questions in the BA order.
Then, the QQ model must predict that the following q-test value equals zero:

q = pAB − pBA = 0 (12)

It has been proven that in the QQ model, the probability of having different answers (the answers
of the two questions are contrary; for example, ArBn and AnBr in the AB order) should be equal to
each other even in different orders. In the QQ model, the q-test will hold when there is an order effect.
However, in a context that is more complex than the QQ model context, not all of the phenomena with
the order effect hold in the q-test. The q-test for the QQ model is based on the assumption that “only
the question order influences the question context”.

3.2. Dynamic Information Need Model in Quantum Measurement

Relevance can be defined as “a dynamic concept that depends on users’ judgements of
the quality of the relationship between information and information need at a certain point in
time” [30,31]. Although the dynamic nature of relevance has been widely accepted, relatively few
works try to model and explain the dynamic process of judging ordered documents in a cognitive
interference perspective.

Relevance judgement is the process in which users subjectively evaluate whether the information
of returned documents can satisfy their information need. Intuitively, when someone has judged a
document, it may affect the user’s mind about the original query intention, leading to a change of the
context of the process.

Inspired by quantum measurement, we try to build a quantum formal framework that looks
at the information need and documents in a single vector space. The understanding of the original
information need in a human’s mind is denoted as a belief state in the vector space. Each judgement
is considered as a collapse of the user’s belief state, and the belief state will be updated to one of
the bases as a basis state. The next documents can provide a new group of orthogonal bases for
the next judgement. The belief state of information need, which is derived from the original query
terms, can be denoted as a unit vector |S〉. The event that represents “the document di is relevant” is
denoted as |ri〉.

Imagine that in this scenario, with a given query, each user should judge the relevance of
two documents dA and dB. rA and rA constitute a pair of orthogonal bases, so do rB and rB. Just like
the previous examples (e.g., the prisoner dilemma game and public polls in the paper), a different
order of projection leads to a different final probability. In the case of information need subspace
projection, if someone has updated his or her information need to rA or rA (after he or she judged the
dA as relevant or irrelevant, respectively), the relevance probability of dB is computed as:

p′(rB) =p(rA) ∗ p(rB|rA) + p(rA) ∗ p(rB|rA)

=‖ΠrB ΠrA S‖2 + ‖ΠrB ΠrA S‖2

=| 〈q|rA〉 |2 ∗ | 〈rA|rB〉 |2 + | 〈q|rA〉 |2 ∗ | 〈rA|rB〉 |2
(13)

Similar to Equation (7), when we have not judged document dA, the relevance probability of dB
can be computed as:

p(rB) =‖ΠrB S‖2

=| 〈q|rA〉 |2 ∗ | 〈rA|rB〉 |2 + | 〈q|rA〉 |2 ∗ | 〈rA|rB〉 |2

+ 2| 〈q|rA〉 〈rA|rB〉 〈q|rA〉 〈rA|rB〉 |cos(θ)

(14)

Due to the existence of the interference term, when θ 6= 0, p(rB) 6= p(rA, rB)+ p(rA, rB). From the
projection approach in Equations (13) and (14), we can get the observation, which indicates that



Entropy 2016, 18, 144 11 of 24

‖ΠrB S‖2 6= ‖ΠrB ΠrA S‖2 + ‖ΠrB ΠrA S‖2 when θ 6= 0. When θ = 0, the quantum probability will
“collapse” into the classical probability, and the interference effect does not occur.

4. User Study for Quantum Interference

In order to investigate the quantum interference phenomenon in the process of relevance
judgement, we conduct an online user study to collect the experimental data about users’ relevance
judgement for documents. In this section, we first introduce the details of the experimental setting
and then analyse the experimental results. Based on the experimental results, we finally investigate
the existence of quantum interference.

4.1. Experimental Procedure of the User Study

In our user study, we recruited 61 participants, which include 50 postgraduate students and
11 undergraduate students. Their ages range from 19 to 28 (mean = 23.89, variance = 3.04).
The participants cover a wide range of majors (e.g., engineering, economics, maths, etc.). All of them
have a rich search engine usage experience. They also have a good English reading level. For example,
38 participants have passed the CET-6 and the rest of them have passed the CET-4 (In the College
English Test of China, a non-English-specialized student who holds the certificate of CET-4 and CET-6
can reach the English level for non-English major undergraduates and postgraduates, respectively).

We design a browser-based data-collecting system shown in Figure 2, which can show the textual
content to users and record the explicit relevance feedback information. The presentation styles are
similar to the page of mainstream websites with the title and content in the centre of the browser.
The advertisements and inapposite navigation are dropped. Most of the materials are collected
from Wikipedia, and the rest are from China Daily. The topics of the selected materials can cover
various types of content, ranging from general information, such as public debates, to professional
information for specific fields. The details for the selected materials are shown in Table 1.

Figure 2. The graphical user interface of the experiment task.
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Table 1. The query terms and corresponding documents.

Query Terms Title of dA Title of dB

Probability Statistics Distribution
Parkinsonism Parkinson’s and Alzheimer’s diseases Alzheimer’s disease
Albert Einstein Isaac Newton Theory of relativity
The Spring Festival Jiaozi Grabbing tickets for the Spring Festival
Innovation driven Sharing economy New open economic system
Machine learning Artificial intelligence Pattern recognition
American president Barack Obama Obama’s wife
Semantic Web Theology Ontology
Computer Boolean algebra Turing machine
Religion Politics Culture
Kung Fu Panda The Giant panda Chinese martial arts
Air pollution Haze Spiritual therapy for smog
Transgene Hybrid Garden roses
Chinese literature Classical prose Chinese cuisine
Mo Yan Nobel Prize Red Sorghum (novel)

Each participant will be guided by a test case, which teaches them to rate the relevance degree
of the documents given a corresponding query. In the formal test, there are 15 sessions, each of
which has two documents with respect to a specific query. The participants will be asked to rate the
documents one by one in the given order. They will have a suitable break time for relaxing after
finishing a session. They can also click the “Next” button to move to the next session on their own
initiative. It takes about one hour for a participant to finish all of the 15 sessions (including the
relaxing time between sessions). We paid five dollars to each participant.

All of the participants are randomly divided into two groups for the same query. The two
documents with respect to one query will be presented to the two groups in different order. For each
query, there is a description as a supplementary explanation to ensure that it can be easily understood
by the participants. The simulated search engine result pages (SERPs) are presented, which are only
consisted of two titles of the corresponding documents. Since we aim to investigate the interference
between the main contents of the two documents, we need to avoid introducing more uncertain
factors into the SERPs. To this end, we will not provide too much information in the SERPs by
removing the snippets, URLs and other links that usually appear in the SERPs of typical commercial
search engines. For a better search experience, we limit the document length (number of words in the
document) from 200 to 300 (239 on average).

Documents will be rated with four different relevance degrees: fully irrelevant, a little relevant,
partially relevant and fully relevant, respectively. Before the experiments, participants will be instructed
with some explanations of the basic concepts of the different relevance degrees.

After all 15 trials, we conducted a questionnaire survey to investigate their familiarity degree
on these topics. Participants need to rate 15 query-document pairs. The familiarity degrees range
from one to five, where the rating of one means they know nothing about the topics of the query and
documents, while the rating of five means they are very familiar with those topics.

4.2. Statistics for the Judgement Discrepancy of Relevance Probability

For each trial, there are two documents: dA and dB. Group 1 will meet the order of “dA and then
dB”, while Group 2 meets “dB and then dA”. There is no prior document before dA in Group 1. Thus,
the judgement of dA in Group 1 has never been influenced by any other documents, which means the
judgement of dA is in the non-comparative context in Group 1, so is dB in Group 2.

With the four degrees of relevance, we divide these degrees into two classes: “fully irrelevant”
and “a little relevant” are ascribed to “not relevant”, while “partially relevant” and “fully relevant”
are ascribed to “relevant”. We have collected 61 users’ rating data, 31 for Group A and 30 for Group B.
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The notation ∆1 means the judgement difference of the document dA between the two groups,
while the document presenting order in Group 1 is “dA then dB” (AB order), and the other is “dB then
dA” (BA order) instead. The notation ∆2 means the judgement difference of the document dB.

We calculate the judgement discrepancy of documents’ relevance between the two groups.
The data are shown in Table 2.

Table 2. Judgement discrepancy of relevance probability.

Query Relevance Probability of dA Relevance Probability of dB
AB Order BA Order ∆1 BA Order AB Order ∆2

Probability 0.58 0.47 −0.11 0.83 0.77 −0.06
Parkinsonism 0.84 0.97 0.13 0.30 0.48 0.18
Albert Einstein 0.19 0.10 −0.09 0.90 0.94 0.04
The Spring Festival 0.52 0.43 −0.08 0.60 0.81 0.21
Innovation driven 0.06 0.37 0.30† 0.33 0.45 0.12
Machine learning 0.68 0.63 −0.04 0.90 0.97 0.07
American president 1.00 0.97 −0.03 0.37 0.52 0.15
Semantic Web 0.03 0.20 0.17 0.20 0.42 0.22†

Computer 0.42 0.47 0.05 0.70 0.84 0.14
Religion 0.26 0.13 −0.12 0.53 0.81 0.27
Kung Fu Panda 0.55 0.47 −0.08 0.50 0.55 0.05
Air pollution 0.81 0.67 −0.14 0.83 0.90 0.07
Transgene 0.39 0.50 0.11 0.07 0.26 0.19†

Chinese literature 0.87 0.80 −0.07 0.40 0.29 −0.11
Mo Yan 0.55 0.30 −0.25† 0.97 0.94 −0.03

mean(|∆|) 0.1194 0.1268
† means a statistically-significant difference between the two orders in t-test.

The cases for which the absolute difference of relevance probability between the two groups
is bigger than 0.2 are bolded. Most of the relevance judgements of documents for a query have
been influenced by the previous document relevance judgement. The judgement discrepancy
between two groups varies from trial to trial with the mean of the absolute value 0.1231 (for all
30 documents). A two-tailed t-test of the four relevance degrees (without binarization of the original
rating score) of the same documents by two groups is carried out (α = 0.05). Those cases exhibiting
a statistically-significant difference are flagged by †. The main reason for a non-significant difference
between two groups may be that the relevance degrees only have four discrete values and that users
tend to make a conservative judgement with a rating of two or three (“a little relevant” or “partially
relevant”, respectively).

Let us look at the example of the trial about the query “innovation driven”: 6% of participants
judge the document about the “sharing economy” as relevant when they judge it firstly, while for
participants from the other group who have judged the document about the “new open economic
system” then the “sharing economy”, the relevance probability increases to 37%, which is much
bigger than the probability in the non-comparative context. At the same time, some sessions like
“Albert Einstein” and “Kung Fu Panda” do not show an apparent judgement difference between the
two groups.

4.3. Evaluation of Quantum Interference in Relevance Judgement

As shown in Table 2, most of the sessions show an apparent judgement difference in the
two groups. We will test the judgement difference from the perspective of cognition interference.

4.3.1. Violation of the Law of Total Probability

In our experiment, one group should judge the two documents dA and dB in the AB order, while
the another in the BA order. The first group will provide a judgement of dB in the comparative context
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and a judgement of dA in the non-comparative context. We denote the relevance probability of the
document di without any other previously-judged documents as p(ri), while in the non-comparative
context, p(ri|rj) means the relevance probability under the condition of judging the previous
document as “not relevance”, and p(ri|rj) is under the opposite condition. The probability of the
document relevance in the comparative context is formalized as Equation (15).

p′(ri) = p(rj)p(ri|rj) + p(rj)p(ri|rj) (15)

The empirical results in our experiments are shown in Table 3. Referring to Table 1, Group 1
provides a non-comparative context to judge dA, while Group 23 provides a non-comparative context
to judge dB. We apply dA as di and dB as dj regularly, but the cases flagged by “*” in Table 3 mean the
opposite, i.e., dB as di and dA as dj instead.

Table 3. Test of the law of total probability.

Query p(ri|rj) p(rj) p(ri|rj) p(rj) p′(d) p(ri)

Probability 0.89 0.58 0.62 0.42 0.77 0.83
Probability∗ 0.52 0.83 0.20 0.17 0.47 0.58+

Parkinsonism 0.46 0.84 0.60 0.16 0.48 0.30−

Parkinsonism∗ 1.00 0.30 0.95 0.70 0.97 0.84−

Albert Einstein 1.00 0.19 0.92 0.81 0.94 0.90−

Albert Einstein∗ 0.11 0.90 0.00 0.10 0.10 0.19+

The Spring Festival 0.81 0.52 0.80 0.48 0.81 0.60−

The Spring Festival∗ 0.39 0.60 0.50 0.40 0.43 0.52+

Innovation driven 0.50 0.06 0.45 0.94 0.45 0.33−

Innovation driven∗ 0.50 0.33 0.30 0.67 0.37 0.06−

Machine learning 0.95 0.68 1.00 0.32 0.97 0.90−

Machine learning∗ 0.63 0.90 0.67 0.10 0.63 0.68+

American president 0.52 1.00 0.00 0.00 0.52 0.37
American president∗ 1.00 0.37 0.95 0.63 0.97 1.00
Semantic Web 1.00 0.03 0.40 0.97 0.42 0.20−

Semantic Web∗ 0.17 0.20 0.21 0.80 0.20 0.03−

Computer 1.00 0.42 0.72 0.58 0.84 0.70−

Computer∗ 0.57 0.70 0.22 0.30 0.47 0.42
Religion 0.88 0.26 0.78 0.74 0.81 0.53−

Religion∗ 0.12 0.53 0.14 0.47 0.13 0.26+

Kung Fu Panda 0.76 0.55 0.29 0.45 0.55 0.50
Kung Fu Panda∗ 0.73 0.50 0.20 0.50 0.47 0.55
Air pollution 0.92 0.81 0.83 0.19 0.90 0.83
Air pollution∗ 0.68 0.83 0.60 0.17 0.67 0.81+

Transgene 0.50 0.39 0.11 0.61 0.26 0.07−

Transgene∗ 1.00 0.07 0.46 0.93 0.50 0.39−

Chinese literature 0.26 0.87 0.50 0.13 0.29 0.40
Chinese literature∗ 0.75 0.40 0.83 0.60 0.80 0.87+

Mo Yan 0.94 0.55 0.93 0.45 0.94 0.97+

Mo Yan∗ 0.31 0.97 0.00 0.03 0.30 0.55+

∗ means the opposite; “+” (“−”) means that p(ri) is larger (lower) than both p(ri|rj) and p(ri|rj)
which are in boldface.

The cases when the relevant probability of the document in the non-comparative context is
higher (lower) than both of the two conditional probabilities are bolded. The last column flagged
by “+” (“−”) means the relevance probability in the non-comparative context is larger (lower) than
both the probability in the comparative context, no matter the relevance judgement of the previous
document. In this experiment, 22 cases (out of 30) cannot satisfy the law of total probability.
Interference has apparently occurred in this judging process.
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4.3.2. Test of the Order Effect and Incompatibility

An order effect is determined by comparing the agreement rates obtained in two groups.
If the two groups have completely different judgements in different orders, it means there exists an
apparent order effect. In our experiment, a two-tailed χ2 test (α = 0, 05) of the equality of proportions
between populations is shown in Table 4, where 12 queries (out of 15 queries) presenting an order
effect are flagged by †.

In order to compare whether the decision pattern in the quantum question model is applicable
to the relevance judgement process, we employ the q-test based on the QQ model. It has been proven
that, in the QQ model, the probability of having different answers should be equal to each other, even
in different orders. The QQ model must predict q = pAB− pAB = 0, while pAB = p(ArBn)+ p(AnBr)
and pBA = p(BrAn) + p(BnAr), as described in Section 3.1. The result is reported in Table 4.

Table 4. Result of the q-test and χ2 test.

Query p(AnBy) p(AyBn) p(ByAn) p(BnAy) pAB pBA q-test

Probability† 0.26 0.06 0.40 0.03 0.32 0.43 −0.11
Parkinsonism† 0.10 0.45 0.00 0.67 0.55 0.67 −0.12
Albert Einstein 0.74 0.00 0.80 0.00 0.74 0.80 −0.06
The Spring Festival† 0.39 0.10 0.37 0.20 0.48 0.57 −0.08
Innovation driven† 0.42 0.03 0.17 0.20 0.45 0.37 0.08
Machine learning† 0.32 0.03 0.33 0.07 0.35 0.40 −0.05
American president 0.00 0.48 0.00 0.60 0.48 0.60 −0.12
Semantic Web† 0.39 0.00 0.17 0.17 0.39 0.33 0.05
Computer† 0.42 0.00 0.30 0.07 0.42 0.37 0.05
Religion† 0.58 0.03 0.47 0.07 0.61 0.53 0.08
Kung Fu Panda 0.13 0.13 0.13 0.10 0.26 0.23 0.02
Air pollution† 0.16 0.06 0.27 0.10 0.23 0.37 −0.14
Transgene† 0.06 0.19 0.00 0.43 0.26 0.43 −0.18
Chinese literature† 0.06 0.65 0.10 0.50 0.71 0.60 0.11
Mo Yan† 0.42 0.03 0.67 0.00 0.45 0.67 −0.22
† means a statistically-significant difference in χ2 test; the q-value which is smaller than 0.05 is in boldface.

The queries that are statistically significant in the χ2 test are flagged by †. Some of the queries
that show an apparent order effect in the χ2 test fail to hold the q-test. The Jaccard index coefficient
(the Jaccard similarity coefficient is the ratio of elements in both sets over the elements only found in
separate sets) between the χ2 test and q-test is 0.231 (the tiny number shows a low correlation between
the two test methods). There may be two main reasons. First, the QQ model is more available for the
relatively large dataset. Second, the real search settings are more complex than the QQ model. The
q-test for the QQ model assumes that only the question order influences the question context [29].
This assumption is usually violated in the relevance judgement process. The fuzzy information need,
different knowledge backgrounds about the query and documents and even different reading habits
can contribute the possibility of uncertainty to the cognitive process.

In summary, most of the queries show an apparent order effect. In some cases, when the q-test
holds and there is statistical significance in the χ2 test, the process of the relevance judgement on the
two documents can be explained by an incompatible decision perspective in the QQ model.

5. Discussions for Quantum Interference in Relevance Judgement

Experiments have revealed that the interference phenomenon and order effects exist in the
relevance judgement. This section will provide four judging effects to account for the judgement
discrepancy. The comparison effect employs a psychological hypothesis and assumes that different
reference points lead to different judgements. The unfamiliar effect points out that the lack of
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background knowledge in users’ minds may be the underlying causes for interference. The more
unfamiliar the query and documents are, the more apparent the interference phenomenon is.
The attraction effect and the repulsion effect provide a new model to explain how the previously-judged
documents affect the current judgement from the perspective of the dynamic information need.

5.1. Comparison Effect

For the query of “Mo Yan”, who was awarded the Nobel Prize in Literature, when someone
has seen a “fully relevant” document about “The Red Sorghum” (Mo’s representative work of
hallucinatory realism), they will lower the score of the second document about “Nobel Prize”. In the
non-comparative context, 55% of the participants judge the second one as “relevant”, but when
having seen a more relevant document and setting a high reference point, the probability decreases
to 30%. Another example of the low reference point is about the query “religion”; the document
about “politics” provides a low expectation for users; and users become more likely to accept that the
document about “culture” is relevant to the query.

As shown in Figure 3, the extent of interference largely depends on the relevance of the previous
document. There are 30 points that represent the 30 documents, and the relevance deviation is
calculated as ∆ = p(rd)− p′(rd), while ∆ is the judgement difference of the document between the
comparative context and non-comparative context. From the results, we find that the more relevance
the previous document has, the less perceived relevance the current document has. The Pearson
correlation coefficient, which measures the linear relationship between them, is −0.53 with the
two-tailed p-value of 0.0029. The more relevant the previous document is, the lower relevance degree
the users can perceive from the current document.
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Figure 3. The statistical association between the extent of interference and the relevance degree of the
previous document.

Just like anchoring-and-adjustment heuristics, Tversky and Kahneman [81] said, “people make
estimates by starting from an initial value that is adjusted to yield the final answer”, that is different
reference points [82] yield different estimates, which are biased toward the initial values. When
someone has visited a highly relevant document and has a higher expectation to meet documents
with a higher relevance degree, if the result is in contrast, he or she will be more disappointed and
lower the score of the next one. On the contrary, if he or she meets an irrelevant document before,
he or she will more likely accept a document that is partially relevant or even a little relevant.
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5.2. Unfamiliar Effect

Contextuality is one of the two aspects (the other aspect is quantum entanglement) of quantum
theory that opens the door to explain the phenomenon facing cognition and decisions in a totally new
light [4]. The concept of contextuality is captured in quantum theory by the idea of “interference”:
“the context generated by making a first judgement or decision interferes with the subsequent
judgement or decisions to produce order effects”. In the search process, the concept of “context”
is complex. If your major is computer science, you will have a clear understanding of the concept
of “Boolean algebra” and “Turing machine”, thus easily making a judgement of the relevance to the
query “computer” without reading the documents carefully. The context largely depends on the
participants’ knowledge state, information need and other environment factors. Before participants
start the trial, if we have a clear understanding of the query, documents and the relation between
them, the interference will be barely observed. Since the context of the search process cannot bring
extra information to users, they can only judge the relevance by their a priori knowledge instead of
the information of the document itself. In cognitive science, a concept has two types of properties:
context-independent properties, which are activated by the words in the whole cognitive space,
and context-dependent properties activated by the current contexts [83].

In the search process, the context includes the users’ cognitive background, the information
need and any other environmental factors. For example, for the query “Albert Einstein” and the
two documents about “Isaac Newton” and “the theory of relativity”, respectively, most participants
have a clear understanding of the two concepts (or “topics”) and their relation with the query,
thus leading to a tiny interference with each document. Things are the opposite when we consider
the query of “transgene” and its corresponding documents about “hybrid” and “garden roses”,
respectively. These unfamiliar concepts have caused a massive interference with each other and
influenced the participants’ judgement. Generally speaking, higher context dependence and lower
context-independence will be more likely to cause a more apparent interference phenomenon.

The phenomenon of interference could be more apparent in an unfamiliar context. In other
words, the lack of knowledge background of the topic of the query in the human mind leads to an
apparent interference between judgements. We have indeed found that there is a high correlation
between the familiarity extent of the topic about the query-document pair and the judging deviation,
as shown in the Figure 4. We called this the “unfamiliar effect”.
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Figure 4. The statistical association between the extent of interference and the extent of the
unfamiliarity about the topic.
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In Figure 4, there are 15 points that represent the 15 query-document pairs, and the mean
relevance deviation is calculated as the sum of the absolute values of the relevance deviation in
two orders: MeanDeviation = (|∆1| + |∆2|)/2. The result of the familiarity extent is from the
questionnaire, which is introduced in Section 4. The Pearson correlation coefficient, which measures
the linear relationship between them, is −0.68 with the two-tailed p-value of 0.0054. It is easy to find
from the results that the more unfamiliar the topic of the session is, the greater the judging difference
derived from the previous document will be.

5.3. Attraction Effect and Repulsion Effect

The statistical conclusion and intuitive explanation can reveal some users’ behavioural patterns,
yet it is difficult to give an effective and systematic explanation of the dynamic search process, which
involves a series of cognitive processes. Besides the interference phenomenon in humans’ minds,
the concept from the query and documents may be mutually connected. Judging a document may
affect the users’ state of information need, result in a dynamic judgement of the relevance while
in different orders. The information need is essentially uncertain and will evolve with the users’
reading experience. Every relevance judgement of the current document will lead to a “collapse” of
information need, and thus, users may make a different judgement of the next document.

Now, some explanation inspired by quantum measurement is presented to account for the
dynamic nature of the relevance judgement process. We try to explain how the visited documents
affected the information need.

The dynamic information need model has been introduced in Section 3.2. As shown in Figure 5,
for simplification, we treat the semantic spaces as only a two-dimensional space. Information need
is denoted as the belief state in users’ minds. |rA〉 represents the events that dA is “relevant” to
the information, and |rA〉 represents that dA is “not relevant”. |rB〉 represents the events that dB is
“relevant” to the information, and |rB〉 represents that dB is “not relevant”. |rA〉 and |rA〉 constitute a
pair of orthogonal bases, so do |rB〉 and |rB〉.

Not about “Obama’s wife”

“Obama”

SNot about “Obama”

(a) attraction effect on query “American President” (b) repulsion effect on query “probability”

“Obama’s wife”

Not about 

“statistics” 
S

Not about

“distribution”

“statistics “

“distribution”

Figure 5. Two examples of the dynamic need model inspired by quantum mechanics. (a) The
judgement of rating the document “Obama” as “relevant” will attract the state of the users’
information need to the document about “Obama’s wife”; (b) the judgement of rating the document
“distribution” as “irrelevant” will push away the state of the users’ information need from the
related concept.

For example, giving the query “American president”, dA is about “Barack Obama”, while dB
is about “Obama’s wife”. |rA〉 represents the event that the user judges that the document with the
title “Barack Obama” is “relevant” to the query “American president”. |rA〉 represents the event
that the user judges that the document with the title “Barack Obama” is “not relevant” to the query
“American president”. In other words, it means that the query is not about the document with the
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topic of “American president”. Obviously, |rA〉 and |rA〉 are mutually exclusive elementary outcomes
and can constitute a pair of orthogonal bases, so do |rB〉 and |rB〉. The angle between |S〉 and |rA〉 is
approximately determined by the original relevant degrees between the query and document dA.

Based on the two types of judgement, we can find two effects inspired by the dynamic
assumption. One is the “attraction effect”, referring to Figure 5a. For the case of “American
president”, 37% of participants directly judge the document dB about “Obama’s wife” in the
non-comparative context. When participants from another group judge firstly the document dA
about “Obama” as relevant, the information need may become more closely connected with “Obama”.
In quantum theory, this means that the user’s state collapses into the subspace of “Obama”. After the
belief state of information is updated to “Obama”, the second measurement on “Obama’s wife” will
be more easily accepted by users (the relevance probability increases to 52%). Looking at Figure 5a,
the length after two projections is longer than the length after only one projection.

In general, this is one case of the “attraction effect”. In a more common scenario, we want to find
something about “NoSQL database”, but you know nothing about it. When shown a document about
“MongoDb”, one of the most popular NoSQL databases, you will refuse to continue to read it because
of the lack of background knowledge about “MongoDb” and not being conscious of the connection
between the “NoSQL database” and “MongoDb”. If there is a document that introduces the variety
of NoSQL database before the document of “MongoDb” and bridges the gap between these concepts,
things would be different.

Another effect is named the “repulsion effect”. If the participants have rejected something, they
will be more likely to dislike homogeneous topics. In the query of “probability” and corresponding
documents about “statistics” and “distribution”, which are analogous in content, as shown in
Figure 5b, users who label “probability” as not relevant will be more likely to reject the second
one (in the comparative context, the relevance probability reduces from 0.83 to 0.62). In quantum
theory, once judged, the dynamic information need “collapses” into the basis that is orthogonal to the
“probability” and has a large angle with any documents highly related to the deserted contents.

The “attraction effect” and the “repulsion effect” provide an explanation for the dynamic
nature of the relevance judgement. This reveals that the information need is not only about the
original query terms, but also evolves along with the judgement or interaction in the search process.
The visited pages will affect the following judgement because of the users’s unconscious collapse of
the information need. Unfortunately, the context of the search process is too complex to quantitatively
analyse the judging discrepancy in different orders. The judgement discrepancy may be also caused
by the superposition of multiple effects, leaving more detailed work for the future.

6. Conclusions and Future Work

In this paper, we design and carry out a user study, in order to investigate the quantum
interference in the document relevance judgement process. The investigation is based on three
kinds of test, i.e., the law of total probability, the χ2 test for the order effect and the q-test for
the quantum question model. The results show that there indeed exists document relevance
judgement discrepancy, and the order effect is obviously observed, while the q-test holds in some
trials in the process of the relevance judgement due to the complex context, rather than the question
answering context.

In order to further interpret the document relevance judgement discrepancy, we have proposed
four effects, namely the comparison effect, the unfamiliarity effect, the attraction effect and
the repulsion effect. The comparison effect and the unfamiliarity effect provide an intuitive
interpretation, while the attraction effect and the repulsion effect interpret the dynamic nature of
the relevance judgement based on the evolution of the information need subspace.

One direct future work is to make use of the four effects for predicting the dynamic relevance
of documents in the real-time IR setting. Each interaction and relevance judgement by a user can
reflect the subtle change of the user’s cognitive state, which helps the IR system to perceive the user’s
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real-time information need. In the real search process, if we know how the relevance judgement on
documents interfere with the others, it can help the IR system present better ordered documents to
satisfy the user’s information need. Especially in a user-centred IR system, it is more critical to build
an effective user model based on users’ real-time information need.
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Appendix: Derivation of the Interference Term in the Game of the Prisoner Dilemma

When told the result that the opponent will defect, the belief state |S〉 projects onto the basis
“the opponent defects” with a probability ||ΠodS||2. Then, the player makes his or her own decision
under the belief state |Sod〉, and the probability of defection is the squared length of the projection
from |Sod〉 to |Sd〉. We multiply the two probabilities and get the probability of the defection when the
participant knew that the opponent had defected as follows ({S, Soc, Sod, Sc, Sd} are unit vectors, and
the length of the projection can be denoted as the inner product; for example, ‖ΠodS‖2 = | 〈Sod|S〉 |2):

p(od, d) = ‖ΠdΠodS‖2 = | 〈Sod|S〉 |2 ∗ | 〈Sd|Sod〉 |2 (16)

Similarly,
p(oc, d) = ‖ΠdΠocS‖2 = | 〈Soc|S〉 |2 ∗ | 〈Sd|Soc〉 |2 (17)

In the two-stage condition, we get the probability of defection as:

p′(d) = ‖ΠdΠodS‖2 + ‖ΠdΠocS‖2 = | 〈Sod|S〉 |2 ∗ | 〈Sd|Sod〉 |2 + | 〈Soc|S〉 |2 ∗ | 〈Sd|Soc〉 |2 (18)

While in the unknown condition, there are two orthogonal bases {(Soc, Sod), (Sc, Sd)}. |S〉 can be
denoted as:

|S〉 = 〈Sod|S〉 |Sod〉+ 〈Soc|S〉 |Soc〉 (19)

(Soc, Sod) is the another pair of orthogonal bases. |Sod〉 and |Soc〉 can be denoted as:

|Sod〉 = 〈Sd|Sod〉 |Sd〉+ 〈Sc|Sod〉 |Sc〉 (20)

Similarly,
|Soc〉 = 〈Sd|Soc〉 |Sd〉+ 〈Sc|Soc〉 |Sc〉 (21)

Based on Equations (19)–(21), we can get the |S〉 as follows:

|S〉 = (〈Sod|S〉 ∗ 〈Sd|Sod〉+ 〈Soc|S〉 ∗ 〈Sd|Soc〉) |Sd〉
+(〈Sod|S〉 ∗ 〈Sc|Sod〉+ 〈Soc|S〉 ∗ 〈Sc|Soc〉) |Sc〉

(22)
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In the unknown condition,

p(d) = 〈Sd|S〉 = (〈Sod|S〉 ∗ 〈Sd|Sod〉+ 〈Soc|S〉 ∗ 〈Sd|Soc〉)2

=(〈Sod|S〉 ∗ 〈Sd|Sod〉+ 〈Soc|S〉 ∗ 〈Sd|Soc〉) ∗ (〈Sod|S〉 ∗ 〈Sd|Sod〉+ 〈Soc|S〉 ∗ 〈Sd|Soc〉)†

=| 〈Sod|S〉 |2 ∗ | 〈Sd|Sod〉 |2 + | 〈Soc|S〉 |2 ∗ | 〈Sd|Soc〉 |2

+ 2| 〈Sod|S〉 〈Sd|Sod〉 〈Soc|S〉 〈Sd|Soc〉 |cos(θ)

(23)

Compared to Equation (18), the additional term 2 〈Sod|S〉 〈Sd|Sod〉 〈Soc|S〉 〈Sd|Soc〉 cos(θ) is the
interference term.
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