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Abstract: Dan Rudolph showed that for an amenable group, Γ, the generic measure-preserving
action of Γ on a Lebesgue space has zero entropy. Here, this is extended to nonamenable groups.
In fact, the proof shows that every action is a factor of a zero entropy action! This uses the strange
phenomena that in the presence of nonamenability, entropy can increase under a factor map. The
proof uses Seward’s recent generalization of Sinai’s Factor Theorem, the Gaboriau–Lyons result and
my theorem that for every nonabelian free group, all Bernoulli shifts factor onto each other.
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1. Introduction

Entropy theory in dynamics has recently been extended from actions of the integers (and, more
generally, amenable groups) to actions of sofic groups [1] and arbitrary countable groups [2–4]. Here,
we begin to investigate generic properties of measure-preserving actions of countable groups with an
eye towards understanding their entropy theory.

Our starting point is a result due to Rokhlin [5]: the generic automorphism T ∈ Aut(X, µ)

has zero entropy. To be precise, (X, µ) denotes a Lebesgue probability space and Aut(X, µ) is the
group of measure-preserving automorphisms φ : X → X in which automorphisms that agree almost
everywhere are identified. This group has a natural Polish topology: a sequence {Ti} ⊂ Aut(X, µ)

converges to T if for every measurable subset A ⊂ X, µ(Ti A M TA) → 0 as i → ∞. The claim is that
the subset of all transformations T ∈ Aut(X, µ) that have zero entropy contain a dense Gδ subset, so
that it is residual in the sense of the Baire category.

In order to consider the analogous question for general countable groups, we first need a notion
of entropy. Thus, suppose we have a countable group Γ and a probability-measure-preserving action
Γy(X, µ). Assuming the action is ergodic, its Rokhlin entropy , denoted hRok

Γ (X, µ), is the infimum
of Hµ(P) over all generating partitions P. Recall that a partition P of X is generating if the smallest
Γ-invariant sigma-algebra containing it is the full Borel sigma-algebra (modulo null sets) and the
Shannon entropy is defined by

Hµ(P) := − ∑
P∈P

µ(P) log µ(P).

Rokhlin entropy agrees with Kolmogorov–Sinai entropy for essentially free actions whenever Γ
is amenable [6], and Rokhlin entropy upper-bounds sofic entropy when Γ is sofic (this is immediate
from the definition in [1]).

We also need a space of actions. This can be handled in two different ways. We consider the
space A(Γ, X, µ) of all homomorphisms α : Γ → Aut(X, µ) equipped with the topology of pointwise
convergence (see [7] for details). Alternatively, let Cantor denote the usual middle thirds Cantor set
and let Γ act on CantorΓ by ( f x)(g) = x( f−1g) (where x ∈ CantorΓ is represented as a function
x : Γ → Cantor). This action is by homeomorphisms when we equip CantorΓ with the product
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topology. We let ProbΓ(CantorΓ) denote the space of all Γ-invariant Borel probability measures on
CantorΓ with respect to the weak* topology. A fundamental result of Glasner–King [8], together
with the weak Rokhlin property [9], imply that, if P is any property of actions that is invariant
under measure-conjugacy, then the set of all actions α ∈ A(Γ, X, µ) that have P is a residual set
if and only if the set of all measures µ ∈ ProbΓ(CantorΓ) such that Γy(CantorΓ, µ) has P is a
residual set (more precisely, Glasner and King proved this result with the unit interval in place of
the Cantor set. However, in [10], it was shown to hold for any perfect Polish space in place of the unit
interval). Therefore, we can choose to study either A(Γ, X, µ) or ProbΓ(CantorΓ), whichever one is
most convenient for the problem at hand. For most of the paper, we use ProbΓ(CantorΓ) and state
the results in terms of A(Γ, X, µ).

The first result of this paper is:

Theorem 1. For any countably infinite group Γ, the subset of actions a ∈ A(Γ, X, µ) with zero Rokhlin
entropy is residual in the sense of Baire category.

As mentioned above, because Rokhlin entropy is an upper bound for sofic entropy, this implies
that the generic action a ∈ A(Γ, X, µ) has nonpositive sofic entropy with respect to all sofic
approximations of Γ.

The main difficulty in proving Theorem 1 is showing that the subset of actions with zero entropy
is dense. If Γ is amenable, then the argument is due to Rudolph (see the Subclaim after Claim 19
in [11]). It is essentially a consequence of the Rokhlin Lemma which implies if an action a ∈ A(Γ, X, µ)

is essentially free, then its measure-conjugacy class is dense in A(Γ, X, µ). If Γ is nonamenable, then
this no longer holds: for example, if a is strongly ergodic (e.g., if it is a Bernoulli shift), then the closure
of its measure-conjugacy class does not contain any nonergodic actions.

Assuming Γ is nonamenable, we take advantage of the fact that entropy can increase under a
factor map. The first example of this phenomenon is due to Ornstein and Weiss [12]; they showed
that the two-shift over the rank two free group factors onto the four-shift. This was generalized in
several ways: Ball proved that if Γ is any nonamenable group, then there exists some probability
space (K, κ) with |K| < ∞ such that the Bernoulli shift Γy(K, κ)Γ factors onto all Bernoulli shifts over
Γ [13]. I proved that if Γ contains a nonabelian free group, then in fact all Bernoulli shifts over Γ factor
onto each other [14]. It is still unknown whether this conclusion holds for all nonamenable Γ. Lastly,
Seward proved that there is some number r(Γ) < ∞ depending only on Γ such that if Γy(X, µ) is an
arbitrary measure-preserving action, then there exists another action Γy(X̃, µ̃) with Rokhlin entropy
≤ r(Γ) that factors onto it [15]. In other words, every action has an extension with bounded Rokhlin
entropy. Our next result shows we can take r(Γ) = 0:

Theorem 2. If Γ is nonamenable and Γy(X, µ) is essentially free, ergodic and
probability-measure-preserving, then there exists an action Γy(X̃, µ̃) with zero Rokhlin entropy that
extends Γy(X, µ).

Here is a quick sketch of the proof: using the ideas of Gaboriau–Lyons [16] and the fact that,
for free groups, all Bernoulli shifts factor onto each other [14], it is shown that there exists an
inverse limit of factors of Bernoulli shifts which (a) has zero Rokhlin entropy and (b) factors onto
all Bernoulli shifts. By contrast, if Γ = Z consequences of Ornstein theory imply that inverse limits
and factors of Bernoulli shifts are Bernoulli [17,18]. Without loss of generality, we may assume
Γy(X, µ) has positive Rokhlin entropy. Using Seward’s recent spectacular generalization of Sinai’s
Factor Theorem [19], the extension Γy(X̃, µ̃) is constructed as a relatively independent joining
between Γy(X, µ) and the aforementioned inverse limit over a common Bernoulli factor. A standard
argument shows that, since Γy(X, µ) is a factor of a zero entropy action, it is also a limit of zero
entropy actions (see Lemma 8), proving that zero entropy actions are dense.
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1.1. Strengthenings of Zero Entropy

Theorem 2 highlights the fact that, if Γ is nonamenable, zero entropy actions can have positive
entropy factors. Thus, we consider the following stronger notions of zero entropy for an action
a = Γy(X, µ):

1. a has completely zero entropy (this means every essentially free factor of a has zero Rokhlin entropy);
2. a is disjoint from all Bernoulli shifts over Γ;
3. a is disjoint from all R-CPE (completely positive Rokhlin entropy) actions of Γ;
4. every factor of every self-joining (including infinite self-joinings) of a has zero Rokhlin entropy;
5. a has zero naive entropy (naive entropy is defined in Section 7).

If Γ is amenable, then all five notions agree with zero entropy. In Section 8, it is shown that (for
any group Γ) 1⇐ 2 and 3⇐ 4⇐ 5. Moreover, if Γ is sofic, then 2⇐ 3. It is an open problem whether
all of these properties are equivalent.

To state the next result, recall that a group Γ has property MD if the measure conjugacy class of
pΓ × ιΓ is dense in the space A(Γ, X, µ) of actions [20] where pΓ denotes the action of Γ on its profinite
completion and ιΓ denotes the trivial action on the unit interval. For example, free groups, surface
groups and fundamental groups of hyperbolic three-manifolds have MD (Theorem 8 below). The
final result shows that, for some groups, zero naive entropy is generic:

Theorem 3. Suppose Γ either has property MD or has the form Γ = G× H where H is an infinite amenable
residually finite group. Then, the subset of all actions a ∈ A(Γ, X, µ) with zero naive entropy is residual in the
sense of Baire category.

It is an open problem whether this conclusion holds for every group Γ. Indeed, it is unknown
whether every group Γ admits an essentially free action with zero naive entropy.

The notion of weak containment of actions was introduced by Kechris [20] as an analog to weak
containment of unitary representations. For a given action, a, it is an open problem whether the
generic action that is weakly equivalent to a has zero Rokhlin entropy. However, if a is a Bernoulli
shift, then we show this is the case in the last section, Section 10.

1.2. Organization

Section 2 introduces notation and recalls important terminology. Section 3 reviews Rokhlin
entropy and proves that zero Rokhlin entropy is a Gδ condition for essentially free, ergodic actions.
Section 4 constructs an inverse limit of factors of Bernoulli shifts that has zero Rokhlin entropy and
factors onto all Bernoulli shifts. Section 5 proves Theorem 2. Section 6 proves Theorem 1. Section 7
introduces naive entropy. Section 8 introduces five strengthenings of zero entropy. Section 9 proves
Theorem 3. The last section Section 10 formulates the open problem: for a given weak equivalence
classes of actions, is zero entropy generic?

2. Preliminaries

Throughout this paper, Γ always denotes a countable discrete group and (X, µ), (Y, ν) denote
standard probability spaces. We are mainly concerned with probability-measure-preserving actions
which is abbreviated as “pmp actions”. Let Cantor denote the standard middle thirds Cantor set,
ΓyCantorΓ the action (gx)( f ) = x(g−1 f ). This action is by homeomorphisms when CantorΓ is
given the product topology. We let ProbΓ(CantorΓ) denote the space of Γ-invariant Borel probability
measures on CantorΓ. We give ProbΓ(CantorΓ) the weak* topology which means that a sequence
{µn} converges to a measure µ if and only if

∫
f µn →

∫
f dµ for every continuous function f

on CantorΓ. In this topology, ProbΓ(CantorΓ) is compact and metrizable (by the Banach–Alaoglu
Theorem). When discussing measures µ ∈ ProbΓ(CantorΓ), we say such a measure is essentially free,
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ergodic or has zero Rokhlin entropy to mean that the associated action Γy(CantorΓ, µ) is essentially
free, ergodic or has zero Rokhlin entropy.

Given a topological space X, a subset Y ⊂ X is a Gδ if it can be expressed as a countable
intersection of open sets. A subset Y ⊂ X is residual in X if it contains a dense Gδ subset. If X0 ⊂ X,
then the statement ‘the generic element of X is contained in X0’ means that X0 is residual.

All functions, partitions and actions considered in this paper are measurable unless explicitly
stated otherwise. If P is a partition of a measure space (X, µ), Γy(X, µ) is a pmp action and T ⊂ Γ is
finite, then PT :=

∨
t∈T t−1P is the coarsest partition containing t−1P for all t ∈ T. If T is infinite, then

PT is the smallest sigma-algebra containing t−1P for all t ∈ T.
Let BX denote the Borel sigma-algebra on X. If F ⊂ BX is a sigma-algebra and P is a partition,

then the Shannon entropy of P relative to F is

Hµ(P|F) =
∫
− logE[χP(x)|F](x) dµ(x),

where P(x) denotes the part of P containing x, χP(x) denotes the characteristic function of P(x) and
E[χP(x)|F] denotes the conditional expectation of χP(x) with respect to F.

3. Rokhlin Entropy

For any subcollection F ⊂ BX , we let σ-alg(F) ⊂ BX denote the sub-sigma-algebra generated by
F and, if ΓyX is a measurable action, then we let σ-algΓ(F) denote the smallest sub-sigma-algebra
containing gF for every g ∈ Γ and F ∈ F. We do not distinguish between sigma-algebras that agree
up to null sets. Thus, we write F1 = F2 if F1 and F2 agree up to null sets.

Definition 1. The Rokhlin entropy of an ergodic pmp action Γy(X, µ) is defined by

hRok
Γ (X, µ) = inf

P
Hµ(P),

where the infimum is over all partitions P with σ-algΓ(P) = BX . For any Γ-invariant F ⊂ BX , the
relative Rokhlin entropy is defined by

hRok
Γ (X, µ|F) = inf

P
Hµ(P|F),

where the infimum is over all partitions P such σ-algΓ(P∪ F) = BX . If Γy(X, µ) is nonergodic, then
the Rokhlin entropy is defined by

hRok
Γ (X, µ) = inf

P
Hµ(P|Inv),

where Inv is the sigma-algebra of Γ-invariant Borel sets. Given a collection C of Borel subsets of X,
the outer Rokhlin entropy relative to F is defined by

hRok
Γ,µ (C|F) = inf

P
Hµ(P|F),

where the infimum is over all partitions P such that C ⊂ σ-algΓ(P) ∨ F. We also write hRok
Γ,µ (C)

instead of hRok
Γ,µ (C|F) when F is trivial. These notions were introduced and studied by Seward in

the series [3,4].

Lemma 1. The subset of ergodic measures in ProbΓ(CantorΓ) is a Gδ set.

Proof. This is well-known. Here is a short proof for the reader’s convenience. Fix a metric d on
ProbΓ(CantorΓ). For n = 1, 2, 3, . . ., let Xn be the set of all measures µ ∈ ProbΓ(CantorΓ) such that
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there exist measures µ1, µ2 ∈ ProbΓ(CantorΓ) with d(µ1, µ2) ≥ 1/n and µ = µ1+µ2
2 . Thus, Xn is a

closed subset and ∪∞
n=1Xn is an Fσ set. The lemma now follows from the fact that the subset of ergodic

measures is the complement of ∪∞
n=1Xn.

Next, we prove that the set of ergodic measures in ProbΓ(CantorΓ) with zero Rokhlin entropy
form a Gδ subset. For the next three lemmas, we assume Γy(X, µ) is an ergodic pmp action and P,Q
are measurable partitions of X with finite Shannon entropy.

Lemma 2.
hRok

Γ,µ (P) ≤ Hµ(Q) + Hµ(P|σ-algΓ(Q)).

Proof. Corollary 2.6 of [3] implies

hRok
Γ,µ (P) ≤ hRok

Γ,µ (Q) + hRok
Γ,µ (P|σ-algΓ(Q)) ≤ Hµ(Q) + Hµ(P|σ-algΓ(Q)).

Let P(X, µ) denote the set of all partitions of (X, µ) with finite Shannon entropy in which we
identify partitions that agree up to measure zero. Given partitions P,Q ∈P(X, µ), define

dRok(P,Q) := Hµ(P|Q) + Hµ(Q|P).

This is the Rokhlin metric. It is a complete, separable metric on P(X, µ).

Lemma 3. Let D be a dense subset of P(X, µ). Then,

hRok
Γ,µ (P) = sup

ε>0
inf{Hµ(Q) : Q ∈ D , Hµ(P|σ-algΓ(Q)) < ε}.

Proof. The inequality ≤ follows from Lemma 2. To see the opposite inequality, let ε > 0 and let S be
a partition with P ⊂ σ-algΓ(S) and Hµ(S) ≤ hRok

Γ,µ (P) + ε. Since Hµ(P|SΓ) = 0, there exists a finite
subset F ⊂ Γ such that Hµ(P|SF) < ε/2. Since D is dense, there exists a partition R ∈ D such that
dRok(R, S) < ε|F|−1/2. Since

Hµ(R
F|SF) ≤ ∑

f∈F
Hµ( f−1R|SF) ≤ ∑

f∈F
Hµ( f−1R| f−1S) = |F|Hµ(R|S),

dRok(RF, SF) ≤ |F|dRok(R, S) < ε/2.

Therefore,
Hµ(P|σ-algΓ(R)) ≤ Hµ(P|RF) ≤ Hµ(P|SF) + dRok(SF,RF) < ε.

It follows that

inf{Hµ(Q) : Q ∈ D , H(P|σ-algΓ(Q)) < ε} ≤ Hµ(R) ≤ Hµ(S) + dRok(R, S) ≤ hRok
Γ,µ (P) + 2ε.

The Lemma follows by taking the limit as ε↘ 0 on both sides.

Lemma 4. Suppose P1 ≤ P2 ≤ · · · are an increasing sequence of partitions of (X, µ) with finite Shannon
entropy such that

∨
n Pn is the Borel sigma-algebra. Then, hRok

Γ (X, µ) = 0 if and only if hRok
Γ,µ (Pn) = 0 for all n.

Proof. The definitions of Rokhlin and outer Rokhlin entropy imply hRok
Γ (X, µ) ≥ hRok

Γ,µ (Pn) for every

n. This proves one implication. To see the other, suppose hRok
Γ,µ (Pn) = 0 for all n. Let ε > 0. For every

n, there exists a partition Qn of X such that Hµ(Qn) < ε2−n and Pn ⊂ σ-algΓ(Qn). Therefore,
∨

n Qn is
generating and has entropy < ε. This shows hRok

Γ (X, µ) < ε. Since ε is arbitrary, hRok
Γ (X, µ) = 0.
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Lemma 5. The set

E0 := {µ ∈ ProbΓ(CantorΓ) : hRok
Γ (CantorΓ, µ) = 0 and Γy(CantorΓ, µ) ergodic}

is a Gδ set.

Proof. Let Pn be an increasing sequence of finite partitions of CantorΓ such that all elements of Pn

are clopen (=closed and open) and
∨

n Pn is the full Borel sigma-algebra. Let

En := {µ ∈ ProbΓ(CantorΓ) : hRok
Γ,µ (Pn) = 0 and Γy(CantorΓ, µ) ergodic}.

By Lemma 4, E0 = ∩nEn. Thus, it suffices to show each En is a Gδ. Let D denote the collection of
clopen partitions of CantorΓ. Then, D is dense in P(CantorΓ, µ) for every Borel probability measure
µ. For any Q ∈ D and finite F ⊂ Γ, the maps µ 7→ Hµ(Q) and µ 7→ Hµ(Pn|QF) are continuous (because
all partitions involved are clopen). Thus, for any ε > 0, the set

{µ ∈ ProbΓ(CantorΓ) : Hµ(Pn|QF) < ε}

is open. Let O(ε) denote the set of all measures µ ∈ ProbΓ(CantorΓ) such that there exist Q ∈ D and
finite F ⊂ Γ with Hµ(Q) < ε and Hµ(Pn|QF) < ε. Then, O(ε) is open. By Lemma 3,

En =
∞⋂

m=1

O(1/m) ∩ {µ : Γy(CantorΓ, µ) ergodic}.

By Lemma 1, this implies En is a Gδ.

4. A Zero Entropy Action That Factors onto Every Bernoulli Shift

Bernoulli shifts are defined as follows: let (K, κ) denote a standard probability space and (K, κ)Γ

the product measure space. Let Γ act on KΓ by (gx)( f ) = x(g−1 f ) for x ∈ KΓ, g, f ∈ Γ. This action
is measure-preserving and is called the Bernoulli shift over Γ with base (K, κ). This section constructs a
zero Rokhlin entropy action that factors onto all Bernoulli shifts (assuming Γ is nonamenable). The
main part of the argument is in the next proposition: that there are factors of Bernoulli shifts with
little entropy that factor onto all Bernoulli shifts.

Proposition 1. Let Γ be a countable nonamenable group. Then, for every ε > 0 there exists a pmp action
Γy(Y, ν) satisfying:

• Γy(Y, ν) is a factor of a Bernoulli shift,
• hRok

Γ (Y, ν) < ε,
• Γy(Y, ν) factors onto every Bernoulli shift over Γ.

The proof uses the fact that, for nonabelian free groups, all Bernoulli shifts factor onto each other.
In order to apply this, we need some concepts from measured equivalence relations. Thus, given an
action Γy(X, µ), the orbit-equivalence relation is the relation RΓ := {(x, γx) ∈ X × X : x ∈ X, γ ∈ Γ}.
A subequivalence relation is any measurable subset S ⊂ RΓ that is an equivalence relation in its own
right. It is finite if for almost every x ∈ X the S-class of x is finite. It is hyperfinite if there exists an
increasing sequence S1 ⊂ S2 ⊂ · · · of finite subequivalence relations such that S = ∪iSi. A subset
Y ⊂ X is S-saturated if Y is a union of S-equivalence classes. The subequivalence S is ergodic if every
measurable S-saturated subset is either null or co-null. A graphing of S is a subset G ⊂ S such that

• (x, y) ∈ G⇒ (y, x) ∈ G,
• for every (x, y) ∈ S there exists x = x0, x1, . . . , xn = y such that (xi, xi+1) ∈ G for all 0 ≤ i < n.
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A graphing G determines a graph with vertex set X and edges consisting of unordered pairs
{x, y} such that (x, y) ∈ G. If the connected components of this graph are trees, then G is called a
treeing and S is said to be treeable. Intuitively, graphings are treated in a manner similar to Cayley
graphs and treeable subequivalence relations are analogous to free subgroups.

Lemma 6. Let Γy(X, µ) be an essentially free factor of a Bernoulli shift and suppose that its orbit-equivalence
relation contains a non-hyperfinite treeable subequivalence relation S. Then, for every pair of probability spaces
(K, κ), (L, λ), the direct product action

Γy(X× KΓ, µ× κΓ)

factors onto the Bernoulli shift Γy(L, λ)Γ.

Proof. I claim that we can choose S to be ergodic. Since S is non-hyperfinite, Γ must be nonamenable.
Then, the main result of [21] implies that there exists a measurable subset Y ⊂ X with positive
measure such that S restricted to Y is ergodic. Let φ : X → Y be any measurable map such
that (a) the graph of φ is contained in the orbit-equivalence relation and (b) φ restricted to Y is the
identity map. Now, let S′ be the equivalence relation given by (x, y) ∈ S′ if and only if (φx, φy) ∈ S.
This is a subequivalence relation of the orbit-equivalence relation; it is ergodic because any nonnull
S′-invariant measurable subset necessarily contains Y (since S is ergodic and S′ ∩ Y × Y = S) and
therefore contains X (up to measure zero). It is also treeable. Indeed, if G is a treeing of S ∩ Y × Y,
then we define a treeing G′ of S′ by G′ = G ∪ {(x, φ(x)), (φ(x), x) : x ∈ X − Y}. Thus, we can choose
S to be ergodic.

By [16] (Proposition 14), the existence of an ergodic non-hyperfinite treeable subequivalence
relation implies the existence of an essentially free ergodic pmp action F2y(X, µ) of the rank two free
group whose orbits are contained in Γ-orbits (the main part of this argument is due to Hjorth [22]).
Let c : F2 × X → Γ denote the cocycle

c( f , x) = g⇔ f x = gx.

In addition, for x ∈ X and y ∈ KΓ, define Fx(y) ∈ KF2 by

Fx(y)( f ) = y(c( f−1, x)−1).

By [14] there exists a factor map Φ : (K, κ)F2 → (L, λ)F2 . Thus, we define Ψ : X× KΓ → LΓ by

Ψ(x, y)(γ) = Φ(Fγ−1x(γ
−1y))(1F2).

It is routine to check that this is the required factor. For the sake of clarity, here is an explanation
without the algebra. An element x ∈ X has the property that its Γ-orbit is partitioned into F2-orbits.
We consider an element y ∈ KΓ as a coloring of Γ with colors in K. By identifying Γ with the orbit of
x, we may also think of y as a coloring of the orbit of x. This coloring does not change if we replace
the pair (x, y) with (gx, gy) for g ∈ Γ. By restriction, we can also view y as a coloring of the F2-orbits
that make up the Γ-orbit of x. By identifying each F2-orbit with F2 itself we can view y as a coloring
of F2 (actually several copies of F2, one for each F2-orbit making up the Γ-orbit). We can apply Φ to
such a coloring to obtain a new coloring of (several copies of) F2 with values in L. By identifying each
such copy of F2 with the F2-orbits in Γx, we obtain again a coloring of the F2-orbits of x contained in
the Γ-orbit of x and therefore, we obtain a coloring of Γ by L. This is what the map Ψ does.

In order to use the lemma above to prove Proposition 1, we need to construct the factor Γy(Y, ν)

in such a way that its orbit equivalence relation contains a non-hyperfinite treeable subequivalence
relation. This will be accomplished through percolation theory for which we will need a bit of
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background. Thus, let G = (V, E) be a graph and p ∈ [0, 1] a parameter. The Bernoulli bond percolation
with parameter p is the random subset ωp ⊂ E defined by: if e ∈ E is an edge, then e ∈ ωp with
probability p. Moreover, the events {e ∈ ωp : e ∈ E} are jointly independent. This is also called
p-bond percolaton. We consider ωp to be a random subgraph of G. A cluster is a connected component
of ωp. The critical bond percolation of G is the number pc(G) equal to the infimum over all p > 0 such
that Bernoulli bond percolation with parameter p has an infinite cluster almost surely. See [23] for
background.

Lemma 7. Let D > 2 be an integer. There exists 0 < α, β < 1 such that the following holds. Let G be a
tree such that every vertex in G has degree at least 3 and at most D. Then, almost surely α-Bernoulli bond
percolation on G has an infinite cluster and every such cluster is a tree with infinitely many ends. In addition,
for any vertex v of G, the probability (with respect to α-bond percolation) that v is contained in a finite cluster
is at least β.

Proof. Note that G contains a copy of the three-regular tree T3. Therefore, pc(G) ≤ pc(T3). It is
well-known that pc(T3) < 1. This follows, for example, from the more general statement that pc(H) <

1 whenever H is the Cayley graph of a nonamenable group [24] (observe that T3 is the Cayley graph
of Z/2Z ∗ Z/2Z ∗ Z/2Z). Thus, let α = (pc(T3) + 1)/2. Let ω ⊂ E(G) denote α-bond percolation on
G. Since G is a tree, ω is a forest a.s. By [25], each infinite cluster of ω has infinitely many ends a.s.
(for a simpler proof, see [26]).

The probability that a vertex v is contained in a finite cluster of ω is at least the probability that v
is itself a cluster. The latter probability is (1− α)deg(v) ≥ (1− α)D =: β.

Proof of Proposition 1. Let Γ0 ≤ Γ be a finitely generated nonamenable subgroup. By [27], there
exists a finite generating set S ⊂ Γ0 such that bond-percolation on the Cayley graph Cay(Γ0, S) has
a nontrivial uniqueness phase. In other words, there exists p ∈ (0, 1) such that p-bond-percolation
on Cay(Γ0, S) has infinitely many infinite clusters. It follows by inclusion that p-bond-percolation
on Cay(Γ, S) also has infinitely many infinite clusters. Here, Cay(Γ, S) is the graph with vertex set Γ
and edges of the form (g, gs) for g ∈ Γ, s ∈ S. This need not be a connected graph since S need not
generate Γ.

Let ω0 ⊂ E(Cay(Γ, S)) denote the set of edges of p-bond-percolation on Cay(Γ, S). By [25], each
infinite cluster of ω0 has infinitely many ends a.s. (for a simpler proof, see [26]). For x ∈ Γ, let K0(x)
denote the cluster of ω0 containing x.

By [23] (Lemma 7.4), there exists a percolation ω1 ⊂ ω0 such that conditioned on the cluster
K0(x) being infinite, the cluster K1(x) of ω1 containing x is a tree with infinitely many ends (almost
surely). Moreover, the proof shows that we can choose ω1 to be the minimal spanning forest
associated with an iid process. In particular, we can choose ω1 so that its law is a factor of a Bernoulli
process. After removing some edges if necessary, we may also assume that every finite cluster of ω1

consists of a single vertex.
Let α, β be as in Lemma 7.

Claim. There exist random subgraphs ω1 ⊃ ω2 ⊃ · · · satisfying:

• each infinite cluster of ωi is a tree with infinitely many ends (a.s.),
• every finite cluster of ωi is a single vertex,
• the probability that 1Γ is contained in an infinite cluster of ωi+1 is at most (1 − β) times the

probability that 1Γ is contained in an infinite cluster of ωi,
• each ωi is a factor of a Bernoulli shift.

Proof. For induction, we assume ω1, . . . , ωn has been constructed.
We cannot directly apply Lemma 7 because some vertex might have degree < 3 in ωn. After

repeatedly removing all edges incident to a degree 1 vertex if necessary, we may assume that no
vertex of ωn has degree 1. Next, define ω′n as follows: the vertices of ω′n are the vertices of ωn that
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have degree at least 3. There is an edge in ω′n from v to w if there is a path in ωn from v to w such that
all of the intermediate vertices have degree 2.

Let ω′n+1 ⊂ ω′n be the random subgraph obtained from Bernoulli α-bond-percolation on ω′n.
By Lemma 7, ω′n+1 contains infinite clusters a.s. Moreover, each infinite cluster is a tree with infinitely
many ends (since each infinite cluster of ω′n is a tree with infinitely many ends). We let ω′′n+1 be
the subgraph of ωn that is induced from ω′n+1. More precisely, recall that every edge e of ω′n+1
corresponds to a path e1, e2, . . . , ek of edges in ωn such that each intermediate vertex has degree 2.
We let ω′′n+1 be the subgraph containing all such edges e1, . . . , ek. Finally, we let ωn+1 be the subgraph
obtained from ω′′n+1 by removing all edges that are contained in finite clusters. The properties in the
claim are easily verified for ωn+1. This completes the induction.

Let δ > 0 be such that

δ|S| log(2)− δ log(δ)− (1− δ) log(1− δ) < ε/2.

It follows from the claim above that there exists a random subgraph ωn of Cay(Γ, S) (for some n)
such that:

• the probability that ωn does not contain any edges incident to 1Γ is at least 1− δ,
• the law of ωn is a factor of a Bernoulli shift,
• with probability one, some cluster of ωn is a tree with infinitely many ends.

Let X be the space of all subgraphs of Cay(Γ, S) and µ the law of ωn. For x ∈ X, let
φ(x) = {s ∈ S : (1Γ, s) ∈ ωn}. Let P be the partition of X induced by φ: this means that x, y ∈ X
are in the same part of P if and only if φ(x) = φ(y). The Shannon entropy of P satisfies the bound:

Hµ(P) ≤ δ|S| log(2)− δ log(δ)− (1− δ) log(1− δ) < ε/2

(because there are 2|S| subsets of S and the probability that φ(x) is empty (when x ∈ X is random
with law µ) is at least 1− δ). The partition P is generating for Γy(X, µ). Therefore,

hRok
Γ (X, µ) < ε/2.

Because each ωn contains an infinite tree with infinitely many ends, the orbit-equivalence
relation of Γy(X, µ) contains a non-hyperfinite treeable subequivalence relation. To see this, let
Y ⊂ X be the set of all ω ∈ X such that 1Γ is in an infinite cluster of ω. Let F ⊂ Y × Y be the
Borel equivalence relation on Y given by (gω, ω) ∈ F if and only if g−1 and 1Γ are in the same infinite
cluster of ω. This is a non-hyperfinite treeable equivalence relation since its equivalence classes are
in one-to-one bijection with the infinite clusters of ω. Let Φ : X → Y be any Borel map with graph
contained in the orbit-equivalence relation of Γ such that Φ restricted to Y is the identity map. Finally,
let F̃ ⊂ X × X be the equivalence relation (x, y) ∈ F̃ if and only if (Φx, Φy) ∈ F. Then, F̃ is the
required non-hyperfinite treeable subequivalence relation. In fact, if G ⊂ Y×Y is a treeing of F, then
G̃ := G∪ {(x, Φ(x)) : x ∈ X} is a treeing of F̃.

If Γy(X, µ) is not essentially free, then let (L, λ) be a nontrivial probability space with Shannon
entropy small enough so that the Rokhlin entropy of the direct product Γy(X× LΓ, µ× λΓ) is < ε/2.
Because Γy(X, µ) is a factor of a Bernoulli shift, this direct product is also a factor of a Bernoulli shift.
Moreover, it is essentially free. In addition, its orbit-equivalence relation contains a non-hyperfinite
treeable subequivalence relation (this can be obtained by pulling back a non-hyperfinite treeable
subequivalence relation of Γy(X, µ) by way of the projection map). Thus, without loss of generality,
we may assume Γy(X, µ) is essentially free.

Let (K, κ) be any nontrivial probability space with Shannon entropy < ε/2. Lemma 6 now
implies that the product action

Γy(X× KΓ, µ× κΓ)
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satisfies the statement of the Theorem.

Corollary 1. Let Γ be any countable nonamenable group. There exists a pmp action Γy(Z, ζ) satisfying:

• Γy(Z, ζ) is an inverse limit of factors of Bernoulli shifts,
• hRok

Γ (Z, ζ) = 0,
• Γy(Z, ζ) factors onto all Bernoulli shifts over Γ.

Proof. By Proposition 1 there exists a sequence Γy(Yi, νi) (i ∈ N) of pmp actions satisfying

• each Γy(Yi, νi) is a factor of a Bernoulli shift,
• hRok

Γ (Yi, νi) < 2−i,
• each Γy(Yi, νi) factors onto all Bernoulli shifts over Γ.

It follows that there exist factor maps Φi : Yi → Yi−1 for i ≥ 2. Let Γy(Z, ζ) denote the
inverse limit of this system. It suffices to show hRok

Γ (Z, ζ) = 0. This follows from [3] (Corollary
4.9). Alternatively, it can be proven directly as follows. Let ε > 0. Then, there exists an infinite
subsequence {ni}∞

i=1 such that

∑
i

hRok
Γ (Yni , νni ) < ε/2.

Let Pi be a generating partition of Yni with Hµ(Pi) < hRok
Γ (Yni , νni ) + ε2−i−1. By pulling back, we

may consider Pi to be a partition of Z. Then,
∨

i Pi is a generating partition for Γy(Z, ζ) and

Hµ

(∨
i
Pi

)
≤∑

i
Hµ(Pi) ≤∑

i
hRok

Γ (Yni , νni ) + ε2−i−1 < ε.

Because ε > 0 is arbitrary, this proves hRok
Γ (Z, ζ) = 0.

5. Zero Entropy Extensions

Theorem 4. Let Γ be a nonamenable countable group and Γy(X, µ) a free ergodic action. Then, there exists
a free ergodic action Γy(X̃, µ̃) that factors onto Γy(X, µ) and has zero Rokhlin entropy.

Remark 1. Seward [15] proved, under the same hypotheses as Theorem 4, the existence of an
extension Γy(X̃, µ̃) of Γy(X, µ) such that Γy(X̃, µ̃) admits a generating partition with at most
n parts where n = n(Γ) depends only on Γ. By Seward’s generalization of Krieger’s Generator
Theorem [4], Theorem 4 implies that we can take n = 2.

We will need Seward’s generalization of Sinai’s Factor Theorem [19]:

Theorem 5 (Seward [19]). For any countable group Γ and any ergodic essentially free action Γy(X, µ) with
positive Rokhlin entropy, there exists a Bernoulli factor such that the Rokhlin entropy of Γy(X, µ) relative to
this Bernoulli factor is zero.

Proof of Theorem 4. Without loss of generality, we may assume Γy(X, µ) has positive Rokhlin
entropy. By Theorem 5, there exists a Bernoulli factor Γy(B, β) of Γy(X, µ) such that

hRok
Γ (X, µ|BB) = 0,

where BB denotes the sigma-algebra associated with B. Let Γy(Z, ζ) be as in Corollary 1. Fix a factor
map of Γy(Z, ζ) onto Γy(B, β). Let Γy(X̃, µ̃) be the independent joining of Γy(Z, ζ) and Γy(X, µ)

over Γy(B, β).
It suffices to show hRok

Γ (X̃, µ̃) = 0. By [3] (Corollary 2.6),

hRok
Γ (X̃, µ̃) ≤ hRok

Γ (X̃, µ̃|BB) + hRok
Γ,µ̃ (BB).
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Because outer Rokhlin entropy is upper-bounded by the Rokhlin entropy of any
intermediate factor,

hRok
Γ,µ̃ (BB) ≤ hRok

Γ (Z, ζ) = 0.

Thus, it suffices to prove hRok
Γ (X̃, µ̃|BB) = 0.

Let ε > 0, α be a generating partition of Z with Hζ(α) < ε and let β be a partition of X with
Hµ(β|BB) < ε such that σ-algΓ(β∪BB) = BX (up to measure zero). By pulling back, we may consider
α and β as partitions on X̃. Clearly, α∨ β is generating for the action Γy(X̃, µ̃) and Hµ̃(α∨ β|BB) < 2ε.
Since ε > 0 is arbitrary, this implies the claim.

6. Zero Entropy Is Generic

In this section, the proof of Theorem 1 is completed. Most of our results so far hold only for
essentially free ergodic actions. In order to generalize them, first we show that essentially free actions
are generic. The next lemma will be helpful twice.

Lemma 8. Let a = Γy(X, µ) be a pmp action and Φ : X → CantorΓ a Γ-equivariant measurable map.
Then, there exists a sequence of measures µi ∈ ProbΓ(CantorΓ) such that

• Γy(CantorΓ, µi) is measurably-conjugate to a for all i,
• µi → Φ∗µ in the weak* topology as i→ ∞.

Proof. Let Ψ : X → CantorΓ be a Γ-equivariant measurable map such that Γy(CantorΓ, Ψ∗µ) is
measurably conjugate to a. To see that such a map exists, identify Cantor with {0, 1}N (where the
latter has the product topology). We consider an element x ∈ {0, 1}N to be a function x : N→ {0, 1}.
Choose a sequence ψi : X → {0, 1} of measurable maps such that for all distinct elements x, y ∈ X
there exists some i such that ψi(x) 6= ψi(y). Then, define Ψ(x)(1Γ)(n) = ψn(x) and in general, define
Ψ(x)(g) = Ψ(g−1x)(1Γ). It is routine to check that this satisfies the claim.

Define Γ-equivariant maps Φn : X → CantorΓ so that the first n-coordinates of Φn(x) agree with
those of Φ(x) and the last coordinates agree with Ψ(x). In other words, for every g ∈ Γ,

Φn(x)(g) = (Φ(x)(g)(1), . . . , Φ(x)(g)(n), Ψ(x)(g)(1), Ψ(x)(g)(2), . . .).

As above, we are identifying Cantor with {0, 1}N. Clearly, Φn is Γ-equivariant, is an
isomorphism onto its image and limn→∞ Φn∗µ = Φ∗µ. To finish the lemma, set µi := Φn∗µ.

Let Proberg
Γ (CantorΓ) ⊂ ProbΓ(CantorΓ) denote the subset of ergodic measures.

Lemma 9. The subset of all essentially free measures in ProbΓ(CantorΓ) is a Gδ set. Moreover, this subset is
dense in ProbΓ(CantorΓ) and its intersection with Proberg

Γ (CantorΓ) is dense in Proberg
Γ (CantorΓ).

Proof. For any element g ∈ Γ, let Fix(g) = {x ∈ CantorΓ : gx = x}. Then, Fix(g) is compact
in CantorΓ. By the Portmanteau Theorem, for every ε > 0, the set {µ ∈ ProbΓ(CantorΓ) :
µ(Fix(g)) < ε} is open. Therefore,

⋂
g∈Γ−{1Γ}

∞⋂
n=1

{µ ∈ ProbΓ(CantorΓ) : µ(Fix(g)) < 1/n}

is a Gδ set. The above set is the same as the subset of essentially free measures. This proves the
first claim.

To prove the second claim, let µ ∈ ProbΓ(CantorΓ) be arbitrary. We observe that the direct
product of Γy(CantorΓ, µ) with a Bernoulli shift is essentially free and factors onto Γy(CantorΓ, µ).

Moreover, this product is ergodic if µ is ergodic. Thus, Lemma 8 implies that µ is a weak* limit
of essentially free measures and these measures can be chosen to be ergodic if µ is ergodic.
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The next step shows that the generic ergodic measure has zero Rokhlin entropy.

Proposition 2. The subset of measures µ ∈ Proberg
Γ (CantorΓ) such that the corresponding action

Γy(CantorΓ, µ) is essentially free and has zero Rokhlin entropy, is a dense Gδ subset of Proberg
Γ (CantorΓ).

Proof. Lemmas 9 and 5 show that this subset is a Gδ. If Γ is nonamenable, then it is dense by
Lemmas 8, 9 and Theorem 4. If Γ is amenable, then the result is due to Rudolph (see the Subclaim
after Claim 19 in [11]). This uses the fact that Rokhlin entropy agrees with classical entropy by [6].

Next, we prove that any property that is residual for ergodic measures is automatically residual
for all measures. To make this precise, let

β : Prob(Proberg
Γ (CantorΓ))→ ProbΓ(CantorΓ),

π : ProbΓ(CantorΓ)→ Prob(Proberg
Γ (CantorΓ)),

denote the barycenter map and the ergodic decomposition map respectively. To be precise,

β(ω) :=
∫

µ dω(µ),

and π is the inverse of β.

Proposition 3. Let Z0 ⊂ Proberg
Γ (CantorΓ) be Borel and define

Z = {µ ∈ ProbΓ(CantorΓ) : π(µ)(Z0) = 1}.

If Z0 is residual in Proberg
Γ (CantorΓ), then Z is residual in ProbΓ(CantorΓ).

First, we need a lemma:

Lemma 10. The barycenter map β is continuous. The ergodic decomposition map π is continuous if and only
if Γ has property (T) in which case it is a homeomorphism.

Proof. The first statement is straightforward. The main result of [28] states that if Γ has property (T),
then Proberg

Γ (CantorΓ) is a closed (and therefore compact) subset of ProbΓ(CantorΓ). On the other
hand, if Γ does not have (T), then Proberg

Γ (CantorΓ) is dense in ProbΓ(CantorΓ). Since β and π are
bijective, these two statements imply the lemma.

Proof of Proposition 3. Case 1. Suppose Γ does not have property (T). By [28], Proberg
Γ (CantorΓ) is

dense in ProbΓ(CantorΓ). By Lemma 1, Proberg
Γ (CantorΓ) is a Gδ. Therefore, Proberg

Γ (CantorΓ) is
residual in ProbΓ(CantorΓ). Thus, Z0 is residual in ProbΓ(CantorΓ). Since Z0 ⊂ Z, this proves Z is
also residual.
Case 2. Suppose Γ has property (T). Let

Y = {ω ∈ Prob(Proberg
Γ (CantorΓ)) : ω(Z0) = 1}.

By Lemma 10, it suffices to prove that Y is residual. Since Z0 contains a dense Gδ, we may
assume without loss of generality that Z0 is a dense Gδ. Thus, the portmanteau Theorem implies Y is
a Gδ subset.

Let d be a continuous metric on Proberg
Γ (CantorΓ). Because Z0 is dense in Proberg

Γ (CantorΓ), for
every n ∈ N, there exists a Borel map Φn : Proberg

Γ (CantorΓ) → Z0 with d(x, Φn(x)) < 1/n for all
x. Then, for every µ ∈ Prob(Proberg

Γ (CantorΓ)), Φn∗µ → µ in the weak* topology as n → ∞. Since
Φn∗µ ∈ Y, this proves Y is dense.
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Proof of Theorem 1. The main theorem of [2] implies that an action has zero Rokhlin if and only if
almost every ergodic component has zero Rokhlin entropy. In addition, [3] (Corollary 4.4) shows that
Z0 is Borel (where Z0 ⊂ Proberg

Γ (CantorΓ) is the set of measures with zero Rokhlin entropy). Thus,
Theorem 1 follows from Propositions 2 and 3.

Remark 2. Here is a brief sketch of an alternative proof of Theorem 1. Using the nonergodic version
of Seward’s generalization of Sinai’s Theorem [19] in the proof of Theorem 4, it can be shown that
every essentially free pmp action admits a zero Rokhlin entropy extension (ergodicity is not required).
The theory of weak equivalence of actions shows that the measure conjugacy class of any action in
A(Γ, X, µ) contains the conjugacy class of each of its factors. Because essentially free actions are
dense in A(Γ, X, µ), it follows that zero Rokhlin entropy actions are also dense in A(Γ, X, µ). In [2]
(Lemma 8.7), it is proven that the subset of all zero-Rokhlin entropy actions in A(Γ, X, µ) is a Gδ

subset. Alternatively, this can be proven in a manner similar to the proof of Lemma 5.

7. Naive Entropy

This section introduces naive entropy. The main result is that zero naive entropy is closed under
factors, self-joinings and inverse limits.

Definition 2. Let Γy(X, µ) be a pmp action and P a partition of X. The naive entropy of P is

hnaive
µ (P) = inf

W⊂⊂Γ
|W|−1Hµ(P

W),

where ⊂⊂means “a finite subset of”. The naive entropy of Γy(X, µ) is

hnaive
Γ (X, µ) = sup

P

hnaive
µ (P),

where the supremum is over all finite-entropy partitions P.

It is an exercise to show that, if Γ is amenable, then naive entropy coincides with
Kolmogorov–Sinai entropy (we will not need this fact). However, if Γ is nonamenable, the situation
is very different:

Theorem 6. If Γ is nonamenable, then every pmp action of Γ has naive entropy in {0,+∞}.

Proof. Suppose Γy(X, µ) and there is a finite-entropy partition P of X with hnaive
µ (P) > 0. Let W ⊂ Γ

be finite. Then,

hnaive
µ (PW) = inf

F⊂⊂Γ
|F|−1Hµ(P

WF) = inf
F⊂⊂Γ

Hµ(PWF)

|WF|
|WF|
|F| ≥ hnaive

µ (P) inf
F⊂⊂Γ

|WF|
|F| .

Since Γ is nonamenable, for every real number, r > 0, there is a finite W ⊂ Γ, such that

inf
F⊂⊂Γ

|WF|
|F| > r.

Hence, supW⊂⊂Γ hnaive
µ (PW) = +∞, proving the theorem.

Definition 3. Let ai = Γy(Xi, µi) be pmp actions (for i ∈ I where I is some index set). We always
assume I is at most countable. A joining of these actions is a Γ-invariant Borel probability measure
on the produce space ∏i Xi whose i-th marginal is µi. Here, Γ acts on the product diagonally:
(γx)i = γxi. We also refer to the action Γy(∏i Xi, λ) as a joining. The joining is said to be finite
if I is finite and infinite otherwise. In the special case that ai = aj for all i, j, the joining is called
a self-joining.
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The main result here is:

Proposition 4. Zero naive entropy is closed under factors, self-joinings (both finite and infinite) and
inverse limits.

We will need the following lemma showing that naive entropy is Lipschitz in the space of
partitions.

Lemma 11. Let a = Γy(X, µ) be a pmp action and P,Q be measurable partitions of X with finite Shannon
entropy. Then, for any finite F ⊂ Γ,

Hµ(P
F)− Hµ(Q

F) ≤ |F|Hµ(P|Q).

Thus,
hnaive

µ (P)− hnaive
µ (Q) ≤ Hµ(P|Q).

Proof. Recall that

Hµ(P
F|QF) = Hµ(P

F ∨ QF)− Hµ(Q
F),

Hµ(Q
F|PF) = Hµ(P

F ∨ QF)− Hµ(P
F).

Subtracting, we obtain

Hµ(P
F)− Hµ(Q

F) = Hµ(P
F|QF)− Hµ(Q

F|PF) ≤ Hµ(P
F|QF)

≤ ∑
f∈F

Hµ( f−1P|QF) ≤ |F|Hµ(P|Q).

This proves the first inequality. The second one follows from the first (observe that we need only
consider a sequence of Fs that realize the naive entropy for Q).

Proof of Proposition 4. Let us suppose that a = Γy(X, µ) is an inverse limit of actions
ai = Γy(Xi, µi) having zero naive entropy. We will show a has zero naive entropy. Let Fi be
the Borel sigma-algebra of Xi. After pulling back under the factor map, we may identify Fi as
a sub-sigma-algebra of the Borel sub-sigma-algebra of X which is denoted here by BX . Thus,
F1 ⊂ F2 ⊂ · · · is an increasing sequence of Γ-invariant sigma-algebras and

∨
i Fi = BX . Because

each action ai has zero naive entropy, if P is any partition of X satisfying P ⊂ Fi for some i and
Hµ(P) < ∞, then, necessarily, hnaive

µ (P) = 0.
Let P be an arbitrary measurable partition of X with finite Shannon entropy. Since

infi Hµ(P|Fi) = 0, for any ε > 0, there exists an i and a partition Q ⊂ Fi with finite Shannon entropy
such that Hµ(P|Q) < ε. By Lemma 11, hnaive

µ (P) ≤ ε + hnaive
µ (Q) = ε. Since ε and P are arbitrary, this

implies a has zero naive entropy and therefore zero naive entropy is closed under inverse limits.
Next, suppose a = Γy(X, µ) has zero naive entropy and let λ be a self-joining of a. We regard

λ as a measure on X × X. If P is any partition of X × X with Hλ(P) < ∞ and ε > 0 is arbitrary,
then there exists a partition Q of X with finite Shannon entropy such that Hλ(P|Q× Q) < ε. Thus,
Lemma 11 implies

hnaive
λ (P) ≤ ε + hnaive

λ (Q× Q).

Since Q× Q = (Q× {X}) ∨ ({X} × Q),

hnaive
λ (Q× Q) = inf

F⊂⊂Γ

Hλ((Q× Q)F)

|F| = inf
F⊂⊂Γ

Hλ(Q
F × QF)

|F|

≤ inf
F⊂⊂Γ

Hλ(Q
F × {X}) + Hλ({X} × QF)

|F| = inf
F⊂⊂Γ

2Hµ(QF)

|F| = 2hnaive
µ (Q) = 0.



Entropy 2016, 18, 220 15 of 20

Thus, hnaive
λ (P) ≤ ε. Since ε and P are arbitrary, this implies λ has zero naive entropy and,

by induction, zero naive entropy is closed under finite self-joinings. Any infinite self-joining is an
inverse limit of finite self-joinings. Thus, the above results show that zero naive entropy is closed
under infinite self-joinings. It is immediate from the definitions that zero naive entropy is closed
under factors.

I do not know whether zero naive entropy is closed under joinings. For example, if two actions
have zero naive entropy, does their direct product also have zero naive entropy?

8. Five Strengthenings of Zero Entropy

Here, we introduce five strengthenings of the notion of zero entropy. First, we need the
following definitions:

Definition 4. An action Γy(X, µ) has completely positive Rokhlin entropy (denoted R-CPE) if every
nontrivial factor has positive Rokhlin entropy.

Definition 5. Two actions are said to be disjoint if the only joining between them is the product joining.

Theorem 7. Let a = Γy(X, µ) be an ergodic essentially free pmp action. Consider the following five
properties:

1. a has completely zero entropy (this means every essentially free factor of a has zero Rokhlin entropy),
2. a is disjoint from all Bernoulli shifts over Γ,
3. a is disjoint from all R-CPE actions of Γ,
4. every factor of every self-joining (including infinite self-joinings) of a has zero Rokhlin entropy,
5. a has zero naive entropy.

Then, 1⇐ 2 and 3⇐ 4⇐ 5. Moreover, if Γ is sofic, then 2⇐ 3.

Remark 3. When Γ is amenable, all five properties listed above are equivalent because naive entropy
and Rokhlin entropy agree with Kolmogorov–Sinai entropy (at least for ergodic essentially free
actions). However, when Γ is nonamenable, it is an open problem whether any or all of the
implications above can be reversed.

Remark 4. If Γ is nonsofic, then we do not know whether Bernoulli shifts over Γ have positive Rokhlin
entropy. This is why we cannot say whether 2 ⇐ 3 unconditionally. See [3] for partial results on this
problem.

Proof. (1 ⇐ 2) This is immediate from Seward’s generalization of Sinai’s Factor Theorem 5, which
states that any ergodic essentially free action with positive entropy factors onto a Bernoulli shift. Thus,
if a has a factor with positive entropy, then it has a Bernoulli factor φ : X → Y. The corresponding
factor joining is the measure (idX × φ)∗µ. This is a non-product joining. (2 ⇐ 3, assuming Γ is sofic)
Since Γ is sofic, Bernoulli shifts have completely positive entropy by [29]. This uses the fact that sofic
entropy is a lower bound for Rokhlin entropy.

(3⇐ 4) Let b be another pmp action of Γ and suppose that b and a admit a nonproduct joining.
It follows from the relative independence theorem [30] (Theorem 6.25) that there exists an infinite
self-joining λ of a such that Γy(XN, λ) and b admit a nontrivial common factor. Therefore, b cannot
be R-CPE.

(4 ⇐ 5) This follows from Proposition 4 and [31] (Theorem 1.5) which states that the naive
entropy of a generating partition is an upper bound for the Rokhlin entropy. Therefore, zero naive
entropy implies zero Rokhlin entropy.



Entropy 2016, 18, 220 16 of 20

9. Zero Naive Entropy

For an arbitrary group Γ, it is an open problem whether Γ has an essentially free pmp action with
zero naive entropy. However for special classes of groups, we will show that not only do such actions
exist, they are generic. First, we need a definition:

Definition 6. The profinite completion of Γ is the inverse limit of the groups of the form Γ/N where
N C Γ has finite index in Γ. It is a compact group on which Γ acts by left translations. The group Γ is
said to be residually finite if any one of the following equivalent conditions hold:

• the action of Γ on its profinite completion is essentially free,
• for every non-identity element g ∈ Γ there exists a finite-index subgroup H ≤ Γ such that g /∈ H,
• there exists a decreasing sequence of finite-index normal subgroups Γ ≥ H1 ≥ H2 ≥ · · · such

that ∩i Hi = {1}.

Definition 7. Let pΓ denote the action of Γ on its profinite completion by left-translations. This is
a pmp action where the measure on the profinite completion is its Haar measure. In addition, let ι

denote the trivial action of Γ on the unit interval with respect to Lebesgue measure (the trivial action
is the action in which every group element fixes every point).

A group Γ has MD if the measure conjugacy class of the direct product action pΓ × ι is dense in
the space of actions A(Γ, X, µ). Equivalently, Γ has MD if the subset of measures in ProbΓ(CantorΓ)

with finite support is dense in the weak* topology. This definition is due to Kechris [20]; it is a
strengthening of property FD which was considered earlier by Lubotzky–Shalom [32] in their study
of unitary representations.

Theorem 8. Free groups, surface groups and fundamental groups of closed hyperbolic three-manifolds
have MD.

Proof. The case of free groups was proven independently by Kechris [20] and Bowen [33]. The rest
was proven in [34]. The case of fundamental groups of closed hyperbolic 3-manifolds relies on Agol’s
virtual fibering Theorem [35].

Let ZNE denote the subset of measures µ ∈ ProbΓ(CantorΓ) with zero naive entropy.

Lemma 12. For any countable group Γ, ZNE is a Gδ subset of ProbΓ(CantorΓ).

Proof. Let Pn be an increasing sequence of finite clopen partitions of CantorΓ such that
∨

n Pn is
the Borel sigma-algebra. Recall that clopen means every part of Pn is both closed and open. Let
An be the subset of all measures µ ∈ ProbΓ(CantorΓ) such that hnaive

µ (Pn) = 0. We claim that
∩n An = ZNE. Clearly, ∩n An ⊃ ZNE. Suppose µ ∈ ∩n An. Let Q be an arbitrary partition of CantorΓ

with Hµ(Q) < ∞. Then, for every ε > 0 there exists n such that Hµ(Q|Pn) < ε. By Lemma 11,
hnaive

µ (Q) ≤ ε + hnaive
µ (Pn) = ε. Since ε and Q are arbitrary this proves µ ∈ ZNE and therefore,

∩n An = ZNE as claimed.
It now suffices to show each An is a Gδ subset. Indeed, this follows from the definition:

hnaive
µ (Pn) = inf

F⊂⊂Γ
|F|−1Hµ(P

F
n),

and the fact that µ 7→ Hµ(PF
n) is weak* continuous for every finite F ⊂ Γ. The reason this is weak*

continuous uses the fact that if P ⊂ CantorΓ is clopen, then its characteristic function is continuous
and therefore induces a continuous functional on ProbΓ(CantorΓ).

Definition 8. The kernel of an action a = Γy(X, µ) is the subgroup Ker(a) := {g ∈ Γ : gx =

x for a.e. x ∈ X}.
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Lemma 13. If a has infinite kernel, then it has zero naive entropy.

Proof. Let P be an arbitrary partition of X with finite Shannon entropy. Then, PK = P (up to measure
zero) for every K ⊂ ker(a). Therefore,

hnaive
µ (P) ≤ inf

F⊂⊂Ker(a)
|F|−1Hµ(P

F) = |Ker(a)|−1Hµ(P).

In particular, if Ker(a) is infinite, then hnaive
µ (P) = 0.

Proof of Theorem 3. By the Glasner–King correspondence mentioned in the introduction, it suffices
to show that ZNE is a dense Gδ subset of ProbΓ(CantorΓ). By Lemma 12, it is a Gδ. If Γ has property
MD, then, by definition, the subset of all measures µ ∈ ProbΓ(CantorΓ) with finite support is dense
in ProbΓ(CantorΓ). Each such measure has infinite kernel. Thus, Lemma 13 implies ZNE is dense.
Thus, we assume Γ = G× H, where H is infinite, amenable and residually finite.

Because H is residually finite, there exists a sequence H ≥ H1 ≥ H2 ≥ · · · of normal finite-index
subgroups of H with ∩i Hi = {1H}. By [36] (Theorem 1), because H is amenable, there exist right
fundamental domains Fi for Hi such that {Fi} forms a Følner sequence. This means: (1) H is the
disjoint union of Hi f over f ∈ Fi and (2) for any finite K ⊂ H,

lim
i→∞

|{ f ∈ Fi : f K ⊂ Fi|
|Fi|

= 1.

Let µ ∈ ProbΓ(CantorΓ) be arbitrary. We will show that it is a weak* limit of measures with
zero Rokhlin entropy. For i ∈ N, define φi : CantorΓ → CantorΓ by φi(x)(g, h) = x(g, f ),
where g ∈ G, h ∈ H and f ∈ Fi is the unique element satisfying Hih = Hi f . Observe that φi(x) is
Hi-invariant and φi is G-equivariant. Therefore, the pushforward measure φi∗µ is G × Hi-invariant.
In addition, observe that F−1

i is a left fundamental domain in the sense that H is the disjoint union of
f−1Hi over f ∈ Fi. Therefore,

µi := |Fi|−1 ∑
f∈Fi

(1G, f−1
i )∗φi∗µ

is Γ-invariant. Since Hi is normal, the kernel of the action Γy(CantorΓ, µi) contains Hi. By Lemma 13,
this action has zero naive entropy.

We claim that µi → µ as i → ∞. To see this, let Φi : CantorΓ → CantorΓ×CantorΓ denote the
graph of φi:

Φi(x) = (x, φi(x)).

Let λi = |Fi|−1 ∑ f∈Fi
(1G, f−1

i )∗Φi∗µ. Because λi is a joining of µ and µi, it suffices to show that
for every (g, h) ∈ G× H,

λi({(x, y) : x(g, h) = y(g, h)})→ 1

as i→ ∞. Thus, fix (g0, h0) ∈ G× H. To simplify notation, we let

∆ = {(x, y) ∈ CantorΓ×CantorΓ : x(g0, h0) = y(g0, h0)}.

It suffices to show that for any x ∈ CantorΓ,

#{ f ∈ Fi : (1G, f−1
i )Φi(x) ∈ ∆}

#Fi
≥ |{ f ∈ Fi : f h0 ∈ Fi}|

|Fi|
,

since the latter tends to 1 uniformly in x. This follows from

{ f ∈ Fi : (1G, f−1
i )Φi(x) ∈ ∆} ⊃ { f ∈ Fi : f h0 ∈ Fi},
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which follows directly from the definitions: if f ∈ Fi and f h0 ∈ Fi, then

(1G, f−1)Φi(x)(g0, h0) = Φi(x)(g0, f h0) = (x(g0, f h0), x(g0, f h0)).

This proves the claim. This implies that µi → µ as i→ ∞ in the weak* topology. Indeed, if L ⊂ Γ
is any finite subset and f : CantorL → C any continuous function, then the function f̃ : CantorΓ → C
defined by composing the restriction map CantorΓ → CantorL with f satisfies

∫
f̃ dµi →

∫
f dµ.

Since such functions are dense in the space of all continuous functions, it follows that µi → µ as
claimed. Because µ is arbitrary, this implies ZNE is dense.

10. Weak Containment

Given any pmp action a = Γy(X, µ), let Factor(a) denote the set of all measures ν ∈
ProbΓ(CantorΓ) such that there is a Γ-equivariant measurable map φ : X → CantorΓ with φ∗µ = ν.
This is the set of factor measures. Let W(a) be the weak* closure of Factor(a).

Now, suppose b = Γy(Y, ν) is another pmp action. We say b is weakly contained in a, denoted
b ≺ a, if W(b) ⊂ W(a). If b ≺ a and a ≺ b, then we say a and b are weakly equivalent. This notion
was introduced in [20]. In [37], it is proven that the definition given in this paper is equivalent to the
one introduced in [20]. Some basic facts: all Bernoulli shifts over Γ are weakly equivalent. In fact,
the Abert–Weiss Theorem [38] states: if a is any essentially free action of Γ, then a weakly contains a
Bernoulli shift. There exists an action a that weakly contains all actions of Γ (this is called the weak
Rokhlin property, see [9]).

It is an open problem whether, for a given action, a, the set of all measures µ ∈ W(a) with zero
Rokhlin entropy is residual. Of course, this is true if W(a) = ProbΓ(CantorΓ) by Theorem 1. It is also
true if a is a Bernoulli shift:

Corollary 2. Let a be a Bernoulli shift. Then, the generic measure µ ∈W(a) has zero Rokhlin entropy.

Proof. If Γ is amenable, then W(a) = ProbΓ(CantorΓ). Thus, the result follows from Theorem 1.
Thus, we may assume Γ is nonamenable. In this case, a is strongly ergodic and therefore every
measure µ ∈ W(a) is ergodic. By Lemma 5, the set of all measures µ ∈ W(a) with zero Rokhlin
entropy is a Gδ subset. By Corollary 1, there exists an action b that is an inverse limit of factors of
Bernoulli shifts that factors onto all Bernoulli shifts and has zero Rokhlin entropy. By Lemma 8,
W(b) = W(a). By Lemma 8 again, the set of measures in W(b) with zero Rokhlin entropy
is dense.

Acknowledgments: I am deeply grateful to Robin Tucker-Drob and Brandon Seward. Many of the ideas
presented here were obtained during conversations with each of them, spanning over a year. In addition,
thanks to Miklos Abert for suggesting the problem of determining whether zero entropy is generic in each weak
equivalence class. I would also like to thank Pierre-Antoine Guihéneuf for the reference [5] and Benjy Weiss for
informing me of Rudolph’s result in [11]. This research was supported in part by National Science Foundation
grant DMS-1500389, NSF CAREER Award DMS-0954606.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Bowen, L. Measure conjugacy invariants for actions of countable sofic groups. J. Am. Math. Soc. 2010, 23,
217–245.

2. Alpeev, A.; Seward, B. Krieger’s finite generator theorem for ergodic actions of countable groups III. 2016,
in press.

3. Seward, B. Krieger’s finite generator theorem for ergodic actions of countable groups II. 2015,
arXiv:1501.03367v2.

4. Seward, B. Krieger’s finite generator theorem for ergodic actions of countable groups I. 2014,
arXiv:1405.3604.



Entropy 2016, 18, 220 19 of 20

5. Rokhlin, V.A. Entropy of metric automorphism. Dokl. Akad. Nauk SSSR 1959, 124, 980–983.
6. Seward, B.; Tucker-Drob, R.D. Borel structurability on the 2-shift of a countable group. Ann. Pure Appl. Log.

2016, 167, 1–21.
7. Kechris, A.S. Global aspects of ergodic group actions. In Mathematical Surveys and Monographs; American

Mathematical Society: Providence, RI, USA, 2010; Volume 160.
8. Glasner, E.; King, J. A zero-one law for dynamical properties. Contemp. Math. 1998, 215, 231–242.
9. Glasner, E.; Thouvenot, J.-P.; Weiss, B. Every countable group has the weak Rohlin property. Bull. Lond.

Math. Soc. 2006, 38, 932–936.
10. Bowen, L.; Hartman, Y.; Tamuz, O. Generic stationary measures and actions. 2015, arXiv:1405.2260.
11. Foreman, M.; Weiss, B. An anti-classification theorem for ergodic measure preserving transformations.

J. Eur. Math. Soc. 2004, 6, 277–292.
12. Ornstein, D.S.; Weiss, B. Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math.

1987, 48, 1–141.
13. Ball, K. Factors of independent and identically distributed processes with non-amenable group actions.

Ergod. Theory Dyn. Syst. 2005, 25, 711–730.
14. Bowen, L. Weak isomorphisms between Bernoulli shifts. Israel J. Math. 2011, 183, 93–102.
15. Seward, B. Every action of a nonamenable group is the factor of a small action. J. Mod. Dyn. 2014, 8,

251–270.
16. Gaboriau, D.; Lyons, R. A measurable-group-theoretic solution to von Neumann’s problem. Invent. Math.

2009, 177, 533–540.
17. Ornstein, D. Factors of Bernoulli shifts are Bernoulli shifts. Adv. Math. 1970, 5, 349–364.
18. Ornstein, D.S. Ergodic Theory, Randomness, and Dynamical Systems; Yale University Press: New Haven, CT,

USA, 1971.
19. Seward, B. Positive entropy actions of countable groups factor onto Bernoulli shifts. 2015, in press.
20. Kechris, A.S. Weak containment in the space of actions of a free group. Isr. J. Math. 2012, 189, 461–507.
21. Chifan, I.; Ioana, A. Ergodic subequivalence relations induced by a Bernoulli action. Geom. Funct. Anal.

2010, 20, 53–67.
22. Hjorth, G. A lemma for cost attained. Ann. Pure Appl. Log. 2006, 143, 87–102.
23. Benjamini, I.; Lyons, R.; Peres, Y.; Schramm, O. Group-invariant percolation on graphs. Geom. Funct. Anal.

1999, 9, 29–66.
24. Benjamini, I.; Lyons, R.; Peres, Y.; Schramm, O. Critical percolation on any nonamenable group has no

infinite clusters. Ann. Probab. 1999, 27, 1347–1356.
25. Häggström, O.; Peres, Y. Monotonicity of uniqueness for percolation on Cayley graphs: All infinite clusters

are born simultaneously. Probab. Theory Relat. Fields 1999, 113, 273–285.
26. Lyons, R.; Schramm, O. Indistinguishability of percolation clusters. Ann. Probab. 1999, 27, 1809–1836.
27. Pak, I.; Smirnova-Nagnibeda, T. On non-uniqueness of percolation on nonamenable Cayley graphs. C. R.

Acad. Sci. Paris Sér. I Math. 2000, 330, 495–500.
28. Glasner, E.; Weiss, B. Kazhdan’s property T and the geometry of the collection of invariant measures.

Geom. Funct. Anal. 1997, 7, 917–935.
29. Kerr, D. Bernoulli actions of sofic groups have completely positive entropy. Israel J. Math. 2014, 202,

461–474.
30. Glasner, E. Ergodic theory via joinings. In Mathematical Surveys and Monographs; American Mathematical

Society: Providence, RI, USA, 2003; Volume 101.
31. Seward, B. Weak containment and Rokhlin entropy. 2016, arXiv:1602.06680.
32. Lubotzky, A.; Shalom, Y. Finite representations in the unitary dual and Ramanujan groups. Contemp. Math.

2004, 347, 173–189.
33. Bowen, L. Periodicity and circle packings of the hyperbolic plane. Geom. Dedicata 2003, 102, 213–236.
34. Bowen, L.; Tucker-Drob, R.D. On a co-induction question of Kechris. Israel J. Math. 2013, 194, 209–224.
35. Agol, I.; Groves, D.; Manning, J. The virtual Haken conjecture. Doc. Math. 2013, 18, 1045–1087.
36. Weiss, B. Monotileable amenable groups. In Topology, Ergodic Theory, Real Algebraic Geometry: Rokhlin’s

Memorial; American Mathematical Society: Providence, RI, USA, 2001; pp. 257–262.
37. Tucker-Drob, R.D. Weak equivalence and non-classifiability of measure preserving actions. Ergod. Theory

Dyn. Syst. 2015, 35, 293–336.



Entropy 2016, 18, 220 20 of 20

38. Abért, M.; Weiss, B. Bernoulli actions are weakly contained in any free action. Ergod. Theory Dyn. Syst.
2013, 33, 323–333.

c© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Strengthenings of Zero Entropy
	Organization

	Preliminaries
	Rokhlin Entropy
	A Zero Entropy Action That Factors onto Every Bernoulli Shift
	Zero Entropy Extensions
	Zero Entropy Is Generic
	Naive Entropy
	Five Strengthenings of Zero Entropy
	Zero Naive Entropy
	Weak Containment

