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Abstract: The study considers advantages of the introduced measure of time based on the entropy
change under irreversible processes (entropy production). Using the example of non-equilibrium
expansion of an ideal gas in vacuum, such a measure is introduced. It is shown that, in the general
case, this measure of time proves to be nonlinearly related to the reference measure assumed uniform
by convention. The connection between this result and the results of other authors investigating the
measure of time in some biological and cosmological problems is noted.
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1. Introduction

The second law of thermodynamics together with the following concept of entropy had a tremendous
effect on physics and natural science in general. All these—the introduction of an absolute temperature
scale, the restriction of the conversion efficiency of heat engines, the discovery of various regularities
under non-equilibrium processes—and many other things originated as crucial corollaries of the
second law [1]. The increase of thermodynamic entropy in an isolated system enabled researchers to
introduce a physical quantity characterizing irreversibility, an essential property of the world around
us that was not previously covered by the laws of mechanics and electromagnetics.

The irreversibility and directionality from the past to the future is a basic property of another
physical quantity: time. The problem of time and the properties thereof are addressed by an enormous
number of studies, especially philosophic ones. Physicists investigate this quantity much more rarely;
however, this area has a number of good reviews (see, for instance, [2–6]). Based on these investigations,
we can identify a number of properties that are common for time and entropy. Thus, in addition to
directionality, they both are related to variability and depend on an observer. The latter property is
more often attributed to Boltzmann’s and the subsequent statistical and information generalization of
entropy as well as to the most wide-spread approach in the present post-Einstein age: the relational
approach to time. Furthermore, both quantities are considered among the fundamental and most
difficult-to-study concepts characterizing the surrounding world. It should be mentioned that close
relations between entropy and time were first noticed by Boltzmann and then this question was
discussed in the literature many times (see, for example, [2,3]).

As regards the noted affinity, there are a number of papers (see, for instance, [7]) where the
measurement of time flow is directly associated with the measurement of entropy change (more
specifically, with irreversible change, i.e., entropy production). This use of entropy production
as a metric of time has a considerable advantage as compared to others. Namely, the traditional
methods of introducing a metric of time are based on astronomic, mechanic, electromagnetic, and
quantum optical regularities. However, according to the contemporary understanding, they are seen
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as essentially reversible phenomena. Consequently, these regularities are unreasonable from the
fundamental perspective, as a basic measure for the essentially irreversible quantity (the so-called
arrow of time). Universality is another advantage of entropy-based time. Indeed, the statistical
introduction of entropy through a number of microstates enabling a system’s state allows finding
entropy and, therefore, time for any systems (including imaginary and modeled ones). As opposed to
the entropic measure of time, the traditional measures of time are based on some specific phenomenon
that a system may lack in the general case (particularly, it is easy to assume a hypothetic world of
electrically neutral classic particles where electromagnetic and quantum optical measures of time
cannot be used). Thus, the entropy method of introducing a metric of time flow appears to be as
universal as the traditional method of introducing a space metric. Moreover, what is very important is
that this method is essentially different from the methods associated only with spatial measurements
(as distinct, for example, from the employed astronomic and mechanical methods for introducing the
measure of time). In addition, the fact that the time considered herein is directly related to a system’s
dissipative processes and is, therefore, strictly individual for every system involved represents a major
feature of this time and its fundamental difference from an absolute Newtonian time.

In spite of the reasons above, the question about relations between entropy and the measure
of time has been scarcely studied in the literature. Considerable discussions of this topic from the
qualitative perspective can be more often found in philosophic and popular-science editions (see,
for instance, [2–5,8]), while few quantitative works on the topic have been recently presented (see,
for instance, [9–12]).

The effort in this area was made in [13]. The metric of time for a developing system τ was
introduced as directly proportional to the specific production of thermodynamic entropy. The found
logarithmic relation of τ to the reference (uniform) time t used by the observer external to the system is
an interesting result of such a consideration. A drawback of this research is that the class of systems for
which the provided approach is directly suitable is restricted by the postulates of local non-equilibrium
thermodynamics. As is known, these restrictions depend on the possibility to consider a system
in a local equilibrium state [1,14]. The class of non-equilibrium systems which are provided for
such an opportunity is very wide (it includes the majority of practically important systems that we
encounter). However, there still are systems for which such a consideration is inapplicable [14].
Gas expansion from some finite volume into a vacuumized space of unlimited size represents
an important example of such a system. For a number of cases (for instance, under expansion from
a thermodynamic equilibrium state, with some restrictions applied to gas properties and expansion
rate), this problem can be subjected to hydrodynamic consideration involving thermodynamics.
Here, an isoentropic description of the expanding gas (see, for example, [15]) is typically used.
Nevertheless, in the extreme case (of the absence of thermodynamic equilibrium in the original
state and a lack of interaction of gas molecules with each other and walls during the expansion),
this problem falls outside the scope of thermodynamics. According to Popper (see, e.g., [16,17]), this
example is fundamental as it indicates the presence of unidirectional processes for which entropy
either remains unchanged or is not defined. This leads Popper to a conclusion [16,17] that it is
incorrect to connect the arrow of time with the increase of entropy and that, starting from Boltzmann,
these two notions have been erroneously considered as closely related. However, we think that
this conclusion is too categorical. The given example only shows that non-thermodynamic systems
cannot be considered with the use of the entropy which was phenomenologically introduced by
Clausius and then theoretically developed by Boltzmann for macroscopic systems where interaction
between their constituent particles causes relaxation of a system to a thermodynamic equilibrium.
If a system fails to meet the basic postulates of thermodynamics [1], then the simplest generalizations
of Boltzmann’s entropy must be employed. Here, informational entropy is the most well-known
and simplest generalization (hereinafter simply referred to as entropy) [3]. It is that which should be
related to time in such systems. The measure of time based on such entropy will become applicable to
arbitrary systems (not only related to gas expansion, i.e., having a physical origin, but also to systems
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considered in biology, economy, etc.). Based on the above, the important task is to consider systems
where the use of classical entropy is restricted, and for such a system it is necessary to find a method of
introducing the entropy-based time and analyze the possible corollaries thereof. This subject is the
purpose of the present study.

2. Model

In order to achieve the stated purpose, we deliberately chose to study a very complicated case
in terms of thermodynamic description: expansion of an ideal gas in vacuum, i.e., motion of identical
particles that can interact rather rarely only by absolutely elastic collisions. Initially, the gas occupies
a certain volume where molecules’ locations and velocities are unknown and reasonably arbitrary.
The direction of motion is strictly radial. Then the gas starts expanding; during this process, the volume
occupied by its molecules increases while the initial distribution of particle velocities, according to
the model involved, remains the same. Obviously, any stage of expansion in such a system is not in
a thermodynamic equilibrium (including the local one), and thermodynamic equilibrium characteristics
such as temperature and the like cannot be introduced. For illustrative purposes, we will consider
a one-dimensional case (Figure 1). We note that a three-dimensional case is absolutely similar and will
be studied below. Let us assume a number of particles N. We have an observer inside the expanding
gas with the above properties. The observer would naturally choose a size of one of the system’s
particles as a length scale. Then other spatial sizes of the problem are normalized to this length scale,
i.e., considered dimensionless. These include initial and current sizes of the regions occupied by
the gas: r0 and r, respectively (see Figure 1). The observer has no clock (timepiece). However, the
purpose of the observer is to introduce a measure of time based on the properties of the system of
particles around him. Using the above-mentioned properties of the measure of time and following this
paper’s purpose, the observer wants to use the entropy method. The entropy that can be introduced
for arbitrary, including essentially non-equilibrium, systems [3] would be naturally chosen. For the
problem under consideration, the entropy change equals the entropy production (no entropy flows
through the system’s boundaries). Since only spatial changes occur in the system, the observer divides
the system’s current size r into G similar cells having the size ∆ (Figure 1). This size remains unchanged
and, additionally, can contain up to N particles. It is obvious that, at different system-observation
instants, G varies and equals 2r/∆. The size of the cell selected by the observer depends on the degree
of detail in which the observer prefers to describe the system. Based on the information which is
known by the observer (or, as we should rather say, a total lack of information about the system,
including details of its initial state), all possible distributions of particles by cells should be considered
equally probable. This probability is inversely proportional to the number of such distributions Ω.
This number by which N identical particles may be arranged by G cells with an arbitrary number of
particles per cell is well known [18]:

Ω “
pN ` G´ 1q !
N ! pG´ 1q !

(1)
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text hereof. 

Figure 1. The simplest model of identical particles spreading out in vacuum considered herein.
The initial state and one of the following states are shown. All symbols in the figure are explained in
the text hereof.
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A similar formula is traditionally used in the literature for describing boson distributions.
The difference between the two formulae lies only in their interpretations. Thus, in the case of
bosons, cells are primarily associated with energetic rather than spatial states and the number of cells
is usually considered constant as opposed to variable in our case.

3. Entropic Measure of Time

As noted above, the observer uses such a measure of time that the time change dτ is equal
(accurate up to a constant multiplier) to the irreversible change of entropy per particle dSir (entropy
production density):

dτ ” dSir{N (2)

In Equation (2), the entropy (which in some known cases is reduced to thermodynamic and
Boltzmann entropies) is used and the entropy changes due to irreversible processes inside the system
rather than a flow across the system’s boundaries. It should be additionally emphasized that the
entropic measure (2) has meaning only if irreversible processes take place in the system. In the case of
equilibrium, and for hypothetic reversible processes, it loses its meaning.

The entropy S for the system under consideration is defined (accurate up to a constant dimensional
multiplier) by [3]:

S “ lnΩ (3)

Assuming that N >> 1 and G >> 1, based on Equations (1) and (3), using Stirling’s approximation,
we obtain:

S “ pN ` Gq ln pN ` Gq ´ GlnG´ NlnN (4)

As a result, for entropy per particle we have:

S{N “

ˆ

1`
G
N

˙

ln
ˆ

1`
G
N

˙

´
G
N

ln
ˆ

G
N

˙

(5)

For the gas expansion problem at hand, obviously dSir “ dS. Therefore, using Equation (2), the
following can be written, accurate up to an additive constant:

τ ” S{N “

ˆ

1`
G
N

˙

ln
ˆ

1`
G
N

˙

´
G
N

ln
ˆ

G
N

˙

(6)

The measure of time thus introduced has all the necessary properties. So, for the preset N, it
increases monotonically under the gas’s irreversible expansion which is always accompanied by the
increase of G. Since G = 2r/∆, the introduced measure is immediately related to the changes occurring
in the system and depends on the observer dividing the space available to the system into similar cells.
Furthermore, the introduced measure is rather universal: it requires only an observer (selecting ∆),
a developing system, and the possibility of introducing the measure of distance.

It is important to establish relations between the introduced measure of time (Equation (6)) and
the time t assumed as the reference uniform time. For this purpose, we shall consider an observer
positioned outside the system at hand and having such a reference clock. This observer has all the
information about the system like the first observer does, i.e., knowledge of the quantities r0, r, N, G,
and ∆. The outside observer will calculate the system’s specific entropy in exactly the same manner
as in Equation (5). However, originally having a clock, the observer can introduce the velocity of
motion υ = dr/dt. Therefore, for the considered one-dimensional motion, G = 2(r0 + υt)/∆. As a result,
according to Equation (6),

τ “

ˆ

1`
2pro ` υ ¨ tq

N∆

˙

ln
ˆ

1`
2pro ` υ ¨ tq

N∆

˙

´
2pr0 ` υ ¨ tq

N∆
ln
ˆ

2pro ` υ ¨ tq
N∆

˙

(7)
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Let us introduce the following notation: α1 “
2r0
N∆ , t1 “

N∆
2υ . Then we obtain

τ “ p1`α1 ` t{t1q ln p1`α1 ` t{t1q ´ pα1 ` t{t1q ln pα1 ` t{t1q (8)

Using Equation (8), we will consider two limits:

‚ Let t Ñ 0 , then
τ9τ1 ` ξ1t{t1 (9)

where τ1 “ p1`α1qlnp1`α1q ´α1lnα1, ξ1 “ lnp1` 1{α1q.
‚ Let t Ñ8 , then

τ9ln p t{t1 q (10)

The obtained formulae (8)–(10) indicate that, for the general case, the time τ introduced by the
inside observer based on the calculations of entropy is non-uniform (nonlinear) with respect to t
(Figure 2). The relation of the two scales appears to be linear only in the very beginning of expansion
(see Equation (9)). It may seem that such a property of the entropic measure of time is its drawback.
Indeed, it is traditionally assumed in physics that time flows uniformly for velocities much smaller
than the velocity of light and for relatively small masses (i.e., outside the scope of the special and
general theory of relativity). However, such an assumption is not based on any law; moreover, it cannot
be proved either logically or empirically. In particular, this issue was addressed by Poincaré [19,20].
Let us here quote his paper [19]:

We have not a direct intuition of the equality of two intervals of time. The persons who
believe they possess this intuition are dupes of an illusion. When I say, from noon to one
the same time passes as from two to three, what meaning has this affirmation? The least
reflection shows that by itself it has none at all. It will only have that which I choose to give
it, by a definition which will certainly possess a certain degree of arbitrariness.

And another quotation of his [19]:

. . . there is not one way of measuring time more true than another; that which is generally
adopted is only more convenient. Of two watches, we have no right to say that the one goes
true, the other wrong; we can only say that it is advantageous to conform to the indications
of the first.
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One has to remember that we have assumed the existence of the uniform scale of t that can be
used as a reference only by convention. In reality (for instance, from the standpoint of some third
observer), the clock of t of the outside observer considered herein may be even more “non-uniform”
than that of the inside observer.

Such nonlinearity leads to interesting kinematical corollaries. Indeed, according to the outside
observer, the system’s boundary expands at a constant velocity υ, the velocity of motion of the
originally fastest particles. However, from the perspective of the inside observer, such constancy of
velocity will be observed only in the beginning, and at considerably long times the velocity of motion
will grow exponentially. Indeed, according to the inside observer, the velocity dr/dτ can be written,
using Equations (9) and (10), as:

dr
dτ
“

dr
dt

dt
dτ
“ υ

dt
dτ
“

$

’

&

’

%

N∆
2ξ1

, t, τÑ 0

N∆
2 eτ, t, τÑ8

(11)

As is seen, at some moment of observation, according to the measurements of the inside
observer using Newton’s dynamics to describe the motion, the particles will start spreading out
with an acceleration as if under the influence of a “mysterious” (or “dark”) force which arises and
becomes stronger with time.

Let us make two important notes.

1. Previously, the one-dimensional case was considered. It can be easily extended to a three-
dimensional one. The gas expands radially with the spherical symmetry. Initially, it is contained
in a sphere with the radius r0 and then occupies ever larger spheres of the radius r. As before, let
us write the number of cells and the number of particles as G and N, respectively. As in the case
above, we will assume the volume of cells is constant and designate it as ∆3. Given the symmetry
of the problem, the shape of the cells can be selected as spherical layers of some thickness centered
on the system’s point of symmetry. Obviously, the thickness of these layers is to decrease in
inverse proportion to r2. For such a formulation, G = 4π(r/∆)3/3. It is evident that the expression
for the time measured by the inside observer using the variables G and N will remain the same
as Equation (6). However, the relation of the inside observer’s time and the reference time has
the form:

τ “
´

1` pα3 ` t{t3q
3
¯

ln
´

1` pα3 ` t{t3q
3
¯

´ 3 pα3 ` t{t3q
3 ln pα3 ` t{t3q (12)

where α3 “ p4π{3Nq1{3 r0{∆, t3 “ p3N{4πq1{3 ∆{υ. Two limit cases have the form:

τ9τ3 ` ξ3t{t3, t Ñ 0 (13)

where τ3 “
`

1`α3
3
˘

ln
`

1`α3
3
˘

´α3
3ln

`

α3
3
˘

, ξ3 “ 3α2
3ln

`

1` 1{α3
3
˘

.

τ93ln p t{t3q , t Ñ8 (14)

Thus, as is seen from the given formulae, the three-dimensional case has no fundamental
differences from the linear one.

2. Previously, we have considered a strongly non-equilibrium case of gas expansion in vacuum.
This case cannot be investigated using the methods of classical thermodynamics. It can be
shown, nevertheless, that for a number of adjacent problems, results similar to the ones above
can be obtained thermodynamically using a number of restrictions. We will consider some
initial thermodynamic equilibrium state of an ideal gas. The gas adiabatically expands from it
in vacuum and reaches another thermodynamic equilibrium state while changing the volume
V. Obviously, this process is irreversible and the gas does no work. According to the adiabatic
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nature of the process and the first law of thermodynamics, the temperature of an ideal gas
is to remain unchanged during expansion. Let us replace a real irreversible process with
a hypothetic isothermal equilibrium process having identical initial and final states. The changes
of thermodynamic entropy St for the two processes are the same and it is easy to show [1,18] that
the change of entropy in the case at hand is equal to

dSt “ νR dV{V (15)

where R is the universal gas constant and ν is the number of gas moles.
As before, by introducing the inside observer’s time as directly proportional to entropy
per particle, we obtain

dτ9dSt{ν (16)

or, with the accuracy up to an additive constant and multipliers,

τ “ lnV (17)

For the outside observer (having the reference uniform clock of t), the gas volume during
expansion is described by a power-law dependence on t. By inserting this law into the last
formula, a logarithmic relation between the two times, similar to Equation (14), is obtained.

4. Conclusions

The present study develops a formerly proposed relation between the measure of time and entropy.
The thermodynamic entropy previously used for this purpose in the case of local-equilibrium processes
is replaced with the informational entropy suitable for describing arbitrary systems. For the simplest
model of ideal-gas expansion, we obtain the entropic measure of time related to the spatial disorder.

It was not an intention hereof to answer metaphysical questions about the cause of variability
in the world, the nature of time, its reality, and the like. We considered a purely physical problem of
the most consistent and universal, from the theoretical point of view, introduction of the measure of
time. Such a rigorous operational approach to the introduction of measures (particularly the measure
of time) of the basic physical quantities is extremely important for the foundation of physics and its
further development. It was mentioned many times by Bridgman [21], and Milne [22], et al.

Importantly, it is the existence of a special function of state, entropy (i.e., one of the formulations
of the second law of thermodynamics), that allowed introducing an absolute temperature scale for
a thermodynamic system in a thermal equilibrium. As a result, an objective measure of thermal-motion
intensity appeared in science [1]. The present study connects the change of entropy under irreversible
processes with the possibility to consistently introduce the measure of time. The noted relations
between entropy, on the one side, and temperature/time, on the other side, may prove to be very
meaningful and require an additional research.

The crucial result hereof is that a nonlinear relation between the time scale used by an observer
and the one chosen as a reference is established for the general case. We believe that a logarithmic
relation observed at relatively long times is especially important here (see Equation (14)). To be specific,
such a relation between intrinsic (developmental) and chronological (astronomical) times during
growth and development of systems was independently proposed before [13,23,24]. In particular,
the papers [13,24] provide a theoretical grounding for the universal power-law relationship between
a developing system’s mass and astronomical time. This relationship is confirmed by the available
empirical data of the growth in biological and crystallization systems. Then the change of mass
in the system is connected with its entropy production which, similarly to the approach herein, is
directly related to the internal (biological) time in the system. Additionally, such a logarithmic relation
between the two scales of time and its potential significance for cosmology was also mentioned in
1937–1950s by Milne (see, for instance, [22]). It is interesting that Milne obtained this relation only
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kinematically while bringing his laws of motion, obtained for the so-called fundamental particles
(galactic nuclei), into consistency with the traditional Newton laws. The fundamental particles formed
a basis of his cosmological model of the world. These particles spread out uniformly in different
directions at different velocities (largely like the expansion of an ideal gas in vacuum considered herein).
Milne shows that the uniform motion of the fundamental particles occurs for time t (a universal time
related to the atomic clock), whereas τ (which is logarithmically associated with t) is a time introduced
by the researcher on the basis of astronomic observations. Such use of the two times allowed Milne to
build an original theory that had a great influence on the development of modern cosmology.

The parallels mentioned herein obviously demonstrate a common nature and a close connection
between the measure of time considered in the present paper and the measures of time used both in the
problems of cosmology to describe the origin and development of the Universe and in the problems of
biology to describe the birth and growth of living beings.

Despite the result obtained herein with respect to the logarithmic relation between the measures
of time and its mentioned connection with the results of other studies, the question of universality of
such a relation requires further serious analysis and, presently, generalizations (in particular regarding
cosmological problems) must be avoided.

Acknowledgments: The authors express their special thanks to Vladimir D. Seleznev for discussion and unfailing
interest to the topic considered herein. His death on 12 October 2015 became a tremendous personal tragedy for us.
His memory will always be with us. We dedicate this research on entropy and time to him. Vladimir D. Seleznev
contributed the most of his time on this earth to the study of entropy and his ideas will dwell with us for a very
long time. The reported study was partially funded by RFBR according to the research project No. 16-31-00255
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measures of time and its mentioned connection with the results of other studies, the question of 
universality of such a relation requires further serious analysis and, presently, generalizations (in 
particular regarding cosmological problems) must be avoided. 
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