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Abstract: This paper studies a continuous Bertrand duopoly game model with two-stage delay. Our
aim is to investigate the influence of delay and weight on the complex dynamic characteristics of
the system. We obtain the bifurcation point of the system respect to delay parameter by calculating.
In addition, the dynamic properties of the system are simulated by power spectrum, attractor,
bifurcation diagram, the largest Lyapunov exponent, 3D surface chart, 4D Cubic Chart, 2D parameter
bifurcation diagram, and 3D parameter bifurcation diagram. The results show that the stability of
the system depends on the delay and weight, in order to maintain stability of price and ensure the
firm profit, the firms must control the parameters in the reasonable region. Otherwise, the system
will lose stability, and even into chaos, which will cause fluctuations in prices, the firms cannot be
profitable. Finally, the chaos control of the system is carried out by a control strategy of the state
variables’ feedback and parameter variation, which effectively avoid the damage of chaos to the
economic system. Therefore, the results of this study have an important practical significance to make
decisions with multi-stage delay for oligopoly firms.
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1. Introduction

When the market is supplied by only a few firms, oligopolistic competition is easy to occur where
they produce homogeneous goods in the same market. In fact, the firms make optimal decisions for
the maximization of profit. In this paper, we consider a firm that adopts a delay strategy, which refers
to two different historical prices, to make a decision. Another firm makes a decision without delay. The
Bertrand model considers a duopoly with a single homogeneous product, which has been studied in
many papers. Some researchers have studied the Bertrand duopoly with differentiated products. The
results show that the degree of product differentiation has a great influence on the price and quantity
of sale [1–3]. In the Bertrand game model, the amount of information that the duopoly has will affect
the stability of the system, mainly reflected in the change of the basin of attraction [4]. In order to
maximize profits, the duopoly enterprise launches a price competition and expands market share.
However, this will have a greater impact on the dynamics of the game model [5–7], having studied
the price competition and chaos control of the air conditioning market. They focused on the role of
coordination and distributed demand in price competition in the air conditioner market. Since the
market information is not complete, the duopoly enterprise must adopt bounded rationality for a price
decision. The scholars have studied the complexity of the game model with bounded rationality about
synchronization, marginal costs, and so on [8–10]. The duopoly enterprise makes price decisions not
only in reference to the current price but also in reference to historical prices. The effect of two-stage
delay on the complexity of the system is studied in [11,12], and the stability region of the system is
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given. The nonlinear dynamic behavior of the triopoly game model is studied from heterogeneous
and delayed bounded rationality, respectively, in [13,14]. The research conclusions are the same as that
of a two-dimensional game model, but the research process is more complex. Scholars have studied
not only the Bertrand game model, but also investigated the complexity of the Cournot game model,
the Stackelberg game model and the Holling–Tanner model. Their research methods are useful for
reference in this paper [15–17].

In short, most of the studies are discrete, and there are very few with respect to two-stage delay.
In this paper, we establish a continuous Bertrand duopoly game model with two-stage delay. We focus
on the influence of delay parameters on the dynamic characteristics of the system.

This paper is organized as follows: in Section 2, a continuous differential Bertrand duopoly game
mode with two-stage delay is established. The process solution of delay is given, and studies the
influence of delay on the stability of the system. In Section 3, numerical simulation is conducted,
through the attractor, bifurcation diagram, the largest Lyapunov exponent, and initial value sensitivity,
etc., to study the influence of delay and weight on the stability of price and profit. In Section 4, the
effective control of chaos by a feedback control method is adopted in the system. Finally, the conclusion
of this paper is provided in the last section.

2. The Model

In this part, we study the influence of delay on the dynamics of the system when the economic
system is composed of two firms. Let us assume they produce similar products. Let pi denote the
price of product i and qi denote the demand of product i (i = 1, 2). We assume demand function is
linear form:

#

q1 “ a1 ´ b1 p1 ` d1 p2

q2 “ a2 ´ b2 p2 ` d2 p1
(1)

where ai, bi, di ą 0 (i = 1, 2), ai are the basic demand for the market, bi denotes the elastic demand for
itself and di denotes the substitution rate between products. Where ci is constant are the marginal costs
of Firm i [2]. Further, we assume linear cost function given by:

Cipqiq “ ciqi, i “ 1, 2 (2)

Then the profit of the i-th Firm becomes:

#

π1pp1, p2q “ pp1 ´ c1qpa1 ´ b1 p1 ` d1 p2q

π2pp1, p2q “ pp2 ´ c2qpa2 ´ b2 p2 ` d2 p1q
(3)

In such a way, we have a game in which the firms are a duopoly. In the real market, the information
of the firms is not complete, and they exhibit bounded rationality when making decisions. Typically,
the firm makes price decisions, not only considering the current profit margin, but also consider the
profit margin before τ, so that the final price is closer to the actual value of the product.

In this paper, we assume that Firm 1 implements a two-stage delay, that is to say, it refers to
the historical price of two different periods, the delay parameters are τ1 and τ2. Firm 2 makes price
decisions without delay. Since the current price cannot be obtained accurately, here we do not consider
the current price. When making price decisions, Firm 1 only considers two historical prices. Thus, the
dynamic process of decision is changed into:

¨
piptq “ αippiq

Bπippd
1, p2q

Bpi
(4)

where αippiq indicates the degree of change in the product price with the marginal profit. We assume
that αippiq are a linear form αippiq “ νi pi, i “ 1, 2. Where νipνi ą 0q indicates the speed of the price
adjustment of Firm i.
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pd
1 “ wp1pt´ τ1q ` p1´wqp1pt´ τ2q (5)

where 0 ď w ď 1 is the price weight of t´ τ1, 1´w is the price weight of t´ τ2. From Equations (3)–(5),
the dynamical system model with two-stage delay is as follows:

#

¨
p1ptq “ ν1 p1pa1 ´ 2b1wp1pt´ τ1q ´ 2b1p1´wqp1pt´ τ2q ` d1 p2 ` b1c1q
¨

p2ptq “ ν2 p2pa2 ´ 2b2 p2 ` d2wp1pt´ τ1q ` d2p1´wqp1pt´ τ2q ` b2c2q
(6)

3. Equilibrium Points and Local Stability

When the price competition of firms reaches equilibrium, we can get the following equilibrium
point of Equation (6): E1p0, 0q, E2p0, a2`b2c2

2b2
q, E3p

a1`b1c1
2b1

, 0q, E4pp˚1 , p˚2 q, where:

p˚1 “
2a1b2 ` a2d1 ` 2b1b2c1 ` b2c2d1

4b1b2 ´ d1d2
, p˚2 “

2a2b1 ` a1d2 ` 2b1b2c2 ` b1c1d2

4b1b2 ´ d1d2

According to the economic significance, the equilibrium point should be non-negative, so E1, E2,
and E3 are the boundary equilibrium points, and only E4 is the Nash equilibrium point. It means that
the price of firms can be stabilized in a state of equilibrium through competition. In this paper, we focus
on the influence of τ1, τ2 and w on the dynamic behavior of Equation (6) at the Nash equilibrium point.

The linearized Equation (6) at the equilibrium point E4pp˚1 , p˚2 q by Jacobian matrix is:

#

¨
p1ptq “ pa1ν1 ´ 2b1ν1 p˚1 ` d1ν1 p˚2 ` b1c1ν1qp1 ´ 2b1ν1wp˚1 p1pt´ τ1q ´ 2b1ν1p1´wqp˚1 p1pt´ τ2q ` d1ν1 p˚1 p2
¨

p2ptq “ d2ν2wp˚2 p1pt´ τ1q ` d2ν2p1´wqp˚2 p1pt´ τ2q ` pa2ν2 ´ 4b2ν2 p˚2 ` d2ν2 p˚1 ` b2ν2c2qp2
(7)

The characteristic equation associated with Equation (7) is given by:
ˇ

ˇ

ˇ

ˇ

ˇ

λ´ J11 ´J12

´J21 λ´ J22

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 (8)

where:

J11 “ a1ν1 ´ 2b1ν1 p˚1 ` d1ν1 p˚2 ` b1c1ν1 ´ 2b1ν1wp˚1 e´λτ1 ´ 2b1ν1p1´wqp˚1 e´λτ2

J12 “ d1ν1 p˚1

J21 “ d2ν2wp˚2 e´λτ1 ` d2ν2p1´wqp˚2 e´λτ2

J22 “ a2ν2 ´ 4b2ν2 p˚2 ` d2ν2 p˚1 ` b2ν2c2

So we can get the characteristic equation for system Equation (7) as follows

λ2 ` Aλ` pBλ` Cqe´λτ1 ` pDλ` Eqe´λτ2 “ 0 (9)

where:
A “ 2b2 p˚2 ν2, B “ 2b1 p˚1 ν1w, C “ 4b1b2 p˚1 p˚2 ν1ν2w´ d1d2 p˚1 p˚2 ν1ν2w

D “ 2b1 p˚1 ν1 ´ 2b1 p˚1 ν1w

E “ 4b1b2 p˚1 p˚2 ν1ν2 ´ d1d2 p˚1 p˚2 ν1ν2 ´ 4b1b2 p˚1 p˚2 ν1ν2w` d1d2 p˚1 p˚2 ν1ν2w

3.1. Case 1. τ1 “ 0, τ2 ą 0

For τ1 “ 0, the characteristic Equation (9) reduces to:

λ2 ` pA` Bqλ` C` pDλ` Eqe´λτ2 “ 0 (10)
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Let λ “ iω2 pω2 ą 0q be the root of Equation (10). Separating the real and imaginary parts, we get
the following:

#

Dw2cosw2τ2 ´ Esinw2τ2 “ ´pA` Bqw2

Ecosw2τ2 `Dw2sinw2τ2 “ w2
2 ´ C

(11)

From (11), we can obtain:

cosω2τ2 “
pE´ AD´ BDqω2

2 ´ CE
D2ω2

2 ` E2
(12)

Squaring both sides, adding both equations and regrouping by powers of ω2, we obtain that ω2

satisfies the following fourth degree polynomial:

ω4
2 ` pA

2 ` B2 ` 2AB´ 2C´D2qω2
2 ` C2 ´ E2 “ 0 (13)

In order to give the main results in this paper, we make the following assumption pH1q:
Equation (13) has at least one positive root ω20, which is:

ω20 “

g

f

f

e´pA2 ` B2 ` 2AB´ 2C´D2q `

b

pA2 ` B2 ` 2AB´ 2C´D2q
2
´ 4pC2 ´ E2q

2
(14)

If condition pH1q holds, such that Equation (10) has a pair of purely imaginary roots ˘iω20. The
corresponding critical value of the delay by Equation (12) is:

τ20 “
1

ω20
arccos

«

pE´ AD´ BDqω2
20 ´ CE

D2ω2
20 ` E2

ff

(15)

Next, take the derivative with respect to τ2 in Equation (10), we can obtain:

„

dλ

dτ2

´1
“
p2λ` A` Bqeλτ2 `D

λpDλ` Eq
´

τ2

λ

Thus:

Re
„

dλpτ20q

dτ2

´1

λ“iω20

“
P1P3 ` P2P4

P2
1 ` P2

2
(16)

where:
P1 “ ´Dω2

20, P2 “ Eω20

P3 “ pA` Bqcosω20τ20 ´ 2ω20sinω20τ20 `D, P4 “ 2ω20cosω20τ20 ` pA` Bqsinω20τ20

If condition pH2q: P1P3 ` P2P4 ‰ 0, then Re
”

dλpτ20q
dτ2

ı´1

λ“iω20
‰ 0. According to the Hopf bifurcation

theorem in [18], we obtain the following results.

Theorem 1. If the conditions pH1q–pH2q hold, the equilibrium point E4pp˚1 , p˚2 q of Equation (6) is
asymptotically stable for τ2 P r0, τ20q and unstable for τ2 ą τ20; Equation (6) undergoes a Hopf bifurcation
when τ2 “ τ20.

3.2. Case 2. τ1 ą 0, τ2 ą 0

In this case, we consider the characteristic Equation (9) with τ2 in its stable intervals, i.e.,
τ2 P r0, τ20q or τ2 P r0,`8q [19]. We study the influence of τ1 on the stability of the system when τ2 fixed.
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Let λ “ iω1 pω1 ą 0q is a root of Equation (9). Then we obtain:

#

Bω1sinpω1τ1q ` Ccospω1τ1q “ ω2
1 ´ Ecospω1τ2q ´Dω1sinpω1τ2q

´Csinpω1τ1q ` Bω1cospω1τ1q “ ´Aω1 ´Dω1cospω1τ2q ` Esinpω1τ2q
(17)

It follows from Equation (17) that:

cospω1τ1q “
m1ω2

1 `m2ω1 `m3

m8
, sinpω1τ1q “

m4ω3
1 `m5ω2

1 `m6ω1 `m7

m8

with:
m1 “ C´ AB´ BDcospω1τ2q, m2 “ BEsinpω1τ2q ´ CDsinpω1τ2q

m3 “ ´CEcospω1τ2q, m4 “ B, m5 “ ´BDsinpω1τ2q

m6 “ CDcospω1τ2q ´ BEcospω1τ2q ` AC, m7 “ ´CEsinpω1τ2q, m8 “ B2ω2
1 ` C2

Then we have:
n6ω6

1 ` n5ω5
1 ` n4ω4

1 ` n3ω3
1 ` n2ω2

1 ` n1ω1 ` n0 “ 0 (18)

where

n6 “ m2
4, n5 “ 2m4m5, n4 “ m2

1 `m2
5 ` 2m4m6, n3 “ 2m1m2 ` 2m4m7 ` 2m5m6

n2 “ m2
2 `m2

6 ` 2m1m3 ` 2m5m7, n1 “ 2m2m3 ` 2m6m7, n0 “ m2
3 `m2

7 ´m8

Next, we give the following assumption pH3q: Equation (18) has finite positive root. If pH3q

holds, without loss of generality, we define the roots of Equation (18) as ω11, ω12, ..., ω1k. Then, for

every fixed ω1i pi “ 1, 2, ..., kq, there exists a sequence
!

τ
pjq
1i |j “ 0, 1, 2, ...

)

which satisfies Equation (18).

τ
pjq
1i “

1
ω1i

arccosp
m1ω2

1i `m2ω1i `m3

m8
q `

2jπ
ω1i

, i “ 1, 2, ..., k; j “ 0, 1, 2... (19)

Let τ10 “ mintτpjq1i |j “ 0, 1, 2, ...u “ mintτp0q1i u “
1

ω10
arccospm1ω2

10`m2ω10`m3
m8

q, ω10 P tω11, ω12, ..., ω1ku.
Then˘iω10 are a pair of purely imaginary roots of (9) when τ1 “ τ10 and τ2 P r0, τ20q. To verify the

transversal condition of Hopf bifurcation, we take the derivative of λ with respect to τ1 in Equation (9),
we can obtain

”

dλ
dτ1

ı´1
“

2λ`Be´λτ1`pD´Dλτ2´Eτ2qe´λτ2`A
pBλ`Cqλe´λτ1

´
τ1
λ

(20)

Inputting λ “ iω10 pω10 ą 0q into Equation (20), we can get:

Re
”

dλpτ10q
dτ1

ı´1

λ“iω10
“ Re

”

2λ`Be´λτ10`pD´Dλτ2´Eτ2qe´λτ2`A
pBλ`Cqλe´λτ10

ı

λ“iω10

“ Re
”

p2λ`Be´λτ10`Aqeλτ10

pBλ`Cqλ

ı

λ“iω10
`Re

”

pD´Dλτ2´Eτ2qe´λτ2 e´λτ10

pBλ`Cqλ

ı

λ“iω10

“
Q1`Q2

B2ω4
10`C2ω2

10

where:

Q1 “ 2Cω2
10cospω10τ10q ` 2Bω3

10sinpω10τ10q ` ACω10sinpω10τ10q ´ ABω2
10cospω10τ10q ´ B2ω2

10

Q2 “ ´BDω2
10cospω10pτ10 ` τ2qq ´ CDω10sinpω10pτ10 ` τ2qq ´ CDω2

10τ2cospω10pτ10 ` τ2qq

`BDω3
10τ2sinpω10pτ10 ` τ2qq ` BEω2

10τ2cospω10pτ10 ` τ2qq ` CEω10τ2sinpω10pτ10 ` τ2qq

Due to signr dpReλpτ10qq
dτ1

s “ signRer dλpτ10q
dτ1

s
´1

.
Next, we make the following assumption pH4q: Q1 `Q2 ‰ 0. Thus, by the discussion above and

by the general Hopf bifurcation theorem in Hale [18], we have the following results:
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Theorem 2. For τ2 P r0, τ20q, τ20 is defined by Equation (15). If the conditions pH3q–pH4q hold, then the
equilibrium point E4pp˚1 , p˚2 q of Equation (6) is asymptotically stable for τ1 P r0, τ10q and unstable when
τ1 ą τ10. The Equation (6) has a Hopf bifurcation at τ1 “ τ10.

4. Numerical Simulations

In order to support the above analysis, we give some numerical simulations in this section. Let
a1 “ 6; a2 “ 5; b1 “ 1.4; b2 “ 1.6; c1 “ 0.5; c2 “ 0.3; d1 “ 0.3; d2 “ 0.4; v1 “ 0.5; v2 “ 0.5; w “ 0.4. Let
initial value p1 “ 0.4 and p2 “ 0.8. We consider the following system by specify the parameter value:

#

¨
p1ptq “ 0.5p1p6´ 1.12p1pt´ τ1q ´ 1.68p1pt´ τ2q ` 0.3p2 ` 0.7q
¨

p2ptq “ 0.5p2p5´ 3.2p2 ` 0.16p1pt´ τ1q ` 0.24p1pt´ τ2q ` 0.48q
(21)

By calculation, we can get the Nash equilibrium point E4 p2.6113, 2.0389q. From Equations (14)
and (15), we can obtain ω20 “ 1.1843, τ20 “ 1.12. To keep calculations simple, let τ2 “ 0.5 P r0, τ20q, we
can get ω10 “ 0.9532 by Equation (18) and τ10 “ 0.3475 by Equation (19). For case 1, Equation (10) has
a pair of purely imaginary roots ˘iω20, P1P3 ` P2P4 “ 15.348 ‰ 0, and the condition pH1q–pH2q holds.
For case 2, Equation (9) has a pair of purely imaginary roots ˘iω10, Q1 `Q2 “ 6.1966 ‰ 0, and the
condition pH3q–pH4q holds.

Thus, by Theorem 1, the equilibrium point E4 p2.6113, 2.0389q of Equation (6) is asymptotically
stable when τ2 P r0, 1.12q and unstable when τ2 ą 1.12. It has a Hopf bifurcate at τ2 “ 1.12. By
Theorem 2, the equilibrium point E4 p2.6113, 2.0389q is asymptotically stable when τ1 P r0, 0.3475q for
τ2 “ 0.5 and unstable when τ1 ą 0.3475 for τ2 “ 0.5. Equation (6) undergoes a Hopf bifurcation when
τ1 “ 0.3475 for τ2 “ 0.5.

In this game model, in order to maximize profits, the two firms will make their price decision
based on historical prices. However, the length and proportion of historical time affects the game
results directly. The influence of the length and proportion of the two historical times on the dynamic
behaviors of Equation (21) will be analyzed in the following subsections.

4.1. The Influence of τ2 on the Stability of the System (21) When τ1 “ 0

Figure 1 shows that the system (21) undergoes Hopf bifurcation at τ2 “ 1.12. When τ2 ă 1.12,
the system is stable, and the system is unstable for τ2 ą 1.12. The largest Lyapunov exponent (LLE)
can judge whether the system is stable according to the exponent value. In this paper, we use the
Wolf reconstruction method to calculate LLE. If the exponent value is less than 0, the system is stable.
If it is more than 0, the system is unstable. When it equal to 0, the system will appear bifurcated.
Thus, the meaning of the largest Lyapunov exponent plot is consistent with the bifurcation diagram.
In Figures 2 and 3, we can find that when τ2 “ 1 ă τ20 “ 1.12, Equation (21) tends to equilibrium point
E4 p2.6113, 2.0389q for τ1 “ 0. However, it has a limit cycle when τ1 “ 0 and τ2 “ 1.5 ą τ20 “ 1.12.
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4.3. Initial Value Sensitivity

One of the most important characteristics of chaos is the extremely sensitive dependence on initial
conditions. Figure 7 shows the difference between p1 “ 0.4 and p1 “ 0.401 with a change of time.
We can see that the difference is almost indistinct when τ1 “ 0.3 ă τ10 “ 0.3475, only 0.01382. When
τ1 “ 0.4 ą τ10 “ 0.3475, the difference is larger, up to 0.353. It indicates that the little change of initial
value can lead to the amplification of the difference. Figure 4b confirms the Equation (21) is in chaotic
state. At this point, the market will be destroyed and it is difficult for the two firms to make long term
plan. Therefore, it can result in a great loss for every firm.
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4.4. The Influence of τ1 and τ2 on the Stability of the Price p1

Here, let τ1, τ2 P p0, 0.8s, we mainly study the influence of increase of τ1 and τ2 on the price p1

From Figures 8 and 9, we can find that when the τ1 increase to 0.18, Equation (21) starts to appear
price fluctuations; as τ2 is more than 0.31, the prices begins to unstable. When τ1 and τ2 are in the
stability region (green region in Figure 9), p1 stabilizes at 2.611. As τ1 and τ2 are in the instability
region (blue region in Figure 9), it occurs the price fluctuation. The maximum value of p1 is 10.61 for
pτ1, τ2q “ p0.6, 0.7q, and the minimum value of p1 is 0.1243 for pτ1, τ2q “ p0.5, 0.65q. At this time the
price difference is huge, the market has suffered serious damage. In order to maintain price stability,
two firms must make τ1 and τ2 in stability region.Entropy 2016, 18, 266 11 of 18 
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11 show that it makes a sharp reduction in profit with increase of 1τ  and 2τ . When 1τ  is higher 

than 0.25, the profit 1π begins to lose stability. As 2τ  more than 0.37, the profit 1π  becomes unstable, 

and appears fluctuation. When 1τ  and 2τ  are in stability region (green region in Figure 11), the 

value of 1π  is 6.241. When 1τ  and 2τ  are in instability region (blue region in Figure 11), the 

maximum profit is 6.241, and the minimum profit is −83.89 for 1 2( , ) (0.6,0.7)=τ τ . We can determine 

that with the increase of 1τ  and 2τ , profit 1π  will be reduced, or even negative, but will not 

increase. Thus, the two firms must control the values of 1τ  and 2τ  to avoid the loss. By comparing 
Figure 8 and Figure 10 it can be seen that if the system is in an instability state, the price will only rise, 
but not be able to increase profit, and it will cause the profit to decline. 
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4.5. The Influence of τ1 and τ2 on the Profit π1

In this section, we mainly concern about the impact of τ1 and τ2 on profit π1. Figures 10 and 11
show that it makes a sharp reduction in profit with increase of τ1 and τ2. When τ1 is higher than 0.25,
the profit π1 begins to lose stability. As τ2 more than 0.37, the profit π1 becomes unstable, and appears
fluctuation. When τ1 and τ2 are in stability region (green region in Figure 11), the value of π1 is 6.241.
When τ1 and τ2 are in instability region (blue region in Figure 11), the maximum profit is 6.241, and
the minimum profit is ´83.89 for pτ1, τ2q “ p0.6, 0.7q. We can determine that with the increase of τ1

and τ2, profit π1 will be reduced, or even negative, but will not increase. Thus, the two firms must
control the values of τ1 and τ2 to avoid the loss. By comparing Figures 8 and 10 it can be seen that if
the system is in an instability state, the price will only rise, but not be able to increase profit, and it will
cause the profit to decline.Entropy 2016, 18, 266 12 of 18 
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region, the change of w  have no effect on 1p . When 1 0.5<τ  and 2 0.5>τ  , the increase of w  

causes 1p  to shift from unstable to stable, and the value of 1p  becomes larger. When 1 0.5>τ  and 

2 0.5<τ , 1p  shifts from a stable state to an unstable state with an increase of w , and 1p  generates 

a large fluctuation. As 1 0.5>τ  and 2 0.5>τ  (blue region in Figure 13), in this instability region, no 

matter how w  changes, 1p  is still unstable. 

Figure 10. The influence of τ1 and τ2 on profit π1.



Entropy 2016, 18, 266 11 of 16

Entropy 2016, 18, 266 12 of 18 

 

 

Figure 10. The influence of 1τ  and 2τ  on profit 1π . 

 

Figure 11. 2D parameter bifurcation in the ( 1τ , 2τ ) plane, where different colors represent different 

profit regions: stability region (green), instability region (blue). For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article. 

4.6. The Influence of 1τ , 2τ  and w on the Stability of the Price 1p  

In this section, we consider the influence of 1τ , 2τ  and w  on the stability of price 1p . 

Figures 12 and 13 show that with the increase of 1τ , 1p  is gradually moves to instability when 

2 0.5>τ  and 0 .24w > . However, there is no obvious change to 1p  when 2 0.5<τ and 0.76w < . 

Similarly, when 1 0.5<τ  and 0.24w < , 1p  moves from stable to unstable with 2τ  becoming 

large. However, when 1 0.5>τ  and 0 .76w < , 1p  loses stability and results in a larger fluctuation 

with an increase in 2τ . With 1 0.5<τ  and 2 0.5<τ  (green region in Figure 13), in this stable 

region, the change of w  have no effect on 1p . When 1 0.5<τ  and 2 0.5>τ  , the increase of w  

causes 1p  to shift from unstable to stable, and the value of 1p  becomes larger. When 1 0.5>τ  and 

2 0.5<τ , 1p  shifts from a stable state to an unstable state with an increase of w , and 1p  generates 

a large fluctuation. As 1 0.5>τ  and 2 0.5>τ  (blue region in Figure 13), in this instability region, no 

matter how w  changes, 1p  is still unstable. 

Figure 11. 2D parameter bifurcation in the (τ1, τ2) plane, where different colors represent different
profit regions: stability region (green), instability region (blue). For interpretation of the references to
color in this figure, the reader is referred to the web version of this article.

4.6. The Influence of τ1, τ2 and w on the Stability of the Price p1

In this section, we consider the influence of τ1, τ2 and w on the stability of price p1. Figures 12
and 13 show that with the increase of τ1, p1 is gradually moves to instability when τ2 ą 0.5 and
w ą 0.24. However, there is no obvious change to p1 when τ2 ă 0.5 and w ă 0.76. Similarly, when
τ1 ă 0.5 and w ă 0.24, p1 moves from stable to unstable with τ2 becoming large. However, when
τ1 ą 0.5 and w ă 0.76, p1 loses stability and results in a larger fluctuation with an increase in τ2. With
τ1 ă 0.5 and τ2 ă 0.5 (green region in Figure 13), in this stable region, the change of w have no effect
on p1. When τ1 ă 0.5 and τ2 ą 0.5, the increase of w causes p1 to shift from unstable to stable, and the
value of p1 becomes larger. When τ1 ą 0.5 and τ2 ă 0.5, p1 shifts from a stable state to an unstable
state with an increase of w, and p1 generates a large fluctuation. As τ1 ą 0.5 and τ2 ą 0.5 (blue region
in Figure 13), in this instability region, no matter how w changes, p1 is still unstable.

Through above analysis, in order to maintain the stability of p1, the two firms must keep τ1 and
τ2 in the green region (stability) of Figure 13. The boundary of the region is composed of the following
points: A’(0.5, 0.8, 1), B’(0.1, 0.8, 0.24), C’(0.1, 0.5, 0), D’(0.8, 0.1, 0.76) and E’(0.5, 0.1, 1).
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4.7. The Influence of τ1, τ2 and w on the Profit π1

In this part, we focus on the influence of τ1, τ2 and w on the stability of profit π1. We can see from
Figures 14 and 15 that when τ2 ą 0.45 and w ą 0.32, the π1 shifts gradually into instability with the
increase of τ1. When τ2 ă 0.45 and w ą 0.68, it shifts π1 into an unstable state with τ1 becoming larger.
Similarly, when τ1 ă 0.45 and w ă 0.32, π1 shifts from stable to unstable with τ2 increasing. However,
when τ1 ą 0.45 and w ă 0.68, π1 loses stability and a larger fluctuation appears with an increase of τ2.
As τ1 ă 0.45 and τ2 ă 0.45 (green region in Figure 15), the change of w has no effect on π1 in this stable
region. When τ1 ă 0.45 and τ2 ą 0.45, π1 shifts from an unstable state to a stable state with an increase
of w, and the value of π1 becomes larger. When τ1 ą 0.45 andτ2 ă 0.45, π1 shifts from the stable state,
gradually becoming unstable with an increase of w, and π1 appears to fluctuate greatly. As τ1 ą 0.45
and τ2 ą 0.45 (blue region in Figure 15), no matter how w changes, π1 is still unstable.

Through the above analysis, in order to maintain π1 stability, the two firms must make τ1 and
τ2 remain in the green region (stability) of Figure 15. The boundary of the region is composed of the
following points: A”(0.45, 0.8, 1), B”(0.1, 0.8, 0.32), C”(0.1, 0.45, 0), D”(0.8, 0.1, 0.68) and E”(0.45, 0.1, 1).
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lines. Thus, we must take measures to control chaos. Therefore, some methods are found to control the 
chaos of the system, such as the OGY method (a control method of chaos was proposed by Ott E., 
Grebogi C. and Yorke J.A. in America) [20], modified straight-line stabilization method [21], 
time-delayed feedback method [22], pole placement method [23], and so on. In this section, we use the 
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5. Chaos Control

We know that an unstable or chaotic market will cause price fluctuations and hurt firms’ bottom
lines. Thus, we must take measures to control chaos. Therefore, some methods are found to control
the chaos of the system, such as the OGY method (a control method of chaos was proposed by
Ott E., Grebogi C. and Yorke J.A. in America) [20], modified straight-line stabilization method [21],
time-delayed feedback method [22], pole placement method [23], and so on. In this section, we use the
state variables’ feedback and parameter variation to control the chaotic system (21) [24]. The controlled
system is given by:

#

¨
p1ptq “ p1´ µqν1 p1pa1 ´ 2b1wp1pt´ τ1q ´ 2b1p1´wqp1pt´ τ2q ` d1 p2 ` b1c1q ` µp1
¨

p2ptq “ p1´ µqν2 p2pa2 ´ 2b2 p2 ` d2wp1pt´ τ1q ` d2p1´wqp1pt´ τ2q ` b2c2q ` µp2
(22)

In order to show more clearly the effect of chaos control, we only let τ1 “ 0.4, τ2 “ 0.8, while other
parameter values remain unchanged. We know that pτ1, τ2q “ p0.4, 0.8q in the blue region of Figure 9,
and Equation (21) is chaotic. Without chaos control, the dynamic properties of the system (21) are
shown in Figure 16.
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Figure 17 shows that the bifurcation point of Equation (22) is µ “ 0.3819. When µ ă 0.3819,
Equation (22) is chaotic, and when µ ą 0.3819, Equation (22) is stable. The largest Lyapunov exponent
plot verifies the correctness of the conclusion.
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First, let µ “ 0.3 ă 0.3819, the power spectrum and attractor of Equation (22) are as shown in
Figure 18. We find that Equation (22) is still in the state of chaos, which is not effectively controlled.
Secondly, let µ “ 0.45 ą 0.3819, the power spectrum and attractor of Equation (22) are as shown in
Figure 19. It clearly shows that Equation (22) gets out of chaos and becomes stable. Thus, chaos control
is successful when the control parameter µ is sufficiently large.
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6. Conclusions

This paper establishes a continuous Bertrand duopoly game model with two-stage delay. We
choose the delay and weight as the research parameters, and focus on the influence of parameters
on the dynamic characteristics of the system, such as bifurcation, chaos, and initial value sensitivity,
etc. We study the influence of parameters on the system from four aspects. Firstly, we consider τ2

as a parameter when τ1 “ 0. Our research focus is the influence of τ2 on the stability of the system.
Secondly, τ2 as a constant, we study the influence of τ1 on the stability of the system through the power
spectrum, attractor, bifurcation diagram, and LLE plot. Thirdly, we focus on the effect of τ1 and τ2 on
the stability of the system by the 2D parameter bifurcation diagram, 3D surface chart, and stability
region. Finally, we consider the influence of delay and weight on the stability of the system through
the 4D cubic chart and 3D parameter bifurcation diagram. The stability region of the system is given.
At the end of this paper, the effective control of chaos is carried out by a control strategy of the state
variables’ feedback and parameter variation. It is successful to avoid the destruction of chaos for the
economic system.

This study shows that the change of delay will lead to the system from stable state to unstable
state, which causes a large fluctuation in prices and results in a decline in profits. The above analysis
can provide help a firm’s decision-making process to avoid pushing the price into chaos.
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