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Abstract: More than 370,000 Americans die every year from coronary artery disease (CAD).
Early detection and treatment are crucial to reducing this number. Current diagnostic and
disease-monitoring methods are invasive, costly, and time-consuming. Using an electronic
stethoscope and spectral and nonlinear dynamics analysis of the recorded heart sound, we
investigated the acoustic signature of CAD in subjects with only a single coronary occlusion before
and after stent placement, as well as subjects with clinically normal coronary arteries. The CAD
signature was evaluated by estimating power ratios of the total power above 150 Hz over the total
power below 150 Hz of the FFT of the acoustic signal. Additionally, approximate entropy values were
estimated to assess the differences induced by the stent placement procedure to the acoustic signature
of the signals in the time domain. The groups were identified with this method with 82% sensitivity
and 64% specificity (using the power ratio method) and 82% sensitivity and 55% specificity (using the
approximate entropy). Power ratios and approximate entropy values after stent placement are not
statistically different from those estimated from subjects with no coronary occlusions. Our approach
demonstrates that the effect of stent placement on coronary occlusions can be monitored using an
electronic stethoscope.

Keywords: coronary artery disease; stent; noninvasive monitoring; nonlinear dynamics analysis;
approximate entropy

1. Introduction

Coronary artery disease (CAD) is a leading global cause of death, killing some 17.3 million people
per year worldwide (a number that is projected to increase to 23.6 million by 2030), of which nearly
370,000 are Americans [1]. Including the cost of health care services, medications, and lost productivity,
CAD alone cost the United States an estimated $182 billion in 2015 [2]. CAD is characterized
by atherosclerotic plaque formation resulting from complex cellular interactions in the intima of
arteries with accumulation of fatty deposits, involvement of inflammatory mediators and endothelial
dysfunction, and its precedence of restricted circulation to the heart muscle with risk of thrombosis.
Total cessation of blood flow results in a myocardial infarction, which can lead to sudden death.
Many patients are not aware they have CAD until their first heart attack [3]. Coronary angiography,
the current standard of diagnosis and determination of severity of CAD, is expensive, risky and
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invasive [4]. Non-invasive and lower-risk modalities with varying degrees of accuracy and precision,
such as coronary CT angiography, nuclear imaging, and cardiac MRI, although costly and associated
with some risk, have been proposed for diagnosis and risk stratification of CAD [5,6]. There is a need
for alternative affordable, low-risk, point-of-care modalities that are easily accessible to patients in rural
communities where heart disease is prevalent and access to medical assessment is limited [7]. Bringing
a cost-effective, portable, easy-to-use, low-risk diagnostic device to large, high-risk populations in
need has the potential to save hundreds of thousands of lives each year.

The typical heart sounds “lubb, dub” are generated by blood colliding with the closed valves of the
heart. The “lubb” sound, or the first heart sound (S1), is produced by the closing of the atrioventricular
(AV) valves at the beginning of ventricular systole. This is the longest heart sound. The “dub” sound,
or the second heart sound (S2), is produced by the closing of the semilunar valves at the end of
ventricular systole. S2 is shorter than S1, and is followed by a pause. These sounds are typically clear
and uninterrupted. Any disruption of these sounds, such a liquid rushing or gurgling, indicates a
structural problem within the heart. Examples of recorded heart sounds are shown in Figure 1. Heart
sounds S1 and S2 are audible using a simple stethoscope. The third and fourth heart sounds (S3 and
S4, respectively) may be detected in some phonocardiogram recordings, provided the background
noise is very small. S3 is caused by blood moving from the atria into the ventricles, and S4 occurs
after the atria polarize, forcing more blood into the ventricles. Blood movement causes the walls of the
heart to vibrate, causing low frequency sounds. These are hard to detect, as their magnitude is small
compared to those of S1, S2 and background noise [8].
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Figure 1. Patient recording as it appears in the 3M Littmann Steth-Assist Software (Version 1.2.963).

Coronary blood flow is affected by the arterial pressure, which can vary greatly. The pressure
gradient and coronary blood flow usually depend on the contractility of the heart. Coronary blood flow
characteristics through the coronary arteries are not the same, as flow through the left coronary artery
is maximal during early diastole, whereas blood flow through the right coronary artery is maximal
during peak systole [9].

The acoustic approach to diagnosing coronary artery disease relies on the principle that there are
sounds associated with turbulent flow caused by partially occluded pipes. In this case, the partially
occluded tubes are coronary arteries. However, the sounds associated with coronary artery disease
are not easily detected with simple stethoscopes and the human ear. Instead, they require special
instrumentation and/or signal processing in order to recognize the change between diseased and
normal arteries [10–29]. This principle has been demonstrated in other vessels in the body, such as the
bruits (sounds) associated with blocked carotid arteries, and the Korotkoff sounds that occur when the
brachial artery is restricted by a pressure cuff and are used to measure blood pressure [15].

1.1. Coronary Flow Analysis Techniques

Many groups have pursued various analysis techniques in the quest for the acoustic signature
of CAD. The first step investigators must take in searching for acoustic signatures of CAD in heart
sound recordings is to find the ideal segment of the signal to analyze, which will contain sounds from
the coronary arteries. Previous studies have shown the diastolic window to have the most promise.
In the diastolic window, there is little extraneous noise and the signal-to-noise ratio is greater when
searching for sounds associated with occluded coronary arteries [16,20].
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In order to study the spectra of the heart sound recordings, the selected diastolic windows can
be analyzed using fast Fourier transform (FFT). Studies by Akay et al. in canine femoral artery
models confirmed the association of artery occlusion with increased energy in high frequencies [15].
In our previous study, we showed that normal and abnormal subjects can be discriminated using
spectral analysis of the acoustic signals [29]. Spectral content estimated using the FFT was quantified
and results suggested that diseased subjects consistently showed more energy content at high
frequency. Other studies based on spectral features used various parametric models such as
autoregression (AR), Multiple Signal Classification (MUSIC) algorithm [16,20], as well as empirical
mode decomposition [30,31], wavelet analysis [24], or fast tracking filters [22,23].

In parallel, studies showed that the acoustic signature of CAD, being the product of the chaotic
turbulence process, may exhibit signal complexity variations. Padmanabhan et al. [27] used fractal
based analysis, Akay et al. [32] used approximate entropy, and Schmidt et al. [33] used both spectral
and complexity-based acoustic features to discriminate between CAD and non-CAD patients. However,
the above-mentioned studies did not investigate the effect of stent placement on the acoustic signatures
of patients. Our ultimate goal is to define a framework for future longitudinal studies monitoring
in-stent restenosis. In the present study, we aim to scrutinize whether the acoustic signature of CAD
can be detected using spectral analysis and nonlinear analysis of heart sounds as a first step toward
determining whether noninvasive assessment could be a suitable low-cost surrogate or complement
for current imaging diagnostics preceding percutaneous coronary intervention.

1.2. Study Design

We focused on systematic CAD detection using commercially available electronic stethoscopes,
which will allow for an expedited path to clinical use. The Littmann Electronic Stethoscope Model 3200
(3M, Saint Paul, MN, USA) with ambient noise reduction was used for this study, and shows promise
as a useful tool in phonocardiology and CAD detection. The Littmann Model 3200 is widely available
and well recognized by clinicians, and is the current standard of care in many clinical settings [34].
We have chosen to use this commercially available stethoscope to determine whether the unblocking
effect of stent placement on coronary occlusions can be discriminated using signal processing and
analysis of patient acoustic signature based on heart sound recordings before and after stent placement
procedures. In this way, the patient can serve as his own control when comparing heart sounds of
blocked and unblocked coronary arteries.

In summary, we implemented a study in clinical setting which would help identify the acoustic
signature using an electronic stethoscope. We recorded acoustic signals from subjects with only a single
coronary artery occlusion before and after stent placement at the Houston VA Hospital. We analyzed
the recorded signals using spectral analysis techniques based on FFT by computing power ratios and
comparing the results with those obtained using a nonlinear analysis technique based on approximate
entropy. We then compared these recordings to the recordings of clinically normal patients with no
coronary occlusions.

2. Materials and Methods

2.1. Patient Inclusion and Exclusion Criteria

Patients were screened and tested at the Michael E. DeBakey Houston VA Hospital in collaboration
with the Winter Center for Cardiology Research of the Baylor Medical School. The DeBakey VA
Hospital R&D Committee and the Institutional Review Board (IRB) for Baylor College of Medicine
and Affiliated Hospitals approved the study (protocol number H-32016). Study staff members who
had completed the human subject protection educational requirements in compliance with all Federal
regulations conducted informed consent negotiations. Prospective subjects were interviewed to
determine preliminary eligibility. Informed consent was obtained, and subjects were enrolled in the
study prior to any clinical testing, laboratory testing or intervention. Subjects were given a copy of
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the IRB approved consent form during the initial interview, and study staff explained to the subjects,
in detail, the nature of the informed consent process, study purpose and procedures, time commitments,
risks, potential benefits, treatment alternatives, rights as research participants, study staff contact
information, confidentiality procedures, and arrangements for medical care provided in case of injury
during the study. Subjects were given adequate time to consider their decision and encouraged to ask
questions, both during the initial interview and throughout the study. Subjects were provided with a
signed copy of the completed consent form.

The inclusion criteria for study patients were as follows: adult male patients with body mass
index (BMI) less than 30, single lesion CAD, and patient consent for procedure. Patients were not
enrolled in the study if they had one or more of the following exclusion criteria: heart valve disease,
multi-vessel CAD, and implanted pacemaker or defibrillator. We enrolled patients with a low BMI in
order to minimize the amount of fatty tissue between the heart and the electronic stethoscope, since
the fatty tissue could muffle and attenuate the sounds in the recording. We excluded patients with
valve disease, which can disrupt the duration and magnitude of S1 and S2. Leaky valves could also
allow for regurgitation, which would cause high frequency noise in the diastolic window and interfere
with our analysis of coronary artery sounds. Similarly, implanted pacemakers and defibrillators create
noise, which would be difficult to eliminate from recordings. We focused on patients with single
coronary artery occlusions. With only one physiological change occurring within the patient, the
restoration of flow in one coronary artery, all other variables remain constant. Therefore, any change
in sound theoretically only corresponds to the affected coronary artery. Based on these criteria, we
tested 11 patients with CAD. The patients’ disease state is listed in Table 1 below. Due to the skewed
population at the VA Hospital, all patients included in the study are male. In order to compare the
results with normal patients, we also obtained recordings from three patients who underwent coronary
angiography at the VA Hospital and were found to have no coronary artery disease.

Table 1. Patient number and the corresponding coronary artery disease with percent stenosis.
Abbreviations represent the following: Obtuse marginal (OM), Left Anterior descending (LAD),
Circumflex (Cx), Postero-lateral artery (PLA), and Right coronary artery (RCA).

Recruited Patient Information

Patient Number Diseased Coronary Percent Stenosis Age

1 OM2 90 82
2 Mid LAD 50 57
3 Left Main 70 62
4 Mid Cx 90 68
5 Mid Cx 80 70
6 Right PLA 70 61
7 Mid LAD 75 69
8 Mid LAD 95 63
9 Proximal LAD 95 84
10 Mid RCA 80 67
11 Mid Cx 80 72

2.2. Data Recording

Heart sounds were recorded on the day of the procedure, before and after stent placement.
The stethoscope was set to diaphragm mode, which amplifies sounds from 20 Hz to 2000 Hz, and
emphasizes sounds between 100 Hz and 500 Hz—our spectra of interest. The stethoscope was placed
at the 4th intercostal space, 6–8 cm to the right of the midline of the sternum, and held in place for
the duration of the recording. Sound was recorded for 15 s while the patient held his breath to reduce
chest cavity noise. Patients were in the supine position.
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2.3. Diastolic Window Determination

For each cardiac cycle, a diastolic window was selected 100 milliseconds after the end of S2
to avoid signal contamination by valve or regurgitation sounds (shown in Figure 2). Windows of
128 milliseconds in length were selected for analysis. This time segment corresponds with heavy
coronary artery flow while avoiding other heart sound noise, as detailed in previous studies [29,32].
The signal was sampled at a rate of 4 kHz.
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normal patient. Arrows indicate the beginning and the end of the selected segment.

2.4. Filtering

First, the signal was detrended using the MATLAB (Version R2014a) detrend function. When
detrending the signal, a linear trend that best fits the data in the least squares sense was subtracted,
creating a flat baseline for the data. In order to normalize the signal, the root mean square (RMS) was
calculated in the time domain for each recording, and dividing by the RMS normalized the signals.
Once the signal was detrended and RMS-normalized, a bandpass filter was applied. A 5th order
Butterworth bandpass filter was applied with a low frequency cutoff at 60 Hz and a high frequency
cutoff at 500 Hz. In Butterworth filters, the frequency response is maximally flat in the bandpass region
and rolls off toward zero in the stopband. The 5th order gives a sharp cut off for bandpass filtering
without disrupting the phase of the signal.

2.5. Spectral Analysis

The FFT of each diastolic window was estimated for spectral analysis. We identified 10 segments
for each patient pre-stent placement and 10 segments for each patient post-stent placement.
Representative FFT spectra of a diastolic window from the pre-stent recording and a diastolic window
from the post-stent recording are shown in Figure 3.

In order to compare the FFT of each diastolic window before and after stent placement, a ratio of
the power above and below a frequency threshold was determined. The area below the FFT curve
above threshold represents the total power above 150 Hz, A. Frequencies above the threshold have been
shown in previous studies to have changes between normal and diseased patients [21,33]. The area
below the FFT curve below threshold, B, represents the total energy below 150 Hz. The ratio A/B was
used to differentiate between occluded and non-occluded flow. A larger power ratio indicated disease,
while smaller power ratio indicates normal physiology. The power ratio is represented as:

r “
A
B

(1)
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2.6. Approximate Entropy

The time-domain preprocessed diastolic segments were then analyzed using the approximate
entropy method (ApEn), a nonlinear dynamics measure commonly used to quantify the complexity
of a time-series. ApEn produces a model-independent measure of signal entropy. It summarizes a
time series signal into a non-negative numerical value, with more random signals having higher ApEn
values, which generally reflect increased complexity in their generating systems. In other words, ApEn
estimates the logarithmic likelihood that successive runs of temporal patterns that are close within a
certain threshold, r, over a defined number of observations, m, remain close in the next incremental
comparisons. A lower likelihood for these segments of remaining close within the defined threshold
produces high ApEn values, indicating a higher level of entropy in the signal.

Briefly, ApEn estimates work with segments of length m, defined as X(i) = [x(i), . . . , x(i + m ´ 1)].
Distances between segments X(i) and X(j) can be estimated as:

d rX piq , X pjqs “ max
k“0,m´1

r|x pi` kq| ´ x pj` kqs ď r (2)

For any given X(i), the ratio of the number of vectors X(j) for which the distances between X(i) and
X(j) smaller than the threshold, r, (Nm

r ) to the total number of segments N ´ m + 1 can be calculated as:

Cm
r piq “

Nm
r piq

N ´m` 1
for i “ 1, . . . , N ´m` 1 (3)

Subsequently, the approximate entropy is estimated as a function of segment length m, and
threshold, r:

ApEn pm, rq “ lim
NÑ8

”

Φm prq ´Φm`1 prq
ı

(4)

where:

Φm prq “
N´m`1
ÿ

i“1

ln
ˆ

Cm
r piq

N ´m´ 1

˙

(5)
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ApEn was shown to be particularly efficient in the case of short data segments, and is less sensitive
to noise and outliers than other regularity statistics [35]. Moreover, it can be used in the analysis of
both stochastic and deterministic signals [36,37]. In the present study, the parameter values we used
are m = 2 and r = 0.1 SD(x(i)), where SD(x(i)) represents the standard deviation of the isolated diastolic
segment. Based on our previous studies and the seminal paper by Pincus [35,36], m = 2 is the most
commonly used value for ApEn analysis. As indicated in Section 2.6, we chose the same value for m
based on our previous work, and on published work using ApEn on biosignals [37–39]. As highlighted
by Pincus, the utility of ApEn is represented by it being a relative, not absolute, measure. Therefore,
various values of m and r do not yield significant differences. Additional details on the ApEn method
and its implementation are given elsewhere [37–39].

3. Results

Based on the inclusion and exclusion criteria detailed in the Materials and Methods section,
11 patients were enrolled in the study. Figure 3 illustrates representative examples of selected diastolic
segments from a patient before and after the stent placement procedure (Figure 3a,b, respectively) and
from a clinically normal patient (Figure 3c). The lower panels (Figure 3d–f) present the corresponding
FFT spectra estimated for these segments. We observed that not only was there a decrease in the
power of the high-energy frequencies (150 Hz or greater) from before stent to after stent, there was
also an increase in the low frequency energy (below 150 Hz) in some patients’ FFT spectral analysis.
An example of both phenomena is visible in Figure 3d,e. This increase in low frequency is most likely
attributed to the improvement in heart function after stent placement. When blood flow is restored to
the coronary artery, oxygen is again brought to the ischemic area of the heart. The heart muscle can
then contribute to the contraction of the heart during the cardiac cycle, increasing the ejection fraction
of the blood and therefore increasing the pressure on the valves when closing. The closing sounds may
then become stronger, adding low frequency content to the heart sound recording. All power ratio
values were averaged across patients to give an average pre-stent ratio and an average post-stent ratio
value. Ratios for all patients were then compared using two-way ANOVA.

In most patients, the power ratios and ApEn values both showed a downward trend between pre-
and post-stent recordings. A special case was that of Patient 2, who showed a significant increase in
the ApEn values (and power ratios) from pre- to post-stent, going against the established trend for the
data. This is most likely due to the presence of a heart murmur associated with a leaky valve, which
was not diagnosed until after the data was collected. Additionally, the lesion repaired was a borderline
50% stenosis, which could affect the analysis. Therefore, Patient 2’s trend opposition is not unexpected.

Figure 4 shows the overall results for CAD patients (before and after stent placement procedure),
as well as for clinically normal patients. Average power ratio values obtained from the spectral
analysis are presented on the left panel (Figure 4a) and average ApEn values obtained from the
nonlinear dynamics analysis are displayed on the right panel (Figure 4b). Healthy patients (patients
who underwent coronary angiography and were found to have normal coronaries at the VA hospital)
serve as reference in our study. The ApEn values and power ratios of healthy subjects’ recordings are
expected to be lower than those of pre-stent of study patients’ recordings.

The pre-stent ApEn values were significantly higher (p < 0.05, two-way ANOVA) than those
estimated from data recorded post-stent. These results indicate the presence of a high nonlinear
component in the time-series diastolic heart sounds data segments in the diseased patients, highlighting
the higher complexity of the underlying system generating these sounds. As expected, we did not
observe significant differences between data recorded from clinically normal patients and data recorded
from diseased patients post-stent. Patients with clinically normal coronary physiology have smooth
blood flow through these arteries, and therefore should not exhibit complex patterns of variation
during the diastolic period. When comparing ApEn values of clinically normal patients with those of
pre-stent group, the values were significantly different (p < 0.05, unpaired Welch test).
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Figure 4. (a) Power ratios and (b) approximate entropy values of diastolic segments from all CAD 
patients, before and after stent placement, and clinically normal patients (mean ± standard error).  
* denotes statistical significance (p < 0.05). 

The pre-stent ApEn values were significantly higher (p < 0.05, two-way ANOVA) than those 
estimated from data recorded post-stent. These results indicate the presence of a high nonlinear 
component in the time-series diastolic heart sounds data segments in the diseased patients, 
highlighting the higher complexity of the underlying system generating these sounds. As expected, 

Figure 4. (a) Power ratios and (b) approximate entropy values of diastolic segments from all CAD
patients, before and after stent placement, and clinically normal patients (mean ˘ standard error). *
denotes statistical significance (p < 0.05). ** denotes statistical significance (p < 0.01).

By comparison, results of the spectral analysis confirm the results of the nonlinear analysis.
The power ratios for the diseased subjects are significantly lower after stent placement (p < 0.01).
Additionally, the recordings of post-stent patients are not statistically different from the clinically
normal patients. Similarly with nonlinear dynamics analysis results, power ratios of clinically normal
patients were significantly lower when compared to those of the pre-stent group (p < 0.01, unpaired
Welch test).

Receiver Operating Characteristic

Receiver Operating Characteristic (ROC) curves are shown in Figure 5 for power ratios (a) and
ApEn (b). Using all 11 patients and their before and after stent power ratios, we devised a leave-one-out
validation framework in conjunction with linear discriminant (LDA) classifiers. Specifically, we
repeatedly trained LDA classifiers on all but one before and after stent power ratios and tested the
classifier on the withheld power ratio sample. The same procedure was repeated for ApEn values.
Using this framework, we obtained an overall efficiency of 73% for power ratios, with 82% specificity,
64% sensitivity and an area under curve (AUC) value of 0.8347. For ApEn, the overall efficiency
was lower, 68%, with 82% specificity, 55% sensitivity and AUC = 0.7430. The optimal cut-offs for
maximizing the sensitivity and specificity were 0.014 for power ratios and 0.5 for ApEn.
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4. Discussion and Conclusions

Previous studies suggested that occluded coronary arteries produce turbulent flow associated
with coronary artery disease. If these sounds can be identified, they can be used as a clinical diagnostic
tool. In this study, we proposed to use the electronic stethoscope to evaluate this hypothesis. Preceding
studies investigated differences in heart sounds produced by coronary turbulent flow in normal and
CAD patients. Our present work investigates whether the differences between the acoustic signatures
of CAD patients, before and after stent placement, are detectable, and therefore whether such a
noninvasive approach can be used to monitor the unblocking effect of stent placement. We believe our
approach complements the expensive imaging-based diagnostic approaches, which are only available
in specialized clinical departments, and could be used as an effective early diagnosis or screening
tool before invasive diagnosis, as well as an efficient monitoring tool for longitudinal observation of
restenosis development after stent placement.

The results above confirm previous study findings that power ratios determined from FFT of
acoustic signals recorded with an electronic stethoscope are an effective combination for distinguishing
between occluded and non-occluded coronary artery flow. The pre-stent power ratios in this study are
statistically larger than the post-stent ratios. These results were confirmed with a nonlinear analysis
method based on estimating approximate entropy values of the recorded signals, however, in the
present study, the power ratio-based method showed a slightly higher discriminative power than the
ApEn based method.

In order to effectively assess stent placement, there must be a precise method for distinguishing
coronary arteries with occlusions from coronary arteries without occlusions. Using the 3M Littmann
Model 3200 electronic stethoscope to record heart sounds and FFT to analyze the power of the spectra
in those recordings, we were able to successfully distinguish diseased from non-diseased subjects
using the calculated power ratios for each group with an overall efficiency of 73%, even including
the second subject who was later diagnosed with a heart murmur. Though the sample group is small
(n = 11), the results hold promise for larger future studies. A similar trend in the results was observed
using the ApEn method, which indicated increased complexity in the diastolic segments recorded from
disease patients before stent placement. A sensitivity of 82% and a specificity of 55% were obtained
using the ApEn method.

In our study, pre-stent power ratios and approximate entropy values were significantly higher
in patients with obstructive coronary lesions than in clinically normal patients; the same patients’
post-stent values appeared to be restored to levels similar to those of patients without obstructive
coronary artery disease. The similarity in the spectral content and approximate entropy values implies
similar sound profiles and similar acoustic signatures. Because the clinically normal patients have
unobstructed flow in the coronary arteries, the similar lower values in the post-stent group implies
that the flow is again unimpeded and has returned to a normal flow state.

Because acoustical parameters after stent placement are not statistically different from those
estimated from healthy subjects with no coronary occlusions, our approach demonstrates that the
effectiveness of stent placement can be traced or monitored using an electronic stethoscope. By
establishing a baseline average in the approximate entropy value (or power ratio) in normal senior
subjects, we can compare other subjects’ values to the normal values to determine whether or not
an occlusion or flow disturbance is still present. An average approximate entropy value (or power
ratio) that is statistically higher than normal would indicate there is still an obstruction in the flow,
indicating a need for further intervention or treatment. The normal group for this study was small
and only included three subjects. A much larger group of normal subjects is needed for comparison to
healthy controls. This is a proof-of-principle preliminary study intended to show the efficacy of the
platform in clinics. It is extremely challenging to find patients with only one occlusion, since almost
all patients will have multiple occlusions with different levels of severity. However, it is crucial to
show the changes in acoustical parameters before and after stent placement, since we can relate these
changes to the modification of the stenosis.
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Although our preliminary data supports that our platform can detect whether or not a patient
is in need of a stent placement, our ultimate goal is to use this approach as a noninvasive method
to assess for restenosis and/or development of de novo stenotic coronary lesions using acoustical
parameters, including entropy and the determined power ratios. We plan to record data from
unsuccessful stent placements in the near future for comparison. We also plan to include more
subjects, including those with less than 50% occlusion, to strengthen the statistical power and further
investigate the computational accuracy of our study. Additionally, we aim to improve recording quality
by reducing noise in the recording room This would require patient isolation in a room with little or no
electromagnetic interference, as various sources in hospital emergency units, such as two-way radios
and medical telemetry equipment, may provide electromagnetic interference in the frequency band in
which we are focusing [40]. We also aim to improve result accuracy by implementing a framework for
reducing variability in stethoscope displacements. Furthermore, implementation of a multichannel
recording system would provide additional acoustic signature data and help to localize the lesion.

Once the CAD acoustic signature threshold has been optimized, the system could easily be
implemented in a clinical setting, providing a simple, inexpensive, and accurate screening tool for
CAD or for stent restenosis in the future.
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