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Abstract: Cyclically dominant systems are hot issues in academia, and they play an important role
in explaining biodiversity in Nature. In this paper, we construct a five-strategy cyclically dominant
system. Each individual in our system changes its strategy along a fixed direction. The dominant
strategy can promote a change in the dominated strategy, and the dominated strategy can block
a change in the dominant strategy. We use mean-field theory and cellular automaton simulation
to discuss the evolving characters of the system. In the cellular automaton simulation, we find the
emergence of spiral waves on spatial patterns without a migration rate, which suggests a new way to
produce self-organized spatial patterns.
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1. Introduction

Cyclically dominant systems in Nature have recently become hot issues, especially in explaining
biological diversity [1–6]. As the simplest cyclical interaction system that contains three species,
the rock-paper-scissors game can explain typical population oscillatory behavior and other phenomena,
ex., marine benthic systems [7], plant communities [8–12], microbial populations [2,13–16] and
driven-dissipative quantum systems [17]. The rock-paper-scissors game is also reflected in the strategic
choice in terms of biological methods, for example, the mating strategy of side-blotched lizards [18]
and the regular oscillations of the numbers of collared lemmings [19] and Pacific salmon [20]. In other
words, biological diversity can be interpreted by invasions among species [21,22]. Extensions of the
classical rock-paper-scissors game to more than three strategies have been popular issues in recent
research. Avelino et al. investigated the three-dimensional predator-prey model with four or five
species, showing the spatial distribution of ZN Lotka–Volterra competition models using stochastic
and mean field theory simulations [23]. Dobrinevski et al. considered an asymmetric ecological model
with four strategies, which contains a three-strategy cycle and a neutral alliance of two strategies,
showing that the model exhibits a mobility-dependent selection of either the three-strategy cycle or
the neutral pair [24]. Durney et al. discussed the evolution of characters of a cyclically competing
predator-prey system with four or more species [25]. Feng et al. observed self-organization spiral waves
of a cyclic five-species system using direct simulations and nonlinear partial differential equations [26].
Intoy et al. focused on the extinction processes in a cyclic four-species system [27]. In our previous
work, we studied the evolution properties of a cyclic five-strategy system with two different invasion
routes [28], and the group interactions of the system have been discussed [29–31]. Knebel et al. analyzed
the coexistence and survival scenarios of Lotka–Volterra networks with both a cyclic four-species
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system and a cyclic five-species system [32]. Laird et al. provided numbers for possible competitive
topologies for a cyclic five-species system, showing the different coexistences [33]. Li et al. analyzed
the evolutionary properties of the N-species Jungle game, which is a special cyclic competing system
in mean-field theory [34]. Andrae et al. analyzed the entropy production in the cyclic competing
system [35].

What does “dominant” mean in cyclic dominant evolutionary games? In previous research,
“dominant” always meant “alternative” or “study”. In ecological models, one population dominates
another means the dominant population occupies the habitat of the weakness population.
Similarly, in social game models, “dominant” means the losers study the strategies of the winners.
However, in fact, the factors that cause the losers to change their strategies are not only the above.
Consider, for example, the rock-paper-scissors game. If an individual playing paper loses to his
opponent playing scissors, in the next game, he may play rock to defeat his opponent instead of
learning the strategy of the opponent who played scissors. In this case, “dominant” causes the losers to
change their strategies. Mobilia studies rock-paper-scissors games including studying mechanisms [36].
Sometimes, strategic choices are not arbitrary; for example, in a Texas Hold’Em game, players are not
allowed to reduce the chips that they have already bet on.

Traditional Chinese medicine has been recognized in many fields in the world [37]. In traditional
Chinese medicine, there are five elements, “Metal”, “Wood”, “Water”, “Fire” and “Earth”, in the five
element theory. The relationships between two of the five elements are “generating interaction” and
“overcoming interaction” [38]. The two relationships can be interpreted as dominant. Hence, the five
element theory is similar to the rock-paper-scissors-lizard-Spock game [28]. In our paper, we construct
a five-strategy cyclically dominant system based on the five element theory. “Generating interaction”
is interpreted as the change in direction of strategy, and “overcoming interaction” is interpreted as the
dominant that promotes the losers to change their strategies. Each individual in our system changes
its strategy along a fixed direction. In other words, the dominant strategy can promote the changing of
the dominated strategy, and the dominated strategy can block the changing of the dominant strategy.

In a homogeneous mixed environment, we construct the ordinary differential equations of this
model. We discuss and prove the stability of the system in the case that the number of an individual’s
neighbors is one. We analyze cases in which individuals have more than one neighbor using numerical
solution. Then, we study the model on a two dimensional lattice by using the cellular automata
simulations. We find the self-organization spatial distributions when the Moore neighborhood or
six-cell neighborhood were used without moving. In this case, the distribution of individuals in the
system forms spiral waves. However, when the Von Neumann neighborhood was used, there is no
self-organization in this system. It should be noted that self-organization spatial distributions are
important in the research of evolutionary games [39–42]. In previous studies, moving is one key factor
that can promote the emergence of self-organization spatial distributions such as spiral waves [30,42].

2. Model

There are five strategies in our model: S1, S2, S3, S4 and S5. The relationships between the
five strategies are shown in Figure 1. Si can translate into Si+1, and Si can dominate Si+2. We set the
following conditions: Si can promote the transformation of Si+2 and prevent the transformation of
Si+1. Each individual has K neighbors. The transformation rules are as follows. Si converts to Si+1 if
more individuals use the Si´2 strategy than Si´1 of its neighbors; in other cases, the strategy will not
change. For example, if an individual use strategy S3 and there are more S1 among its neighbors than
S2, then the individual converts its strategy to S4.
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Figure 1. The relationships of five species. 

The simulation runs as follows: 

1. Place individuals using different strategies randomly on the lattice; 
2. For each individual using the strategy Si in the system, count the numbers of Si-1 and Si-2 

respectively in its neighbors. If the number of Si-2 in its neighbors is more than Si-1, we label the 
individual Si as “alterable”. 

3. Changing the labeled “alterable” individuals’ strategies from Si to Si+1. 
4. Repeat step 2. 

3. Mean Field Theory 

Mean-field theory is one of the major methods of studying cyclically dominant systems [43]. Let 
xi denote the density of individuals who use strategy Si. In mean-field theory, each individual adopts 
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4. Numerical Result 

For the case K > 1, the equation becomes too complicated for theoretical analysis. Thus, we use 
numerical solutions to solve the problem. Using the fourth-order Runge–Kutta method with four 
stages, the initial densities are ρ1 = 0.6 and ρ2 = ρ3 = ρ4 = ρ5 = 0.1, as shown in Figure 2. We find that 
when K < 5, the solution converges to the internal equilibrium point (1/5, 1/5, 1/5, 1/5, 1/5). The larger 
the K, the slower the rate of convergence. When K > 4, the solutions of the equation become stable 
periodic fluctuations. The larger K, the larger the amplitude and the longer the period. 

Figure 1. The relationships of five species.

The simulation runs as follows:

1. Place individuals using different strategies randomly on the lattice;
2. For each individual using the strategy Si in the system, count the numbers of Si´1 and Si´2

respectively in its neighbors. If the number of Si´2 in its neighbors is more than Si´1, we label
the individual Si as “alterable”.

3. Changing the labeled “alterable” individuals’ strategies from Si to Si+1.
4. Repeat step 2.

3. Mean Field Theory

Mean-field theory is one of the major methods of studying cyclically dominant systems [43].
Let xi denote the density of individuals who use strategy Si. In mean-field theory, each individual
adopts strategy Si with the probability xi. If there are enough individuals in the system, we obtain
the equation:

¨
xi “ ´xi f pxi´2, xi´1q ` xi´1 f pxi´3, xi´2q

where:

f px, yq “
K
ÿ

i“1

minti´1,K´iu
ÿ

j“0

Ci
KCj

K´ix
iyj p1´ x´ yqK´i´j

represents the probability that more individuals choose strategy x than y among all of the K neighbors.

When K = 1, the equation is
¨

xi “ ´xixi´2 ` xi´1xi´3. Let V “ x1x2x3x4x5; we obtain
dV
dt “ V

´

x´1
1 x3x5 ` x1x´1

2 x4 ` x2x´1
3 x5 ` x1x3x´1

4 ` x2x4x´1
5 ´ 1

¯

ě 0. V can achieve its maximum
value if and only if x1 “ x2 “ x3 “ x4 “ x5 “ 1{5. Thus, the equilibrium point (1/5, 1/5, 1/5, 1/5, 1/5)
is globally asymptotically stable.

4. Numerical Result

For the case K > 1, the equation becomes too complicated for theoretical analysis. Thus, we use
numerical solutions to solve the problem. Using the fourth-order Runge–Kutta method with four
stages, the initial densities are ρ1 = 0.6 and ρ2 = ρ3 = ρ4 = ρ5 = 0.1, as shown in Figure 2. We find
that when K < 5, the solution converges to the internal equilibrium point (1/5, 1/5, 1/5, 1/5, 1/5).
The larger the K, the slower the rate of convergence. When K > 4, the solutions of the equation become
stable periodic fluctuations. The larger K, the larger the amplitude and the longer the period.
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Figure 2. Results of fourth-order Runge–Kutta method with four stages with the initial values ρ1 = 0.6 
and ρ2 = ρ3 = ρ4 = ρ5 = 0.1. 

We can see from Figures 3 and 4 that when the number of individuals’ neighbors are more than 
four, the densities fluctuate periodically and evolve through time. The amplitude increases with the 
increasing number of individuals’ neighbors; the minimum value of the densities approaches zero, 
and the maximum value of the densities approaches 0.8. The period grows exponentially with the 
increasing number of neighbors. The larger K is, the larger the degree of the differential equation is. 
Because in our model the parameter K must be an integer, we cannot prove whether bifurcations exist 
because the bifurcation parameter K is varied, especially the supercritical Hopf bifurcation. 

 
Figure 3. The relationship between the amplitude of fluctuation density and K. 

 
Figure 4. The relationship between the period of fluctuation density and K. 

Figure 2. Results of fourth-order Runge–Kutta method with four stages with the initial values ρ1 = 0.6
and ρ2 = ρ3 = ρ4 = ρ5 = 0.1; (a) K = 2; (b) K = 4; (c) K = 5; (d) K = 8.

We can see from Figures 3 and 4 that when the number of individuals’ neighbors are more than
four, the densities fluctuate periodically and evolve through time. The amplitude increases with the
increasing number of individuals’ neighbors; the minimum value of the densities approaches zero,
and the maximum value of the densities approaches 0.8. The period grows exponentially with the
increasing number of neighbors. The larger K is, the larger the degree of the differential equation is.
Because in our model the parameter K must be an integer, we cannot prove whether bifurcations exist
because the bifurcation parameter K is varied, especially the supercritical Hopf bifurcation.
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5. Simulation

We consider a spatial environment as one that puts individuals on a square lattice of linear
size L with periodic spatial boundary conditions. Each site can only be occupied by one individual.
Interactions between individuals are based on Cellular Automata simulation.

The strategy of an individual changes from Si to Si+1 if its neighbors have more individuals using
the strategy Si´2 than Si´1. As shown in Mean-field theory, the number of neighbors has enormous
impacts on the system. We use the Von Neumann neighborhood, the four nearest neighbors, and the
Moore neighborhood, the eight nearest neighbors, to simulate the system, respectively. The initial
density of each species is ρi; in this case, i = 1, 2, 3, 4, 5.

Setting L = 200 and ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = 0.2 in the Moore neighborhood case, we obtain the
steady-state densities of different strategies evolving through time, as shown in Figure 5. We find
that the five strategies can coexist in this system and the densities fluctuate stably. Figure 6 shows
the snapshots of the system in different time steps. In Figure 6, the individuals in the system form
a self-organizing pattern; we find that there are spiral waves in the figure.
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ρ4 = ρ5 = 0.1, we obtain the steady-state densities of different strategies evolving through time, as 
shown in Figure 7. We find that in this system, the five strategies can coexist and their densities 
fluctuate stably. However, the speed with which the system reaches a steady state is slow. Figure 8 
shows the snapshots of the system. We can see from Figure 6 that spiral waves emerge in some 
regions. In other regions, ”dead regions” emerge; i.e., the strategies in these regions will not evolve 
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Considering the impact of different densities on the system, setting L = 200, ρ1 = 0.6 and
ρ2 = ρ3 = ρ4 = ρ5 = 0.1, we obtain the steady-state densities of different strategies evolving through
time, as shown in Figure 7. We find that in this system, the five strategies can coexist and their densities
fluctuate stably. However, the speed with which the system reaches a steady state is slow. Figure 8
shows the snapshots of the system. We can see from Figure 6 that spiral waves emerge in some regions.
In other regions, ”dead regions” emerge; i.e., the strategies in these regions will not evolve through
time. The formation of ‘dead regions’ is related to the initial distribution of species.
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Setting L = 200, ρ1 = 0.6 and ρ2 = ρ3 = ρ4 = ρ5 = 0.1 in the Von Neumann neighborhood case, we
obtain the steady-state densities of different strategies evolving through time, as shown in Figure 9.
The densities come to a steady state sooner than the case of eight neighbors. We can see from the
snapshot that self-organizing spiral waves do not exist.

We can see from the simulation that the five strategies can coexist irrespective of whether we
use a Moore neighborhood or a Von Neumann neighborhood. In the Von Neumann neighborhood
model, the densities of species reach a steady state faster than in the Moore neighborhood. In the
Moore neighborhood model, the system reaches a steady state faster when the initial distributions
are uniform, and self-organizing spiral waves emerge in this uniform environment. When the initial
environment is not uniform, some ”dead regions” may appear in the system. We can also see that
spiral waves do not appear in the Von Neumann neighborhood.
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2000 running times.

Next, we consider the triangular lattice with six neighbors. Compared to the L ˆ L square lattice
with periodic boundary, we just need to move the sites in the odd-numbered lines in the right half of
the unit. Setting L = 200 and ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = 0.2, we obtain the densities of the five strategies
evolving through time as shown in Figure 10 and the spatial distribution as shown in Figure 11.
We find that different from the Moore neighborhood and Von Neumann neighborhood, the system
reaches the steady state more slowly. As shown in Figure 10, the system reaches the steady state after
900 time steps. We can also see from Figure 11 that obvious spiral waves appear in the system.

It should also be noted that there are no random factors in our model using the cellular automata
method, except the initial conditions of the system. Therefore, the results of the simulations will be
periodic, which is the weakness of the cellular automata method [44].The results of the simulation are
influenced by the initial distributions of the system; thus, we ran more tests and obtained similar results.
Figures 7–11 are the results from one run, and our results in terms of diversity and self-organization
are robust.
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6. Conclusions

In this paper, we construct a five-strategy cyclically dominant system. Each individual changes
its strategy along a fixed direction in this model. In other words, the dominant strategy can promote
a change in the dominated strategy and the dominated strategy can block the change of the dominant
strategy. The individuals can change their strategies based on their neighbors.

If an individual has K neighbors and the number of dominant strategies available to the chosen
individual is more than the number of dominated strategies, the chosen individual can change its
strategy. We use mean-field theory and cellular automaton to discuss the evolving characters of the
system. We find that the five strategies in this system can coexist and the steady state of the system is
based on the parameter K, which represents the number of neighbors.

In a homogeneous mixing environment, we use mean-field theory to describe the densities
evolving through time. We construct an ordinary differential equation and show that when K = 1,
the internal equilibrium of the equation is globally stable. That is to say, each individual changes its
strategy based on another individual, and at the steady state, the individuals using five strategies tend
to be equal.

When K > 1, we use numerical solutions to solve the problem. Using the fourth-order Runge–Kutta
method with four stages, we find that if the number of neighbors is not more than 4, the individuals
using five strategies tend to be equal. However, if the number is greater than 4, the five densities
fluctuate periodically.

The larger the number of neighbors, the larger the amplitude and the longer the period. That is to
say, the greater the number of neighbors of an individual that consider changing their strategies, the
greater the difference between five strategies. The difference leads to the periodic fluctuation.

Considering the spatial structure, we use cellular automata to simulate the system on a
two-dimensional lattice. We find that the number of neighbors has a huge influence on the system.
In a Moore neighborhood model and triangular lattice model, self-organizing spiral waves emerge
when the system is stable.

As shown in previous studies, the migration rate is the key factor that can lead to self-organization
patterns [30,42]. However, in our model, we find a mechanism to produce self-organization patterns.
This is interesting. It should be noted that there are no self-organization patterns in the Von Neumann
neighborhood, K = 4.
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Although spiral waves were found in this cellular automaton simulation, we do not quite
understand the mechanism that produces the waves, which merits future study. Our model can
be applied to systems with six or more strategies, which may also be worth studying.
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