
entropy

Article

Hawking-Like Radiation from the Trapping Horizon
of Both Homogeneous and Inhomogeneous
Spherically Symmetric Spacetime Model of
the Universe
Subenoy Chakraborty 1, Subhajit Saha 2 and Christian Corda 3,4,5,6,*

1 Department of Mathematics, Jadavpur University, Kolkata 700032, India; schakraborty@math.jdvu.ac.in
2 Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata,

Mohanpur 741246, India; subhajit1729@gmail.com
3 Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha 55134-441, Iran
4 Dipartimento di Fisica, Scuola Superiore di Studi Universitari e Ricerca “Santa Rita”, via Trasaghis 18/E,

Roma 00188, Italy
5 Austro-Ukrainian Institute for Science and Technology, Institut fur Theoretishe Physik,

Technische Universität, Wiedner Hauptstrasse 8-10/136, Wien A-1040, Austria
6 International Institute for Applicable Mathematics & Information Sciences (IIAMIS),

B.M. Birla Science Centre, Adarsh Nagar, Hyderabad 500-463, India
* Correspondence: cordac.galilei@gmail.com; Tel.: +39-380-341-6037

Academic Editors: Ignazio Licata and Kevin H. Knuth
Received: 7 June 2016; Accepted: 28 July 2016; Published: 8 August 2016

Abstract: The present work deals with the semi-classical tunnelling approach and the Hamilton–Jacobi
method to study Hawking radiation from the dynamical horizon of both the homogeneous
Friedmann–Robertson–Walker (FRW) model and the inhomogeneous Lemaitre–Tolman–Bondi (LTB)
model of the Universe. In the tunnelling prescription, radial null geodesics are used to visualize
particles from behind the trapping horizon and the Hawking-like temperature has been calculated.
On the other hand, in the Hamilton–Jacobi formulation, quantum corrections have been incorporated
by solving the Klein–Gordon wave equation. In both the approaches, the temperature agrees at the
semiclassical level.
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1. Introduction

The quantum description of a black hole (BH), namely the Hawking radiation (HR) is closely
related to the existence of an event horizon to the BH. The derivation of Hawking that “BH evaporates
particles” [1–3] was based on quantum field theory. Hartle and Hawking [4] subsequently derived
the BH temperature at the semiclassical level using the Feynmann path integral. The mathematical
complexity of the above procedures forces to develop semi-classical approaches [5–11] for studying
BH radiation. However, these semi-classical techniques were classified into two approaches—the
tunnelling approach of Parikh and Wilczek [5,6,9–16] and the standard Hamilton–Jacobi (HJ) method
(known as complex path integral formalism) by Padmanabhan et al. [7,8].

The energy conservation in tunnelling of a thin shell from the hole is the main ingredient for
the first approach and is often referred to as the radial null geodesic method. The imaginary part
of the action from the s-wave emission is connected to the Boltzmann factor for emission to relate
with Hawking temperature (HT). In the complex paths method, the action S(r,t) for a single scalar
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particle is obtained by solving the Klein–Gordon (KG) equation in gravitational background. Then, HT
is obtained using “the principle of detailed balance” [7,8]. A remarkable behavior of the energy
conservation in tunnelling is that the final spectrum is not strictly thermal [9–11], and this has important
consequences on the black hole information paradox [17].

On the other hand, the discovery of HR [1,2] completes the cycle to describe BH as a thermodynamical
object. The black body nature of BH reveals emission of thermal radiation with temperature
proportional to its surface gravity. Before the discovery of HR, entropy was formulated by
Bekenstein [18] as proportional to the horizon area of the BH. This new perspective leads to viewing
general relativity (GR) from a completely different angle. The nice interrelationship between gravity
and thermodynamics was first enlightened by Jacobson [19] replacing the usual definition of heat
by flow of energy across a horizon. In fact, gravity might be due to the thermodynamics of the
microstructure of spacetime. Then, this idea is extended to modified gravity theories [20–23].
At present, there is a general consensus that gravity might be originated by the thermodynamics
of the unknown microstructure of spacetime. Thus, it is speculated that BH thermodynamics is playing
the role of a bridge to put GR and quantum mechanics on the same platform—the challenging issue
of quantum gravity. It is also an intuitive but general conviction that BHs result in highly excited
states representing both the “hydrogen atom” and the “quasi-thermal emission” in quantum gravity.
A recent approach [24–26] has shown that such an intuitive picture is more than a picture, discussing
a model of quantum BH somewhat similar to the historical semi-classical model of the structure of
a hydrogen atom introduced by Bohr in 1913 [27].

Normally, the global concept of event horizon is used to define the HT. However, difficulty arises
in dynamical spacetime, where there is no existence of an event horizon even locally. In the recent past,
Hayward et al. [28] formulated a locally defined HT for dynamical BH using the tunnelling idea of
Parikh–Wilczek [5]. Then, Cai et al. [29] have shown HR from the locally defined apparent horizon of
the FRW Universe, where HT is measured by an observer using the Kodama vector [30–32] inside the
horizon. In the present work, we shall address this important issue in GR, namely the formulation
of thermodynamics of dynamical spacetime. We shall derive HR and the corresponding HT using
both the HJ method and the tunnelling approach. A comparison between these two formalism will be
done for homogeneous (FRW) as well as an inhomogeneous (LTB) spherically symmetric spacetime
model. The paper is organized as follows: Section 2 gives an overview of radial null geodesic method
to derive HT. In Section 3, the HJ method with quantum prescription for the FRW model has been
presented. Quantum corrected entropy has been formulated in Section 4. Sections 5 and 6 deal with
inhomogeneous LTB model, where HT has been evaluated using both the approaches. In the last
Section we write a brief summary of the whole work. Finally, for the sake of completeness the paper
ends with an Appendix concerning the calculation of Kodama Vector and Surface Gravity.

2. Radial Null Geodesic Approach: Hawking-Like Temperature

In semiclassical tunnelling analysis [5,6,9–13,33], the radial null geodesic method is a common
way of evaluating Hawking radiation. This method is simple as compared to the HJ method, but it has
some limitations, namely:

• The method is applicable only for massless particles;
• One has to use only Painleve type coordinates to avoid singularity at the horizon;
• There is a discrepancy of factor two in this method;
• There is no general method to include quantum effects.

The basic idea in this semiclassical approximation (Wentzel–Kramers–Brillouin (WKB)
approximation) is that the emission rate for the s-wave emission of a massless particle can be related to
the imaginary part of the action of a system. In the s-wave approximation, particles can be viewed as
a massless shell moving along radial null geodesic. Now, compared to static BH cases, there is one
basic difference, as in the present case, the metric coefficients depend on both radius and time. Hence,
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there is no longer time translation Killing vector field. We shall have to use the Kodama [30], which is
time like inside the horizon and the associate energy.

The homogeneous and isotropic model of the Universe is described by the FRW metric as:

ds2 = −dt2 +
a2(t)

1− κr2 dr2 + a2(t)r2dΩ2
2, (1)

where the FRW coordinates (t, r, θ, φ) are orthogonal comoving coordinates with “t” the comoving
time corresponding to a comoving observer, and κ is the intrinsic spatial curvature.

For the above FRW model of the Universe, if we make a change of the radial coordinate
r → R, where R = ar is known as the area radius, then the above standard FRW metric becomes
a Painleve–Gullstrand like metric [34,35] as follows:

ds2 = −
1− R2

R2
A

1− κR2

a2

dt2 − 2HR

1− κR2

a2

dtdR +
dR2

1− κR2

a2

+ R2dΩ2
2, (2)

where RA = 1√
H2+ κ

a2
is the radius of the apparent horizon. In the present case, for the metric (2), the

Kodama vector and the corresponding energy are:

κµ =

(√
1− κR2

a2 , 0, 0, 0

)
and ω = −

√
1− κR2

a2
∂S
∂t

, (3)

respectively. Thus, ω√
1− κR2

a2

is the energy of the particle as measured by an observer with the Kodama

vector. The differential equation for the radial null geodesic (i.e., ds2 = 0 = dΩ2
2) has the form

dR
dt

= HR±
√

H2R2 + 1− R2

R2
A

, (4)

where ± sign are associated with the outgoing/ingoing null geodesic with the assumption that “t”
increases towards future. As we are interested in the imaginary part of the action corresponding
to the tunnelling process through a barrier (the classically forbidden region) as according to
Parikh-Wilczek [5]:

Im S = Im
∫ Rout

Rin

pRdR = Im
∫ Rout

Rin

∫ pR

0
dp
′
RdR = Im

∫ Rout

Rin

∫ E

0

dH′

Ṙ
dR, (5)

where we have used the Hamiltonian equation

Ṙ = ∂H
∂pR

= dH
dpR
|R.

Here, pR is the radial momentum, Rin and Rout are positions very close to the horizon with Rin
as the initial position and Rout, a classical turning point. Using the value of R from Equation (4) into
Equation (5), we get

Im S = Im
∫ Rout

Rin

dR
∫ dH′

Ṙ

= Im
∫ Rout

Rin

dR
Ṙ

ω√
1 + κR2

a2

= −ω
∫ Rout

Rin

dR√
1 + κR2

a2

{√
H2R2 + 1− R2

R2
A
− HR

}
= πRAω, (6)
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where integration over the Hamiltonian H gives the energy of the particle as ω√
1− κ2

a2

as measured by

an observer with Kodama vector. Now, comparing the tunnelling probability

Γ ∼
{
−2

h̄
Im S

}
(7)

with the Boltzmann factor exp
{
−ω

T
}

, we have the temperature associated with the apparent horizon
of the FRW Universe as [35]

TA =
h̄

2πRA
. (8)

This is the semiclassical Hawking-like temperature of the FRW Universe for tunnelling of massless
particles across the apparent horizon.

It should be noted that Im
∫ rout

rin
prdr is not canonically invariant and hence it is not a proper

observable. The canonically invariant quantity Im
∮

prdr over a closed path across the horizon cannot
coincide with 2Im

∫ rout
rin

prdr for the Painleve coordinates as a particle experiences barrier only from

inside the horizon to outside, not the other way. However, for the invariant definition Γ ∼ e−
i
h̄ Im

∮
prdr,

the Hawking temperature turns out to be twice the original temperature. This ambiguity in the factor
of two has been discussed in [36–42].

3. Hamilton–Jacobi Method: Quantum Prescription

In this section, we shall deal with the tunnelling of massless particles beyond the semiclassical
approximation by Hamilton–Jacobi (HJ) method. We shall start with a KG equation for a scalar field φ

describing a massless scalar particle of the form

h̄2
√−g

∂(gµν
√
−g∂ν)ψ = 0. (9)

The explicit form of the KG equation in the background of the FRW metric (1) is given by

∂2ψ

∂t2 −
(1− κr2)

a2
∂2ψ

∂r2 + H
∂ψ

∂t
+

κr
a2

∂ψ

∂r
= 0. (10)

It should be mentioned that here, due to the spherical symmetry of the FRW spacetime and
consideration of the radial trajectories only, we have considered (t− r)—sector in the spacetime given
by Equation (1), i.e., 2D hyperplane (t,r). Now, substituting the standard ansatz for the semiclassical
wave function

ψ(r, t) = exp
{
− i

h̄
S(r, t)

}
(11)

into the wave Equation (10), the differential equation for the action S becomes(
∂S
∂t

)2
−
(

1− κr2

a2

)(
∂S
∂r

)2
− ih̄

[
∂2S
∂t2 −

(
1− κr2

a2

)
∂2S
∂r2 + H

∂S
∂t

+
κr
a2

∂S
∂r

]
= 0. (12)

As a first step to solve this partial differential equation (PDE), we expand the action in powers of
Planck constant h̄ as [36]

S(r, t) = S0(r, t) + Σk h̄kSk(r, t) (13)

with k, a positive integer. Here, terms of the order of Planck’s constant, and its higher powers, are
considered as quantum corrections over the semiclassical action S0. Now, substituting this ansatz for
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S in the differential Equation (12) and equating different powers of h̄ on both sides, we obtain the
following set of PDEs:

h̄0 :
(

∂S0

∂t

)2
−
(

1− κr2

a2

)(
∂S0

∂r

)2
= 0, (14)

h̄1 : 2
∂S0

∂t
∂S1

∂t
− 2

(
1− κr2

a2

)
∂S0

∂r
∂S1

∂t
− ih̄

[
∂2S0

∂t2 −
(

1− κr2

a2

)
∂2S0

∂r2 + H
∂S0

∂t
+

κr
a2

∂S0

∂r

]
= 0, (15)

h̄2 :
(

∂S1
∂t

)2
+ 2

∂S0
∂t

∂S2
∂t
−
(

1− κr2

a2

){(
∂S1
∂r

)2
+ 2

∂S0
∂r

∂S2
∂r

}
− ih̄

[ ∂2S1
∂t2 −

(
1− κr2

a2

)
∂2S1
∂r2

+ H
∂S1
∂t

+
κr
a2

∂S1
∂r

]
= 0, (16)

and so on. The above expansion of the action (see Equation (13)) to all orders in h̄ is due to [36].
However, Yale [43] criticized this expansion of the action in h̄ as [36] does not take into account
the higher order corrections to the energy—only zero order energy is considered. Subsequently,
Singleton et al. [44] has made an attempt to justify the above expansion of the action in [36]
using some ancillary assumption, namely, self-similarity. Anyway, one can say that the expansion in
Equation (13) may be conditionally valid.

Apparently, different order PDEs are very complicated, but, fortunately, there will be lot of
simplifications if, in the PDE corresponding to h̄k, all previous PDEs are used and finally we obtain
identical PDE, namely

h̄k :
(

∂Sk
∂t

)2
−
(

1− κr2

a2

)(
∂Sk
∂r

)2
f or k = 0, 1, 2.... (17)

We see that different order quantum corrections satisfy identical differential equations as the
semiclassical action S0, thus the correction terms are not independent, rather proportional to S0

(i.e., Sk ∝ S0, for all k). To determine these proportionality constants, we shall use dimension
analysis. Since S0 has the dimension of h̄, the proportionality constant dk for Sk has the dimension of
h̄−k. However, in standard units, namely G = c = kB = 1, the Planck’s constant h̄ is of the order M2

p

(Mp is the Planck mass) and hence dk has the dimension of M−2k, where M is identified as the mass of
the Universe. Thus, the series expansion (13) can be written in terms of S0 as

S(r, t) = S0(r, t)

[
1 + Σkαk

(
h̄

M2

)k
]

, (18)

with αk as dimensionless constant parameters.
Now, a complete solution for S requires the solution of S0 satisfying the PDE (14). Since the

metric (1) is non-static, there is no time like Killing vector in the dynamical FRW spacetime. However,
Kodama vector [28] has a similar role in FRW spacetime as the time like Killing vector does in the
stationary BH spacetime. Inside the apparent horizon, Kodama vector is a time like vector, and
hence there is a conserved energy of a particle moving in the time like Killing vector in the stationary
BH spacetime.

The Kodama vector for the FRW metric is given by

Kµ = (
√

1− κr2,−Hr
√

1− κr2, 0, 0), (19)

with associated conserved energy of the particle as

ω = −
(√

1− κr2
) ∂S0

∂t
+
(

Hr
√

1− κr2
) ∂S0

∂r
. (20)
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Solving for ∂S0
∂t and ∂S0

∂r , using Equations (14) and (20), we get

S0 = −
∫

ωdt
{
√

1− κr2 − Har}
∓ aω

∫ dr√
1− κr2{

√
1− κr2 − Har}

, (21)

where the ∓ sign corresponds to ingoing and outgoing scalar particle, respectively, for which the wave
functions have the expressions [36]

ψin = exp

[
− i

h̄

{
1 + Σkαk

(
h̄

M2

)k
}{∫

ωdt
{
√

1− κr2 − Har}
+ aω

∫ dr√
1− κr2{

√
1− κr2 − Har}

}]
(22)

and

ψout = exp

[
− i

h̄

{
1 + Σkαk

(
h̄

M2

)k
}{∫

ωdt
{
√

1− κr2 − Har}
− aω

∫ dr√
1− κr2{

√
1− κr2 − Har}

}]
. (23)

Now, across the horizon, the metric coefficients in the (r,t) sector alter their sign. Thus, the above
time integration might have imaginary parts and make contributions to the probabilities for the ingoing
and the outgoing particles. As a result, the probabilities are given by

Pin = |ψin|2 = exp
[2

h̄

{
1 + Σkαk

(
h̄

M2

)k
}

Im{
∫

ωdt
{
√

1− κr2 − Har}

+ Im aω
∫ dr√

1− κr2{
√

1− κr2 − Har}
}
]
, (24)

and

Pout = |ψout|2 = exp
[2

h̄

{
1 + Σkαk

(
h̄

M2

)k
}

Im{
∫

ωdt
{
√

1− κr2 − Har}

− Im aω
∫ dr√

1− κr2{
√

1− κr2 − Har}
}
]
. (25)

In the present context for the cosmological spacetime, the outgoing probability has to be unity in
the classical limit h̄ → 0, as there will be no observer and everything will go out [45]. Note that the
situation is the opposite of what one has for the BH case, where Pin = 1 in the limit h̄ → 0. Hence,
from Equation (25), in the limit h̄→ 0, we get,

Im
∫

ωdt
{
√

1− κr2 − Har}
= Im aω

∫ dr√
1− κr2{

√
1− κr2 − Har}

. (26)

The above two integrals over t and r, respectively, are explicitly shown to be equal for the FRW
model in [35]. Note that, in most tunnelling problems, one not only has a spatial integral contribution
to the tunnelling rate but also a time integral contribution, which is critical to getting the correct
thermodynamic properties (namely, temperature and entropy) for these spacetimes in the tunnelling
picture (either null geodesic or HJ). This time contribution was first pointed out in [46–48]. Furthermore,
this time contribution to the tunnelling amplitude resolves the “factor of 2” puzzle mentioned in
Section 2. Moreover, in [46–48], it has been shown that Painleve types of coordinates are not the
only coordinates to avoid singularity at the horizon, one may use Schwarzschild or Kruskal–Szekeres
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coordinates in dealing with tunnelling formulation, i.e., singularity at the horizon is not an issue if
treated properly. Thus, Pin will have the simplified form

Pin = exp

[
4aω

h̄

{
1 + Σkαk

(
h̄

M2

)k
}

Im
∫ dr√

1− κr2{
√

1− κr2 − Har}

]

= exp

[
2ω

h̄

{
1 + Σkαk

(
h̄

M2

)k
}

πRa

]
. (27)

Hence, from “the principle of detailed balance”, i.e., [7,8]

Pout = exp
{
− ω

Th

}
Pin, (28)

we have

Tk =

{
1 + Σkαk

(
h̄

M2

)k
}−1

1
2πRA

=

{
1 + Σkαk

(
h̄

M2

)k
}−1

Tc. (29)

This is the horizon temperature of the FRW model of the Universe after quantum corrections are
taken into account. The quantum corrections to this modified temperature is very similar to that of
Banerjee et al. [36] for general static BHs. In addition, the modified temperature has arbitrariness
due to the choice of the parameters αk in the expression. Banerjee et al. [36] has shown that, for static
BHs, different choices of αk’s will lead to different physical interpretation. For future work, we shall
attempt to study particles with non-zero mass and examine whether quantum corrections as well as
Hawking-like temperature depend on the mass term.

4. Hamilton–Jacobi Method in the Lemaitre–Tolman–Bondi Model

The inhomogeneous spherically symmetric LTB spacetime model is given by the matric ansatz in
a comoving frame as

ds2 = −dt2 +
R′2

1 + f (r)
dr2 + R2(dθ2 + sin2θdφ2), (30)

where R = R(r, t) is the area radius of the spherical surface and the curvature scalar f (r) classifies the
spacetime as follows:

(a) bounded: −1 < f (r) < 0,
(b) marginally bounded: f (r) = 0,
(c) unbounded: f (r) > 0.

The Einstein field equations for the spacetime model can be written as: [49–52]

8πGρ =
F′(r, t)
R2R′

and 8πGp = − Ḟ(r, t)
R2Ṙ

, (31)

and the evolution equation for R is given by

2RR̈ + Ṙ2 + 8πGpR2 = f (r). (32)

Hence, the mass function
F(r, t) = R(Ṙ2 − f (r)) (33)

is related to the mass contained within the comoving radius “r”. The Universe is assumed to be filled
with perfect fluid having energy-momentum tensor

Tµν = (ρ + p)uµuν + pgµν, (34)
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where the fluid 4-velocity uµ is normalized by uµuν = −1 and ρ, p are the energy density and pressure
of the fluid, respectively. The energy-momentum conservation relation Tµ

ν
;ν = 0 gives

ρ̇ + 3H(ρ + p) = 0 , p′ = 0, (35)

with H = 1
3

(
Ṙ′
R′ + 2 Ṙ

R

)
as the Hubble parameter; “dot” and “dash” over any quantity stand for

differentiation with respect to “t” and “r”, respectively. Now, splitting the metric ansatz (30) on the
surface of the two-sphere and on the 2D hypersurface normal to the two-sphere as

ds2 = habdxadxb + R2dΩ2
2, (36)

the dynamical apparent horizon is characterized by [25,26]

hab∂aR∂bR = 0, (37)

where hab = diag[−1, R′2
1+ f (r) ] is the 2D metric normal to the two-sphere. Thus, the spherical surface of

radius R = RA corresponding to the apparent horizon (i.e., marginally trapped surface) satisfies

RA = F(r, t) and Ṙ2
A = 1 + f (r). (38)

For the sake of completeness, we recall that, in principle, the energy density, see Equation (35),
could be phantom dark energy. In fact, the current observational data does not rule out this
possibility [53,54]. For example, in the model in [53], which is founded on a brane–antibrane
system, the equation of state parameter of the 4D Universe can change due to owing energy from
an extra dimension and decrease from higher values of −1 (non-phantom phase) to lower values
(phantom one). In general, we have some interesting properties about entropy and temperature
concerning the phantom dark energy scenario. On one hand, as the internal phantom energy is
negative, whereas the phantom temperature is definitely negative, and then hotter than any other
sources in the Universe, its entropy is always positive, even though holding of the second law is not
guaranteed by quantum-mechanical reasons [54]. On the other hand, concerning the observable matter
in the Universe, the cosmic phantom field can be regarded as a cosmological source of information
and negative entropy [54].

Trapping horizon (RT), a hypersurface foliated by marginal spheres, is characterized by [55]:

∂+RT = 0, i.e., ṘT =
√

1 + f (r), (39)

∂± =
√

2

(
∂t ∓

√
1 + f (r)

R′
∂r

)
, (40)

are the null vectors to the two-sphere. Thus, both the horizons coincide for the LTB model as in the
FRW spacetime.

The Misner–Sharp gravitational mass (in units of G = 1) is defined as: [55,56]

m(r, t) =
R
2
(1− hab∂aR∂bR). (41)

One might note that this mass “m” is an invariant quantity on the 2D hypersurface normal to
the two-sphere and m = mH = RA

2 on the horizon. Furthermore, one can introduce another invariant
scalar associated with the horizon in the normal hypersurface known as dynamic surface gravity
which is defined as [28]:

κD =
1
2

R|H =
1

2
√
−h

∂a(
√
−hhab∂bR)|H , (42)
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which, for the given model, has the expression

κD =

[
1

2R′

{
−∂t(ṘR′) +

1
2

f ′(2)
}]

H
. (43)

For the LTB model with a decomposed metric (33), the Kodama vector κ has components

κa(r, t) =
1√
−h

εab∂bR , κθ = 0 = κφ, (44)

i.e.,

κµ =

(√
1 + f (r),− Ṙ

R′

√
1 + f (r), 0, 0

)
. (45)

Thus, ||κµ||2 = Ṙ2 − 1− f (r), i.e., the Kodama vector is time like, null or space like for inside,
on the surface or outside the apparent (i.e., trapping) horizon, respectively. Note that the Kodama
vector is very similar to the time like Killing vector for stationary BH spacetime and, consequently,
an invariant energy associated with a particle is defined by the scalar on the normal space as [57]:

ω = −κa∂a I. (46)

It should be noted that energy in general relativity is not an invariant. This is a consequence of
the equivalence principle [58], which states that one can always choose a coordinate system, i.e., local
Lorentz coordinate system, where the gravitational field is null. Thus, the gravitational energy cannot
be localized [58]. One measures a particle’s energy, with respect to some natural timelike vector field.
However, in Hawking’s black hole radiation, one should not always use the natural timelike Killing
vector for a stationary black hole.

Here, the classical action I of the massless particle satisfies the HJ equation:

hab∂a I∂b I = 0,

i.e.,
(

∂I
∂t

)2
−
{

1 + f (r)
R′2

}(
∂I
∂r

)2
= 0. (47)

Hence, solving (47), we have

∂I
∂r

=
ωR′√

1 + f (r)
{

Ṙ−
√

1 + f (r)
} and

∂I
∂t

=
ω{

Ṙ−
√

1 + f (r)
} , (48)

where there is a pole at the horizon. The full classical action of an outgoing massless particle is

I =
∫

γ
∂a Idxa, (49)

where γ is an oriented curve with positive orientation along the increasing values of xa=(t,r). As for
massless particles, the radial motion is along a null direction, so from the metric, we have

0 = ds2 = −dt2 +
R′2

1 + f (r)
dr2,

i.e., dt = ± R′√
1 + f (r)

dr, (50)



Entropy 2016, 18, 287 10 of 16

for outgoing and ingoing particles, respectively. Thus, using Equation (48) in Equation (49), we have
for outgoing particles

I = 2
∫

dr(∂r I) = −2
∫

γ

ωR′

1 + f (r)
dr{

1− Ṙ√
1+ f (r)

} . (51)

Now, expanding G(r, t) = 1− Ṙ√
1+ f (r)

in the neighbourhood of the horizon along a null direction,

we obtain

G(r, t) '
[
− R̈√

1 + f
∆t−

(
Ṙ′√
1 + f

− Ṙ f ′(r)

2(1 + f )
3
2

)
∆r

]
H

+ · · ·,

=

[
− R̈R′

(1 + f )
− Ṙ′√

1 + f
+

Ṙ f ′(r)

2(1 + f )
3
2

]
∆r|H + · · ·, (52)

=
2R′

(1 + f )
κD(r− rH) + · · ·.

Then, from Equation (51),

I = −
∫

γ
dr

ω

κD(r− rH − i0)
, (53)

which has a simple pole at r = rH . Using Feynmann’s iε prescription, the imaginary part of the action
(the real part has no physical consequence) can be written as [52]

Im I = −πωH
κD

. (54)

Hence, one might interpret T = − κD
2π > 0 as the dynamical temperature associated with

LTB spacetimes.
Moreover, we consider LTB tunnelling computation in the coordinate system (r̃,t,θ,φ),

where r̃ = R. The metric ansatz (in γ−gauge) becomes

ds2 = −Adt2 − 2Bdr̃dt2 + C(dr̃)2 + r̃2dΩ2
2

= qabdxadxb + r̃2dΩ2
2, (55)

where

A = 1− Ṙ2

1+ f (r) = A(r̃, t),

B = Ṙ
1+ f (r) = B(r̃, t),

C = 1
1+ f (r) = C(r̃, t).

The horizon is located at χ = 0, where

χ = qab∂a r̃∂b r̃ = qr̃r̃ =
A

AC + B2 , (56)

i.e., AH = 0 gives the horizon. The Kodama vector is given by

κµ =

(
1√

B2 + AC
, 0̂
)

, (57)

and the invariant energy has the expression

ω = − ∂t I√
B2 + AC

. (58)
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The dynamical surface gravity on the horizon is

κD =

[
1

2B3

(
A′B +

1
2

ȦC
)]
|H , (59)

where “dash” and “dot” represent partial derivatives with respect to r̃ and t, respectively. The HJ
equation for a massless particle along a radial trajectory has the explicit form

− C(∂t I)2 − 2B(∂t I)(∂r̃ I) + A(∂r̃ I)2 = 0. (60)

Now, integration over the temporal coordinate gives real contribution to the particle action (which
has no physical significance). An imaginary contribution comes only from integration along the radial
direction. Now, eliminating ∂t I between Equations (58) and (60), we obtain

∂r̃ I = −ω(B +
√

B2 + AC)
A

√
B2 + AC. (61)

For the metric (55), by making a null expansion on the horizon, we obtain

0 = ds2 = −2dtdr̃ +
dR̃2

1 + f (r)
, (62)

and (
1− Ṙ2

1 + f (r))

)
' − 2ṘR̈

1 + f (r)
dt−

{
2ṘṘ′

1 + f (r)
− f ′(r)Ṙ2

(1 + f (r))2 dr̃
}

= −
{

ṘR̈

(1 + f (r))
3
2
+

2ṘṘ′

1 + f (r)
− f ′(r)Ṙ2

(1 + f (r))2

}
dr̃ (63)

= 2κDH(r̃− r̃H).

Hence,

Im I = −
∫

γ
dr̃

ω(B +
√

B2 + AC)
2κDH(r̃− r̃H − i0)

= −πωH
κDH

. (64)

Thus, we have the same result as in Equation (54).

5. Determination of Entropy: Area Law

In this section, we shall examine the semiclassical Bekenstein–Hawking area law [1,2,18] for the
non-static FRW spacetime at the apparent horizon. In addition, we shall calculate the corrections to the
semiclassical entropy due to quantum effects of the Hawking-like temperature. Thus, we start with
the thermodynamical law that expresses the energy conservation as

dM = ThdSA. (65)

Here, Th is the temperature of the horizon (with quantum corrections), SA is the entropy of the
horizon, and M is chosen to be the Misner–Sharp gravitational mass, defined as [59]

dM =
dRA

2
(66)

on the horizon. Now, if we identify M in the quantum corrections (29) for the temperature as the above
Misner–Sharp mass, then integrating (65), we have
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SA =
∫ dM

Th
=
∫ 4πM

h̄

[
1 + Σαk

(
h̄

M2

)k
]

dM

=
2πM2

h̄
+ 4πα1ln M− 4π

α2h̄
M2 + O(h̄2) (67)

=
1
2

A
4h̄

+ 4πα1ln M− 16π
α2h̄
R2

A
+ O(h̄2).

In the above equation, the first term on the right hand side is the semiclassical relation between
area and entropy, which is the usual Bekenstein–Hawking area law with a discrepancy of factor 1

2 .
The second term is the leading order quantum correction term and is the standard logarithmic
correction term in black hole thermodynamics [45,60–62]. The higher order correction terms are in the
inverse powers of the area of the horizon.

6. Tunnelling Approach

The basic idea in tunnelling method is that following the standard approach, i.e., in the
semiclassical approximation (WKB approximation), the emission rate of tunnelling of a massless
particle across the horizon can be related to the imaginary part of the action of the system. In the s-wave
approximation, the particles are considered as massless shells, moving along a radial null geodesic.

Thus, for the metric (55), the radial null geodesic is characterized by

˙̃r =
B±
√

B2 + AC
C

, (68)

where as before ± sign indicates an outgoing or incoming null geodesic. Due to the tunnelling of the
particles from the outside to the inside of the horizon, here we shall consider only an incoming geodesic.
As we have seen that in the present context we need the imaginary part of the action produced by the
tunnelling particles (the remaining part is always real), i.e., particles tunnelling through a barrier (the
classically forbidden region), thus we obtain [27]:

Im S = Im
∫ r̃ f

r̃i

pr̃dr̃ = Im
∫ r̃ f

r̃c

∫ p̃r

0
dp
′
r̃dr̃. (69)

Here, the particle with radial momentum pr̃ tunnels from the initial position r̃i just outside the
horizon to the final point at r̃ f which is a classical turning point, i.e., in the semiclassical analysis,
the trajectory can represent a classically allowed motion

˙̃r =
dH̃
dpr̃
|r̃, (70)

where the Hamiltonian H̃ is the generator of the cosmic time “t”. Then, using Equations (68) and (70)
in Equation (69), we write [27]

Im S = Im
∫ r̃ f

r̃i

dr̃
∫ dH̃

˙̃r
= Im

∫ r̃ f

r̃i

dr̃
˙̃r

ω
√

B2 + AC = −ωIm
∫ r̃ f

r̃i

C
√

B2 + AC
{
√

B2 + AC− B}
= πr̃Hω. (71)

One may note that in order to perform the integration over the Hamiltonian H, we get the energy
as ω
√

B2 + AC, as measured by an observer with the Kodama vector. Then, using the emission rate,
i.e., Γ ∼ exp{−2Im S}, we have

T =
ω

2Im S
=

1
2πr̃H

, (72)

which is the HT as derived previously in Section 2.
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7. Conclusions

In this work, we have studied Hawking-like radiation from the homogeneous FRW model and
the inhomogeneous LTB model of the Universe using both the radial null geodesic method (tunnelling
approach) and the HJ formalism approaches. In both of the methods, we have obtained identical
Hawking-like temperature at the semiclassical level. “The factor of two” problem in the tunnelling
approach has been overcome by considering the Kodama vector instead of time-like vectors and
associated energy as the energy of the tunnelling particle. We have obtained quantum corrections
to the Hawking-like temperature using the HJ method, and these corrections are similar to those for
general static BHs. In addition, the quantum corrected entropy formula has been evaluated from
the law of thermodynamics, and it is found that the usual entropy law with quantum corrections
are the same as in BH thermodynamics with some discrepancies in the multiplicative factor. In the
LTB model, the HT is measured by an observer with the Kodama vector (Equation (45)) inside the
trapping (apparent) horizon. In both of the models, the trapping horizon of the Universe is related
to the HT in contrast to the BH case, where HR is associated with an event horizon. The present
work supports that of the FRW Universe [21] in the literature. In the LTB model, making a coordinate
transformation (given by metric Equation (55)), we reach the same conclusion, indicating that HR
is independent of coordinate choice. For future work, we shall attempt to find interpretation of the
parameters involved in the quantum corrections. It is worthy to generalize the tunnelling approach
for non-zero mass particles (i.e., time-like geodesics) as well as to incorporate the quantum correction
terms (back reaction effects). Finally, we shall try to resolve the ambiguity in the multiplicative factors
for the entropy-area formula.
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Appendix. Calculation of Kodama Vector and Surface Gravity

In a time-dependent spacetime, there is no (asymptotically timelike) Killing vector to define
a preferred time coordinate. Kodama came forward with a divergence free vector field for any
time-dependent spherically symmetric spacetime. The Kodama vector lies on (1 + 1)-dimensional
radial-temporal plane and is defined as

Ka = εab∇bR, (A1)

where εab is the (1 + 1)-dimensional Levi–Civita tensor in the radial-temporal plane. It is easy to see
that ∇aKa = 0, i.e., Kodama vector is free.

Furthermore, with the Kodama vector, there is an associated conserved current, namely,

Ja = GabKb,

with ∇a Ja = 0.
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For the FRW model of spacetime with metrics given by Equation (1), the Kodama vector is
given by

Kb =

[
−a
(

∂

∂t

)b
+ HR

(
∂

∂r

)b
]

.

Similarly, for the metric (2), the Kodama vector is given by Equation (3).
To find surface gravity, we write down the FRW metric (1) as

ds2 = hab(xa)dxadxb + R2dΩ2
2,

where a, b can take values 0 and 1. The two-dimensional metric

dh2 = hab(xa)dxadxb,

with hab =diag{−1, a2

1−κr2 } is referred to as the normal metric with x0 = t, x1 = r. Let us consider the
following scalar on the normal space

χ(x) = hab∂aR∂bR = 1−
(

H2 +
κ

a2

)
R2.

Then, the surface gravity on the apparent horizon is defined as

κA = −1
2

∂χ

∂R
|R=RA =

1
RA

.

Hence, the Hawking temperature on the apparent horizon is given by

TA =
1

2πRA
,

as shown in Equation (8). Clearly, the surface gravity on the apparent horizon is constant.
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