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Abstract: The research objective in this paper is to investigate the feasibility and effectiveness of
utilizing envelope extraction combining the multi-scale entropy (MSE) analysis for identifying
different roller bearing faults. The features were extracted from the angle-domain vibration signals
that were measured through the hardware-implemented order-tracking technique, so that the
characteristics of bearing defects are not affected by the rotating speed. The envelope analysis
was employed to the vibration measurements as well as the selected intrinsic mode function (IMF)
that was separated by the empirical mode decomposition (EMD) method. By using the coarse-grain
process, the entropy of the envelope signals in the different scales was calculated to form the MSE
distributions that represent the complexity of the signals. The decision tree was used to distinguish
the entropy-related features which reveal the different classes of bearing faults.

Keywords: multi-scale entropy; bearing fault; order tracking; empirical mode decomposition;
decision tree; variable speed

1. Introduction

Due to the large system size or the limitations of environmental hazards, it may be difficult to
inspect the bearings of rotating machinery directly. Therefore, vibration analysis, which is an indirect
approach for system dynamics analysis has been applied to diagnose the bearing faults in rotating
machinery for decades. In order to retain the performance and efficiency of machinery, it is essential
to identify the bearing deterioration in the early stage, and then take the necessary actions for the
system maintenance.

Based on the information theory, it is well-known that the system complexity can be estimated
by means of the entropy computation. Since the entropy represents the complexity estimation of
the system measurements, different types of entropy definitions, such as the sample entropy [1,2],
approximate entropy [1,3], spectral entropy [4], pattern spectrum entropy [5], permutation
entropy [6,7], and energy entropy [8], have been utilized to evaluate the regularity or disorderliness of
the mechanical and physiological systems. Therefore, such a statistical quantification approach has
been employed to diagnose the detriment and malfunction of machinery. In addition, Costa et al. [9,10]
indicated that the heartbeat time series of different pathological patients cannot be classified if
calculating the sample entropy of the time series in only one temporal-domain scale. Therefore,
they proposed the multi-scale entropy (MSE) analysis method to separate the human heartbeat signals
of healthy and pathological groups. Based on the concept of MSE analysis, Wu et al. [11] proposed an
approach for the diagnosis of ball bearing faults through the MSE analysis as well as the Mahalanobis
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distance computation. A similar concept was also applied for diagnosing the different faults in
high-speed spindle systems [12].

As shown in the previous literature, most studies of the entropy analysis for machine fault
diagnostics were achieved based on the operation condition of steady rotating speed. However,
some of the rotating systems may operate under the situations of variable rotating speed because of
the variation of loads or environmental influence. In such a variable-speed condition, the dynamic
features, such as the characteristic frequencies of bearing defects, are strongly governed by the rotating
speed. Therefore, it definitely helps to enhance the accuracy of the diagnostics if the influence of
variable rotating speed is removed or alleviated. Order-tracking techniques have been utilized to
record the vibration signals of rotating machinery in terms of the identical angular displacement
instead of the identical sampling time. In such a way, the factor of rotating speed is removed and then
the system characteristics can be represented in terms of the orders. Fyfe and Munck [13] utilized
the interpolation algorithm to re-construct the signals, such that the measurements seemed to be
sampled by means of an identical angular displacement. The computed order-tracking methods were,
thus, employed extensively to analyze and diagnose the rotating machineries in order domain [14,15].
Although the computed order-tracking techniques have been broadly utilized to characterize the
rotating machinery without the factor of rotating speed, however, such a post-process of software
implementation needs the sophisticated interpolation algorithms and may result in imprecise or
distorted signals that are reconstructed by the interpolation algorithms. Moreover, the major drawback
of the computed order-tracking method is that the information of the shaft rotating speed must be
available synchronously while using this kind of technique.

To advance the state-of-art of bearing fault diagnosis in case of variable rotating speed,
the hardware-implemented order-tracking technique was utilized in this research to record the
precise angular series of vibration. With the identical angular measurement, the influence of the
shaft rotating speed upon the fault-related characteristics of the rotary systems can be alleviated
and, thus, the variable shaft speed does not affect the features of bearing defects. Since the previous
studies have shown that the entropy estimation can represent the disorderliness or complexity of the
signal which reflects the different machine faults, the MSE analysis was employed in this research
to extract the entropy-related features for bearing defect diagnosis. A bearing test stand consisting
of the mechanism of identical angular measurements was performed to illustrate the different types
and levels of bearing detriment under the running conditions of variable rotating speed. The bearing
defect-related features were extracted to form the feature vectors which contain the MSE distribution
among different scales, the cosine values between the MSEs of the normal and faulted bearings,
and the sample entropy variation among different scales. A decision tree was employed to verify
the performance of intelligent classification among the extracted features. The classification results
demonstrated that the proposed approach is capable of diagnosing the different types and levels of
bearing detriment accurately. For the purpose of further usage and reference, all of the measurements
of the vibration signals and the corresponding shaft rotating speed data that were utilized in this
research article are available at the website [16].

2. Vibration Signal Analysis

2.1. Signal Decomposition

The empirical mode decomposition (EMD) proposed by Huang et al. [17] is capable of
decomposing the complicated signal into the intrinsic mode functions (IMFs) of different frequency
scales, and have been utilized in versatile applications of data analysis, particularly for non-linear
and non-stationary signals. Its capability of adaptive time-frequency distribution construction
is analogical to the angle-order analysis through the order-tracking techniques for the rotational
systems and, hence, can be employed to investigate the bearing vibration in case of variable shaft
rotating speed. The vibration signal of identical angular measurement x(k) that was recorded by the
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hardware-implemented order-tracking technique is decomposed into a number of intrinsic mode
functions (IMFs) of different scales (orders) through the EMD method, that is:

xpkq “
ÿh

j“1
cjpkq ` rhpkq, (1)

where cj(k) represents the j-th IMF of the signal x(k), rh(k) is the signal residue or trend, and k represents
the angular index. According to the concept that is analogical to the instantaneous frequencies of IMFs,
the decomposed IMF component (Equation (1)) represents the mono-oscillation function, and it exits a
unique order at all the instantaneous angles. The IMF must satisfies the following two conditions [17]:
(1) The number of extrema and the number of zero-crossings must be either equal or differ at most by
one in the whole data set; (2) at any point, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima is zeros. Therefore, it is feasible to compute the physical
meaningful orders for the construction of angle-order distributions of the vibration signals that are
measured by the order-tracking technique.

2.2. Computation of Multi-Scale Entropy

In the fields of information theory and thermodynamics, the concept of entropy is conventionally
utilized to characterize and estimate the observation data which represent the system dynamical
behaviors. Shannon proposed the means to quantify the entropy of the measurements for the
characterization of the observation data, and then the method has been extensively applied to measure
the complexity or disorderliness of a time series [18]. Suppose a single discrete series S = {x1, x2, ..., xN}
has N outcomes in which there exist n classes ({s1, s2, ..., sn}). The entropy of the series S is defined as:

EnpSq “ ´
ÿn

i“1
ppsiqlogpppsiqq, si P S, 1 ď i ď n, (2)

where p(si) is the probability density function of the series S, and log represents the natural logarithmic
function or logarithmic function to base of 2. Subsequently, Richman and Moorman [1] developed the
algorithm to determine the sample entropy (SE) of a series. Let S be the same time series of data length
of N as in Equation (2), and m sequential points of the time series be a pattern. Therefore, the pattern
space X is defined as [1,6,9]:

X “

»

—

—

—

—

–

x1 x2 ¨ ¨ ¨ xm

x2 x3 ¨ ¨ ¨ xm`1
...

...
. . .

...
xN´m`1 xN´m`2 ¨ ¨ ¨ xN

fi

ffi

ffi

ffi

ffi

fl

. (3)

The mean self-similarity quantity can be formulated as:

ϕmprq “
1

N ´m
1

N ´m` 1

N´m
ÿ

i“1

N´m`1
ÿ

j“1

Gpdij, rq, (4)

where G(¨) represents the Heaviside function, r is the tolerance and dij represents the distance between
the i-th and j-th patterns, dij “ ||Xi ´Xj||

8
. From Equation (4), the mean self-similarity represents

the mean value of all the distance measurements between the two sequential patterns Xi and Xj of
length m (row vectors of the pattern space X) in terms of the saturation form (Heaviside function).
In other words, the self-similarity quantity estimates the repetition degree of sequential pattern of
length m. The self-similarity is also calculated for the pattern space of the length of m + 1, and the
sample entropy of the series is thus determined as:

SEnpm, rq “ ´log
ϕm`1prq

ϕmprq
. (5)
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The concept of entropy in multi-scale was proposed by Costa et al. [9,10]. They indicated
that it is difficult to distinguish the inter-beat interval time series of the healthy human beings
and the patients with congestive heart fail (CHF) if the sample entropy is examined within only
a single temporal-domain scale. In order to resolve this weakness, they proposed the concept of
MSE to represent the regularity of the data series in different scales through the coarse-grain process.
Their analysis results demonstrated the effectiveness of utilizing the MSE analysis to distinguish
the pathological human’s physiological signals. The coarse-grain process is mainly to transform the
original data series into different scales. For a given data series, S = {x1, x2, ..., xN}, it is first segmented
into several datasets of length τ. By taking the mean values of the segmented data according to the
following formula, the new series sets {ypτqj } are then obtained:

ypτqj “
1
τ

jτ
ÿ

i“pj´1qτ`1

xi, 1 ď j ď
N
τ

, (6)

where τ is called the scale factor. Apparently, the coarse-grain process is equivalent to the
down-sampling process through using a sliding window of length τ and taking the average of
the original signal within the window in the way of non-overlap. Namely, the coarse-grain process is
to utilize a moving average filter to remove the high frequency or order components. Figure 1a shows
the schematic plot of the coarse-grain process for τ = 2 and τ = 3 [9].
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Once the data series is transformed into different scales through the coarse-grain process, the MSE
is thus formulated in terms of the different scale τ, that is:

MSEpS, τ, m, rq “ SEnpypτq, m, rq, (7)

where ypτq “
!

ypτqj

)

represents the series obtained by the coarse-grain process with the scale τ.
The tolerance r is chosen to be fixed in general cases without the variation to the scale τ and, thus,
the original signal amplitude does not affect the results of MSE analysis [19].

2.3. Decision Tree Classification

The decision tree is a tree-like model that has been broadly utilized for consequence prediction
and data classification. As illustrated in Figure 1b, the structure of the decision tree generally consists
of a root node (topmost: input sets of features), leaf nodes (bottommost: class labels), a number of
internal nodes, and a number of branches (conjunctions of features). The source set of features are
separated into the subsets which are based on the outcome test values of the attributes. The procedure
of the decision tree algorithm can be summarized as the following steps:

(1) The source set of features start training at the root node of the decision tree.
(2) If the features have the same outcome values of attributes at the same node, then this node is the

leaf node and all of the features at the node are classified as the same class label.
(3) If the features at the node have different outcome values of attributes, then this node belongs

to the internal node and the most distinguishable attribute among the features is estimated to
discriminate the features. The estimation criteria of this attribute are employed for the decision
rule at this node.

(4) The above steps go through recursively to form the decision tree model.
(5) The stoppage conditions of the steps include:

(i) For all nodes in the decision tree, all of the features at the same node have the same outcome
values of attributes. Namely, all the nodes go to Step 2.

(ii) The features at the same node do not consist of attribute to be utilized for further separation.

It is clear that the top node is the best node for classification and the other features at the nodes
of the decision trees appear in descending order of importance [20]. The merits of the decision
tree classifier includes that the classification rule is simple and less computation effort is required.
The algorithms of the decision trees that have been utilized broadly include ID3 [21], C4.5 [22],
CHAID [23], CART [24], and QUEST [25]. Due to its flexible capability for continuous and discrete
data processing, the C4.5 algorithm [22] was employed in this research to construct the decision tree
model for the classification of different bearing defects.

The C4.5 algorithm selects the testing attributes according to the information gains that are
determined at each node of the decision tree. Cluster D represents the collection of d sets of data
samples. The data samples consist of m class labels, denoted by Ci (i = 1, 2, ..., m) and di represents the
dataset number of class label Ci. The expectation information of D is computed as:

In f opDq “ ´
m
ÿ

i“1

pilog2ppiq, (8)

where pi represents the probability of the data samples which are classified to Ci, calculated as di/d.
Suppose the attribute T has v different values {t1, t2, ..., tv}, and thus the cluster D is divided into v
subsets {D1, D2, ..., Dv}. The entropy of the data cluster D can be formulated as:



Entropy 2016, 18, 292 6 of 13

EpTq “ ´
v
ÿ

j“1

d1j ` d2j ` ...` dmj

d
In f opDq, (9)

where dkj represents the data set number of the k-th class label having the j-th attribute value.
The information gain of the cluster D with the attribute T is then computed as:

GainpD, Tq “ In f opDq ´ EpTq. (10)

The algorithm calculates the information gain of each attribute and then selects the attribute of
the highest information gain value to be the testing attribute of the node. The training sets of data
samples that consist of several known attributes, as well as the known target class labels, are utilized
to construct the decision tree model. The data samples whose class labels need to be identified are
classified according to the node attributes of the decision tree model.

3. Experiment Verification

3.1. Experiment Setup

In order to evaluate the diagnostic effectiveness and accuracy of the proposed approach, a bearing
testbed was performed to illustrate the different running conditions of defective bearings in this
research. The testbed consisted of a main shaft that was supported by a pair of bearing sets. The bearing
type used in this research is KOYO N203 (Hongkong NKF Machinery Co., Limited, Hongkong,
China), and Table 1 shows the dimension specifications as well as the associated characteristic orders.
The notches of different sizes were first made artificially on the inner race, outer race, and roller of the
bearings, respectively, through the electrical discharge machining technique. One of the bearing sets in
the test-bed was replaced by the defective bearing to simulate the running conditions with different
bearing faults. The driving motor operated following the four different preset profiles of rotating speed
(shown in Figure 2), consisting of (A) constant speed; (B) speed-up and speed-down; (C) speed-down;
and (D) speed-up, to simulate the running conditions of variable speed. The accelerometer was
stuck on the bearing support to measure the vibratory acceleration. The shaft encoder consisting
of 600 identical indices per revolution was installed to measure the precise rotating speed. Each index
of the shaft encoder can produce a one pulse signal to trigger the data acquisition device (NI 9215)
recording the vibratory acceleration signal. With such a mechanism, the vibration signals were
captured with identical angle in this hardware-implemented order-tracking configuration and, thus,
the characteristics of bearing defects are not related to the rotating speed.

Table 1. Characteristics of the bearing in the experiment.

Dimension Specification

Inner diameter (mm) 17 Roller diameter (mm) 6.5
Outer diameter (mm) 40 No. of roller 10
Cage diameter (mm) 28.6

Characteristics order

Cage rotating order (Oc) 0.39
Roller spin order (Obs) 2.09
Order of roller passing through an outer race point (Obpo) 3.86
Order of a roller point passing through inner and outer race (Orp) 4.17
Order of roller passing through an inner race point (Obpi) 6.14
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Seven test classes, as shown in Table 2 were illustrated in this experiment, consisting of the normal
case as well as the defective conditions. One hundred datasets of angle-domain vibration signals
(25 sets for each shaft rotating speed profile) were acquired to represent the vibration behavior of each
experimental class of bearing defect. A total of 700 sets of angle-domain vibration signals, each set
containing 21,000 data points, were recorded in this experiment. For the further employment and
reference, all the measurements of the vibration signals and the corresponding shaft rotating speed
data are available at the website [16].

Table 2. Defective bearing class in experiment.

Class Defect Expression Notch Dimension

C1 Normal
C2 Slight outer race defect 0.4 mm ˆ 0.3 mm
C3 Severe outer race defect 0.8 mm ˆ 0.3 mm
C4 Slight inner race defect 0.4 mm ˆ 0.3 mm
C5 Severe inner race defect 0.8 mm ˆ 0.3 mm
C6 Slight roller defect 0.1 mm ˆ 0.3 mm
C7 Severe roller defect 0.4 mm ˆ 0.3 mm

3.2. Vibration Signal Analysis and Processing

All of the recorded vibration signals were separated into a number of IMFs by the EMD
method [17]. Since the collected vibration data were identical angular signals, the decomposed
IMFs represent the signal components of different orders. In order to ensure that no mode-mixing
problem exists in the EMD process, the standard IMF orthogonality index check [17] was also involved
in the above signal separation steps. It is also noted that the order values of IMFs do not affect the
calculation of MSE, so the angle-order distributions are skipped in this paper. Based on the observation,
as well as the physical interpretation, the defective component impacts the other components of bearing
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cyclically and, thus, the amplitude modulation phenomenon can be observed in the measurements
(as illustrated in Figure 3). The cubic spline fitting was then employed to extract the envelope signals
of the vibration signals. It is also noted that all the first IMFs of the vibration signals which represents
the signal component of the highest order have the apparent amplitude modulation phenomenon
(as illustrated in Figure 4). The envelope analysis (cubic spline fitting) was also employed for the first
IMFs of all of the vibration signals for comparison purposes.
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Figure 4. The first IMF of vibration measurement in class C2 and its zoom-in plot. (a) Original
measurement; (b) zoom-in of original measurement.

The MSEs within the first 50 scales were then calculated for all the envelope signals of the original
vibration measurements and their first IMF components, respectively. Figures 5 and 6 show the mean
MSE quantities of the envelope signals that were extracted from the vibration measurements (testing
subset I) and the first IMFs of vibration measurements (testing subset II) under the different defective
classes and the corresponding shaft rotation speed. It can be observed in these two figures that the
different types of bearing faults present the different distributions of sample entropy among different
scales (distinquishability), while the different sample entropy values derive the levels of bearing
defects. By observing these two figures and comparing among the subplots (A), (B), (C), and (D) in
Figure 5, it is apparent that the rotating speed variation does not affect the distinguishability among
the MSE distributions. The MSE quantities of the testing subset II (Figure 6) reveal the distinguished
distributions more obviously than the ones of the testing subset I (Figure 5), particularly for the
different levels of bearing defects.
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Figure 5. Mean MSE quantities of envelope signals in testing subset (I) under different defective classes
and shaft rotation speed profiles. (A) Constant speed; (B) speed-up and speed-down; (C) speed-down;
and (D) speed-up.
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Figure 6. Mean MSE quantities of envelope signals in testing subset (II) under different defective classes
and shaft rotation speed profile. (A) Constant speed; (B) speed-up and speed-down; (C) speed-down;
and (D) speed-up.

3.3. Signal Feature Extraction

In order to provide the decision tree classifier with the representative parameters for bearing
defect diagnostics, the fault-related features were extracted through the vibration signal analysis
and processing.

The first group of features consists of the MSE values with the first 50 scales, which represent
the distinguishability of sample entropy among the different scales. The features in the second group
were computed to estimate the difference between the normal and defective classes of bearings.
Let A represent the vector of MSE distribution of normal bearing, and B represent the vector of MSE
distribution of different defective bearings. The cosine values between the two vectors were calculated
as the features of the second group, that is:

cosθ “
A ¨ B
|A| |B|

(11)

Except for the MSE in the first 50 scales and the cosine values between the MSE distributions,
the slope values of sample entropy between the (n + 1)-th and the n-th scales were computed as the
third group of features that represent the variations of the MSEs. In this experiment, the features that
consisted of the MSE of the first 50 scales, the cosine value as shown in formula (Equation (11)), and the
49 slope values of SEs were selected to be the feature inputs of the root node in the decision tree model.

3.4. Bearing Defect Classification through Decision Tree

The program of the C4.5 decision tree in [26] was utilized in this research. The parameters
of the C4.5 algorithm were initially set as the default values. According to model training results,
the parameters were tuned slightly, such as TRIAL = 12 and GAINRATIO = 1.12. The details of the
parameter explanation can be found in [26]. In this study, the features of the 80 datasets that were
randomly selected among the 100 datasets in each class of bearing fault were utilized for training
the decision tree model, and then the remaining 20 datasets were used for classification testing.
These steps applied to the features of testing subset I and II, respectively, and were repeated through
the cross-validation process. Tables 3 and 4 show the results of bearing defect diagnostics in the
testing subset I and II through the decision tree classification. As shown in the tables, high diagnostic
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accuracy can be obtained for the classes of C1 to C5, while the diagnostic accuracy of the roller defects
is lower. One of the possible reasons is that the skidding phenomenon of the roller may occur during
the rotation and, hence, it changes the vibration behavior. The other possible reason is that the features
of roller defect in vibration signals are relatively faint and, thus, the features are not distinguishable
enough for different levels of roller defects. Conceptually, the EMD process is capable of separating the
complicated vibration signals into the useless noise, as well as the information-containing components,
and then helps to accurately diagnose the bearing defects. Even though the overall diagnostic accuracy
of the testing subset II (94.0%) is slightly higher than that of the testing subset I (93.4%), the diagnostic
accuracy of testing subset II (97.9%) will be higher than that of testing subset II (96.9%) if the slight
and severe roller defect classes were consolidated into one class of roller defect due to the faint feature
of roller defects. In addition, the fast Fourier transform (FFT) was utilized as an alternative method
to compare with the proposed MES analysis. The traditional Fourier-based spectra were extracted to
be the features of different bearing defects. Table 5 shows the bearing diagnosis result by using the
Fourier spectra as the features. It is noted that the conventional Fourier spectrum analysis methods
cannot diagnose the bearing faults accurately (88% accuracy in this study) under the conditions of
variable speed. Conclusively, the envelope extraction combining the MSE analysis can achieve the
bearing fault diagnosis accurately in the case of variable rotation speed.

Table 3. Diagnostic result of the decision tree in testing subset I.

Number of Data Set
Classified Fault Class

C1 C2 C3 C4 C5 C6 C7 Accuracy

True
experimental

class

C1 100 0 0 0 0 0 0 100%
C2 0 95 5 0 0 0 0 95%
C3 0 4 96 0 0 0 0 96%
C4 0 0 0 97 1 1 1 97%
C5 1 0 0 3 93 2 0 93%
C6 0 0 0 2 1 83 14 83%
C7 0 0 0 0 0 10 90 90%

Overall accuracy 93.4%
Consolidate different levels of roller defects 96.9%

Table 4. Diagnostic result of the decision tree in testing subset II.

Number of Data Set
Classified Fault Class

C1 C2 C3 C4 C5 C6 C7 Accuracy

True
experimental

class

C1 100 0 0 0 0 0 0 100%
C2 0 99 1 0 0 0 0 99%
C3 0 0 100 0 0 0 0 100%
C4 0 0 0 98 1 0 1 98%
C5 2 1 0 2 92 0 3 92%
C6 0 0 0 0 0 86 14 86%
C7 0 0 2 2 0 13 83 83%

Overall accuracy 94.0%
Consolidate different levels of roller defects 97.9%

Table 5. Diagnostic result with features of Fourier spectra.

Number of Data Set
Classified Fault Class

C1 C2 C3 C4 C5 C6 C7 Accuracy

True
experimental

class

C1 100 0 0 0 0 0 0 100%
C2 0 90 0 2 4 2 2 90%
C3 0 24 76 0 0 0 0 76%
C4 0 0 0 100 0 0 0 100%
C5 0 12 0 16 68 2 2 68%
C6 0 0 0 0 4 69 27 69%
C7 0 0 0 0 4 29 67 67%

Overall accuracy 81.4%
Consolidate different levels of roller defects 88.3%
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4. Conclusions

The envelope extraction combining the MSE analysis was employed to diagnose the different types
and levels of bearing defects in this research. The hardware-implemented order-tracking technique
was utilized to acquire the precise identical angular vibration signals, so that the factor of variable
rotating speed can be removed. The complexity of the envelope signals that represents the dynamic
characteristics of bearing defects was estimated by the MSE computation. The results of MSE analysis
reveal that the feature vectors have obvious distinguishability among the different bearing defects.
The decision tree classifier is utilized to identify the features of different bearing defects. The diagnostic
results validate the feasibility and effectiveness of the proposed approach for accurately diagnosing the
different bearing defects in case of variable rotation speed. More sophisticated signal separation and
analysis methods may be needed to process the complicated measurements if the proposed approach
is applied for the industrial environment.
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