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Abstract: This lecture is a short review on the role entropy plays in those classical dissipative systems
whose equations of motion may be expressed via a Leibniz Bracket Algebra (LBA). This means that
the time derivative of any physical observable f of the system is calculated by putting this f in a
“bracket” together with a “special observable” F, referred to as a Leibniz generator of the dynamics.
While conservative dynamics is given an LBA formulation in the Hamiltonian framework, so that F is
the Hamiltonian H of the system that generates the motion via classical Poisson brackets or quantum
commutation brackets, an LBA formulation can be given to classical dissipative dynamics through
the Metriplectic Bracket Algebra (MBA): the conservative component of the dynamics is still generated
via Poisson algebra by the total energy H, while S, the entropy of the degrees of freedom statistically
encoded in friction, generates dissipation via a metric bracket. The motivation of expressing through a
bracket algebra and a motion-generating function F is to endow the theory of the system at hand with
all the powerful machinery of Hamiltonian systems in terms of symmetries that become evident and
readable. Here a (necessarily partial) overview of the types of systems subject to MBA formulation is
presented, and the physical meaning of the quantity S involved in each is discussed. Here the aim is
to review the different MBAs for isolated systems in a synoptic way. At the end of this collection of
examples, the fact that dissipative dynamics may be constructed also in the absence of friction with
microscopic degrees of freedom is stressed. This reasoning is a hint to introduce dissipation at a more
fundamental level.
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1. Introduction

Entropy is known to play the role of a thermodynamic state function to measure the degradation
of the energy transferred, as well as the spread of it through microscopic degrees of freedom,
i.e., dynamical variables that evolve much more quickly than other ones [1]. Quantities defined
similar to entropy, as understood in information theory [2], are employed to quantify ignorance or
unpredictability, and even to track causality in the complex relationships of interacting systems [3–5].

In the context of the classical dissipative dynamical systems that will be examined in this review,
entropy plays the same role of energy, when the latter wears the costume of the Hamiltonian H: entropy
contributes to generating the motion of the system, even if through a mechanism algebraically different
from the Hamiltonian one [6,7]. In this way entropy plays directly and vividly the role of ”εν τρoπη”,
a Greek phrase translatable as “the inner transformer”, to which the physical function owes its name.
Impressively, while Hamiltonian and symplectic machinery just produce time-reversible changes, what
entropy does with the extended version of symplectic algebra we will examine is to generate irreversible
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transformations. The extension of symplectic algebra making entropy play such a role is referred to
as metriplectic algebra. The way the latter works is extremely intriguing and possibly related to the
long-standing question of the origin of irreversibility in physics. “Possibly related to” does mean
“resolving”; however, researchers aiming at clarifying the origin of irreversibility should have some
knowledge of metriplectic formalism.

The framework of metriplectic bracket algebra (MBA) clarifies definitely the dynamical
relationship between dissipation and entropy from a formal point of view. Even if entropy increase
was known to take place in the context of dissipative processes, e.g., via the dQ = TdS equation of
Equilibrium Thermodynamics, through MBA formalism the entropy–dissipation relationship is given
a fundamental role, where entropy becomes the generator of dissipative motion. In the same way one
sees the analytical expression of a Hamiltonian determine the nature of non-dissipative dynamics,
one will expect the characteristics of a dissipative motion to descend from how entropy depends on
the dynamical variables of the system.

In Hamiltonian systems, motion is a one-parameter (time) group of transformations through
M obtained by exponentiating the symplectic product of H with the quantity to be involved:

Motion = exp ({. . . , H}) .

In systems described by the MBA formalism, the evolution of a classical system with dissipation
is a 1-parameter (again, time) semi-group resulting from the exponentiation of the sum of the symplectic
bracket {. . . , H} ruled by H, plus another kind of bracket, referred to as metric bracket (. . . , S) ruled by
entropy S:

Motion = exp ({. . . , H}+ (. . . , S)) .

Such a semi-group is designed in order to describe dissipative relaxation of non-Hamiltonian systems.
In this lecture dissipative complete systems are treated, i.e., pieces of the universe that conserve

their energy while increasing their entropy along their evolution. These are also referred to as
isolated systems; non-isolated systems treated through metriplectic systems are not discussed here.
Non-complete metriplectic systems are reviewed in [8], while important applications/examples of
them may be found in [9,10]. Although non-complete metriplectic dynamics has very important
applications, here we restrict ourselves to complete systems because in the latter the different roles
played by the Hamiltonian versus entropy, and by the Poisson brackets versus the metric ones, appear
clearer; from a didactic point of view this seems to be the correct introductory choice. The student will
find it easier to work on non-complete systems once complete systems are understood.

This review is articulated as follows.
In Section 2 the concept of dynamics algebrization through Leibniz brackets is reported, and the

usefulness of representing dynamics via bracket algebra highlighted. Hamiltonian systems and metric
dissipative systems are recognized among these dynamical theories.

Section 3 is the core of the keynote lecture: the concept of complete metriplectic system is described,
and the relationship between dissipation and friction is discussed. In particular, it is stressed how it is
possible to construct dissipative dynamics even in the absence of “explicit friction” via metriplectic
algebra. Section 3 is rich with examples, taken from relatively elementary physics, to get acquainted
with metriplectic formalism applied to isolated systems.

Section 4 is devoted to some final considerations on the potentiality and meaning of
metriplectic formalism.

2. Leibniz Bracket Algebra and Dynamics

Suppose we have a physical system described by a certain set of dynamical variables
x =

(
x1, x2, . . . , xN), so that its evolution is a continuous flow throughout a manifold M referred

to as phase space. Suppose that the equations of motion of the system are expressed as:
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.
xk

= Lkj (x) ∂jF (x) , (1)

where Lkj (x) is a tensor field on M and F (x) a scalar field, and the symbol ∂j stands for the derivative
∂

∂xj . These equations are generally a set of non-linear, coupled ordinary differential equations (ODEs).
If the state of the system x undergoes (1), it is easy to show that any function f ∈ C∞ (M, R) depending
on x evolves along the system motion according to:

.
f = Lij∂i f ∂jF. (2)

While analytically solving initial value problems with Equation (1) may be generally impossible,
some global and local properties of their solutions are suggested by the nature of Lij and F, e.g., their
symmetries, boundness, and spectral properties. For instance, any quantity f (x) whose gradient has
the property Lij∂i f = 0 for all j is necessarily conserved along the motion of the system: this is an effect
of the properties of Lij; the same thing happens to any f (x) whose gradient is orthogonal to the vector
of components Lij∂jF, which is a property of Lij and F together. A complete study of Lkj (x) and F (x)
throughout the space phase M could in principle reveal which are the quantities invariant along the
motions of the dynamical system (1).

It is also worth mentioning that, assuming Lkj to be a proper tensor map on M, and F a proper
scalar, Equation (1) results in a generally covariant form under diffeomorphisms on the phase space:
one can invertibly and smoothly rearrange the variables x, ending up with a new description of the
system z evolving as

.
zk

= L′kh∂′hF, with ∂′h the derivative with respect to zh and L′kh the suitably
tensor-transformed version of Lij.

Mathematicians have defined a suitable differential-algebraic structure to endow with a phase
spaces M, in order to construct dynamics on it in which a kind of generalization of the system (1)
may be constructed. This structure is referred to as Leibniz algebra [11]. Such algebra is defined by
two elements: a manifold M, on which the space of (real) smooth functions C∞ (M, R) is defined,
and a C∞ (M, R)× C∞ (M, R) 7→ C∞ (M, R) map, namely the bracket (., .)L, that associates to two
functions f and g in C∞ (M, R) a third smooth function

` = ( f , g)L

Contact is made with Equation (1) just defining the particular case:

( f , g)L ≡ Lij∂i f ∂jg. (3)

The “bracket” of the two functions ( f , g)L has the following properties [12,13]:

(
∑
i

λi fi, ∑
j

µjgj

)
L

= ∑
i,j

λiµj
(

fi, gj
)

L ,

( f1 f2, g)L = f1 ( f2, g)L + f2 ( f1, g)L ,

( f , g1g2)L = g1 ( f , g2)L + g2 ( f , g1)L ,

(4)

where λi and µj are arbitrary real coefficients. The properties of (4) make the Leibniz bracket derivative
in both its arguments, as the expression Lij∂i f ∂jg is indeed with respect to both f and g. Clearly,
Equation (4) generalizes the properties of the expression Lij∂i f ∂jg.

The application (., F)L maps C∞ (M, R) onto vector fields on M: indeed the map

XF f = ( f , F)L (5)

is a vector field. About this, the relationship
.
xi

=
(

xi, F
)

L, i.e., the algebraic version of (1), indicates
that the velocity of the system transforms as a proper vector. The vector field XF in Equation (5) defines
a flux throughout M, and then a dynamics of any variable: the function F ∈ C∞ (M, R) is referred
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to as the Leibniz generator of the dynamics given by XF. In a more physical way, if Equation (3) is
considered, one has Equations (1) and (2).

Before moving on, it is important to stress that the dynamics expressed as in Equation (2)
reinterprets the evolution as a transformation of functions on M, since infinitesimal variations of
an observable is understood as δ f = ( f , F)L δt: this is the exquisite idea of algebrizing dynamics, i.e.,
reducing the evolution (with time) to a set of algebraic transformations [14]. Next to this, there comes
the taxonomy of algebraic structures describing “chains of transformations”, in particular groups and
semigroups [15]. For physical systems, here and throughout this paper, the functions f ∈ C∞ (M, R) are
intended as physical observables: for example, energy, mass, fluxes, densities, and linear or angular
momenta can be cited.

Since, in general, all the observables with zero bracket with F are constant,

( f , F)L = 0 ⇒
.
f = 0, (6)

any f with gradient that is a null vector of Lij has zero Leibniz bracket with any other function and
is conserved:

Lij∂i f = 0 ⇔ ( f , g)L = 0 ∀ g ∈ C∞ (M, R) ⇒
.
f = 0. (7)

About the generating function F, its mathematical aspect determines the possible steady states of the
system: indeed, thanks to (1) and (2), one may state

∂jF (x0) = 0 ⇒ .
xk

(x0) = 0,
.
f (x0) = 0. (8)

If the system is abandoned precisely at a point x0 where the gradient of F vanishes, then it does not
move away from there (of course, the stability of such a stationary point is another matter). Note that
Equation (8) does not exclude the possibility that other points are stationary configurations of the
system in M; instead, points with a null gradient of F represent the steady points in M of the system,
if the tensor Lij is non-singular.

The generator F undergoes the same Leibniz dynamics as in Equation (2): the relationship

.
F = Lij∂iF∂jF = (F, F)L

may yield conservation, decrease, or increase of F, depending on the algebraic local characteristics of
the tensor L, or even non-monotonic variability. Where the tensor is semidefinitely positive or negative,
then F will increase or decrease—

.
F ≥ 0 or

.
F ≤ 0, respectively.

2.1. Hamiltonian Systems and Poisson Algebra

Classical Analytical Mechanics and then Quantum Mechanics teach that fundamental systems in
physics are considered Hamiltonian systems, for which a Hamiltonian observable H is written, and the
dynamics is generated through Poisson brackets. Poisson brackets are an example of Leibniz algebra [16].
When it comes to quantum laws, Poisson brackets are replaced by commutators [17] that show the same
essential properties.

Poisson brackets, indicated here as {., .}, show all the properties of relationships (4); moreover,
they are anti-symmetric and satisfy the Jacobi identity:{

{ f , g} = −{g, f } ∀ f , g, h ∈ C∞ (M, R) ,

{{ f , g} , h}+ {{h, f } , g}+ {{g, h} , f } = 0.
(9)

Equation (3) is written for Poisson brackets as

{ f (x) , g (x)} = Jij (x) ∂i f (x) ∂jg(x): (10)
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one then assigns suitable properties to the tensor J so that the relationships (9) are satisfied. In particular,
its anti-symmetric nature Jij = −J ji and a differential relationship corresponding to the Jacobi identity
Jih∂h J jk + Jkh∂h Jij + J jh∂h Jki = 0 are required for J to define a Poisson bracket [18,19].

From the relationship
.
f = { f , H} ,

reading
.
xi

= Jij∂j H for the dynamical variables describing the state of the system, and due to the
anti-symmetric property of {., .}, one has

.
H = 0. (11)

Equation (11) is simply energy conservation: the dynamics generator of a Hamiltonian system
is conserved throughout the motion. Examples of a Hamiltonian system are not provided here,
but surveyed in Section 3 (they are also very abundant in the literature).

Observables in Hamiltonian systems fulfilling the condition (7), written here as

Jkj∂k f = 0 ⇒ { f , g} = 0 ∀ g ∈ C∞ (M, R) ,

are referred to as Casimir observables [19]. This name unveils a relationship between Poisson bracket
algebra and the world of Lie groups: indeed, a Casimir is a fundamental algebraic invariant of the group
algebra, depending on the algebra elements themselves. In the context of Hamiltonian systems, if the
Leibniz brackets at hand satisfy Equation (9), then they show the same structure as a Lie algebra, hence
the name of functions having null Poisson bracket with any other observable. By the way, for suitable
expressions of the tensor Jij, Equation (10) may reproduce the generating algebra of an otherwise
known Lie group (in this case one speaks about Poisson–Lie algebra) [19]: this is the case with the system
reported in Section 3.6, where the Lie algebra is that of the group of three-dimensional rotations.

Due to the properties of Poisson brackets, the trajectories of Hamiltonian systems in M cannot
converge to an attracting point, or become confined to an attractor; instead, trajectories of Hamiltonian
systems are either unbounded, or they “eternally” turn, regularly or not, without ever “stopping” at a
point. In particular, one may state that Hamiltonian systems do not admit asymptotically stable equilibria.
This is why Hamiltonian dynamics is perfect to describe the evolution of “immutable” systems: they
may just redistribute energy among their degrees of freedom in a reversible way, as in the case of an
ideal pendulum that will turn its gravitational energy into kinetic one and then backwards forever.

2.2. Dissipative Systems and Metric Algebra

Now, suppose the tensor L in (6) to be a semimetric tensor G, i.e., a symmetric, semi-definite (e.g.,
positive) tensor:

( f , g) = Gij∂i f ∂jg / Gij = Gji, Gij∂i f ∂j f ≥ 0 ∀ f , g ∈ C∞ (M, R) . (12)

No Jacobi identity is satisfied by such a bracket. The bracket (., .), referred to as (semi)metric bracket,
is a type of Leibniz bracket quite different from Poisson algebra [6,20]. Once a generating function
Q (x) is defined so that the dynamics of the system is governed by

.
xi

= Gij∂jQ,
.
f = ( f , Q) , (13)

it is possible to make some statements about this particular kind of system.
The essential fact to pick up in this discussion is that the function Q generating the dynamics is

not constant; in particular, if G is a semi-definite positive tensor, then Q tends to grow monotonically
along the evolution

.
Q = (Q, Q) ≥ 0 : (14)
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it is possible to show that isolated maxima of Q are asymptotically stable equilibrium points. This is readily
proved (see [20]) by realizing that, thanks to (14), Q is a Lyapunov quantity, so that points x0 such
that ∂iQ (x0) = 0 are places towards which the motion (13) will converge. If G were a semi-definite
negative tensor, equally some Q’ could be defined to play the opposite role, i.e., that of a monotonically
decreasing quantity, and the asymptotically stable equilibrium points would then be its minima.

It is very important to have asymptotically stable equilibria into which trajectories converge,
because then the system may be used to represent a dissipative process: dissipation drives systems
in different states of motion to converge to a steady state. This steady state is characterized by either
a minimum of non-thermal energy (for open systems, the energy of which is drained by friction) or
a maximum of entropy (for closed “complete” systems obtained including the degrees of freedom
responsible for dissipation, see Section 3): in both cases one may use a quantity monotonic in time
to define a Leibniz dynamics representing the system. As a consequence, metric dynamics is perfect
to mimic systems evolving in an irreversible way, for which the energy is transferred from one form
into another and cannot come back by virtue of the same equations of motion. In other words, metric
systems evolve irreversibly and age (their only feasible history is that of making Q grow, or decrease,
forever, according to the sign of detG). While Hamiltonian systems have the conservation of energy
as their pivoting principle, metric systems have the increase of entropy (or decrease of the free energy,
see below) as their guiding law.

3. Complete Metriplectic Systems

In general, the structure described in Section 2 has an L that is neither symmetric nor
antisymmetric, and is composed of these two parts:

L = J + G / Jab = −Jba, Gab = Gba.

If the anti-symmetric part J is a Poisson tensor satisfying the Jacobi identity

Jih∂h J jk + Jkh∂h Jij + J jh∂h Jki = 0,

and if G is semi-definite (for instance, positive semi-definite)

Gij∂i f ∂j f ≥ 0 ∀ f ∈ C∞ (M, R) , (15)

then the Leibniz system with bracket

〈〈 f (x) , g (x)〉〉 =
(

Jij (x) + Gij (x)
)

∂i f (x) ∂jg (x) (16)

is referred to as a metriplectic system.
A metriplectic bracket algebra (MBA) can be turned into a dynamic system once a generating

function F ∈ C∞ (M, R) is adopted, and the prescriptions

.
xi

=
〈〈

xi, F
〉〉

,
.
f = 〈〈 f , F〉〉 ∀ f ∈ C∞ (M, R) (17)

are made. If Equation (16) is used, then the expression for
.
f reads

.
f = Jij∂i f ∂jF + Gij∂i f ∂jF : (18)

in particular, the behavior along the motion of the generating function of a metriplectic system
is entirely provided by the character of G, as the term Jij∂iF∂jF vanishes identically due to the
anti-symmetric property of J. One then has

.
F = Gij∂iF∂jF,
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so that, under Equation (15), this will be monotonically increasing:
.
F ≥ 0. The generating function F

that “evolves the system” through the algebra 〈〈., F〉〉 in Equation (18) is hence a Lyapunov quantity
of the theory itself, as described in Section 2.2: in general, it will contain a part corresponding to
the symplectic component of 〈〈., .〉〉 in Equation (16), and a part referring to metric algebra. Physical
reasoning drives the definition of this and that in Section 3.1 below.

3.1. Energy Conservation, Entropy Increase

In [20] a complete system is referred to as a system that conserves its energy, but redistributes it in
an irreversible way: this “irreversible redistribution” is named dissipation. Complete systems described
via an MBA are indicated as complete metriplectic systems (CMS).

In everyday life, dissipation takes place due to the interaction of “macroscopic” degrees of
freedom with “microscopic” ones, and this interaction mode is also named friction. When friction is at
work, mechanical or electromagnetic energy is dissipated, i.e., irreversibly transformed, into kinetic
energy of the microscopic constituents of the system, the degrees of freedom of which are, however,
included in the system. These degrees of freedom are referred to as Microscopic Statistically Treated
Degrees of Freedom (µSTDoF) [14]; here, “statistically treated” means that what describes these degrees
of freedom in the phase space of the whole system is some collective quantities referring to them, more
precisely their thermodynamic coordinates. The need to treat these degrees of freedom statistically comes
from their timescales of evolution, much faster than those of “non-microscopic” ones.

3.1.1. In Case of Friction

When friction is the pathway to dissipation, the “standard” way to construct a complete system is
to consider a Hamiltonian system, with its energy H0 and dynamical variables y, without dissipation,
and add dissipation by making the system interact with µSTDoF, which converts the “ordered” energy
of the “macroscopic, deterministic” degrees of freedom into thermal agitation: these degrees of freedom
are included in the system in order to keep track of the energy that abandons the Hamiltonian part for
dissipation. Once the µSTDoF are included, the system dynamical variables are enlarged as x = (y, Σ),
with the vector Σ collecting the thermodynamic representation of the µSTDoF. The total energy of the
complete system is represented by the sum

H (y, Σ) = H0 (y) + U(y, Σ): (19)

the addendum U (x) in general includes both a purely µSTDoF term, what we would refer to as
internal energy, and an interaction term depending on the whole configuration x; for simplicity, U may
be supposed to depend only on the µSTDoF, and Equation (19) is rewritten as

H (y, Σ) = H0 (y) + U (Σ) (20)

(in this case one says that the Hamiltonian system of variables y and the µSTDoF of variables Σ are
assumed to be separable).

Even if the formulation with Hamiltonian Equation (19), or its simplified version, Equation (20),
includes all the dynamical variables of the system, spanning the phase space M of complete
configurations x = (y, Σ), as long as it remains purely Hamiltonian, no hope exists of seeing the
system converge to an asymptotic equilibrium, as required instead for any isolated system relaxing.
This is why one needs to move ahead by including properly “dissipative forces” into the formulation
of Hamiltonian H (y, Σ), introducing a metric component so that a metriplectic scheme is obtained.
As metric systems are moved by a Lyapunov quantity, such an attribute of the system, monotonic
with time due to dissipation, must be used. For isolated systems with dissipation, Equilibrium
Thermodynamics predicts that dissipation is accompanied by the increase of entropy, a quantity
that measures how underdetermined the microscopic configuration is once the macroscopic one is
assigned [21]: the system of variables x = (y, Σ) must have a proper entropy, hence, and is expected to
grow monotonically. Actually the entropy is only attributed to the µSTDoF, which is the only part to
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be treated statistically; the total entropy S of the complete system will simply be the thermodynamic
entropy of its µSTDoF. One then has:

S = S(Σ).

Now, in order to define the metric part of the MBA, this S is of course the most obvious candidate
to play the Lyapunov quantity Q in Section 2.2: the entropy of the µSTDoF must enter F as the metric
contribution to the metriplectic generator. The construction of the MBA describing complete systems
is then performed by considering as generating function a combination of H and S named free energy

F (y, Σ) = H (y, Σ) + αS(Σ), (21)

where α is a parameter to be adjusted suitably. Since everything is chosen in order for H (y, Σ) to be
constant, and for S (Σ) to grow with time, the behavior of F with time depends on the sign of α:

.
F = α

.
S ⇒ sign

( .
F
)
= sign(α). (22)

Equation (21) turns Equation (18) into:
.
f = Jij∂i f ∂jH + αJij∂i f ∂jS + Gij∂i f ∂jH + αGij∂i f ∂jS. (23)

The scheme is completed by choosing J and G in Equation (23) according to physics. In general,
the interaction between the original Hamiltonian system and the µSTDoF is tuned by some constant
η, so that when η → 0 the subsystems decouple and dissipation disappears. In this limit, clearly,
the bracket 〈〈., .〉〉 must reduce to the original Poisson bracket {., .} moving y via {., H0}, in which
only derivatives with respect to y appear: the internal energy U (Σ) is not affected by non-dissipative
dynamics, so that one has {., H0} = {., H}. All in all, the limit lim

η→0
〈〈., .〉〉 = {., .} must hold, so that,

on the one hand the metric tensor G in (18) has to vanish for η → 0

lim
η→0

Gij = 0,

and on the other hand the tensor J is simply the one forming the Poisson bracket of the Hamiltonian
system with dynamical variables y and the Hamiltonian H0 we started from: the components
pertaining to the sub-manifold described by Σ are zero.

When the metriplectic dynamics is enforced as
.
f = Jij∂i f ∂jF + Gij∂i f ∂jF, two facts must hold:

.
H (y, Σ) = 0,

.
S (Σ) ≥ 0.

The requirement of H to be constant with time is inserted into Equation (23), giving rise to

0 = αJij∂i H∂jS + Gij∂i H∂j H + αGij∂i H∂jS,

where the anti-symmetry of J has already been taken into account. On the other hand, the first
addendum αJij∂i H∂jS is equal to −αJab∂aS∂bH = −α {S, H}, {S, H} being the variability with time of
S under the mere Hamiltonian part of the motion: since no change in the µSTDoF entropy is expected
due to the “conservative forces” represented by {., H}, one expects to have αJij∂i H∂jS = 0. This is a
precise request for the relationship between S and the symplectic part of 〈〈., .〉〉, and we will discuss it
soon; for the time being, let us simply consider

.
H = 0 ⇒ 0 = Gij∂i H

(
∂jH + α∂jS

)
.

In order for the factor Gij∂i H
(
∂j H + α∂jS

)
to be zero, the simplest possible assumption is

Gij∂i H = 0 ⇒ (H, f ) = 0 ∀ f ∈ C∞ (M, R) , (24)
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i.e., the metric tensor G has the gradient of H among its null vectors, so the Hamiltonian has a null
metric bracket with any other element of C∞ (M, R). Equation (24) is what remains of the request that
the total energy of the complete system is conserved.

About the monotonic increase of S, instead, while Equation (24) holds, one may apply
Equation (18) and obtain:

.
S = Jij∂iS∂j H + αGij∂iS∂jS.

Now, if a formal hypothesis

{ f , S} = 0 ∀ f ∈ C∞ (M, R) ,

is formulated, meaning that S is a Casimir of the Poisson bracket at hand, one simply gains:
.
S = αGij∂iS∂jS. (25)

Then, choosing the sign of αdetG as positive, the condition
.
S ≥ 0 is immediately enforced (here

detG is the determinant of G).
Considering (., H) = 0 and {., S} = 0 identically, the evolution of the system, and of any

observable along the system trajectory, reads:

.
xi

=
{

xi, H
}
+ α

(
xi, S

)
,

.
f = { f , H}+ α ( f , S) . (26)

Thus, we end up with a CMS.

3.1.2. Frictionless Dissipation

The intervention of µSTDoF draining energy from deterministic variables y of a Hamiltonian
system through friction may be not necessary in order for a CMS to admit asymptotically stable
equilibria: there exist CMS the dynamics of which still undergoes Equations (15)–(17) as:

dx
dt

= {x, H (x)}+ α (x, Q (x)) ,
.

Q ≥ 0,

{Q, f } = 0, (H, f ) = 0 ∀ f ,

in which the entropy-like observable Q and the Hamiltonian H depend on the same variables x.
These CMS may be indicated as “frictionless” because µSTDoF cannot be singled out, as in the ones
treated in Sections 3.5 and 3.6 below.

The “big difference” between CMS with friction and frictionless ones is that in the first case a
granular nature of the material system must be supposed, so that dissipation transfers energy from
“macroscopic” to “microscopic” scales: hence, a CMS with friction must be non-elementary in a
sense, because the deterministic variable y, as in those in Equation (19), describes the macroscopic
world, averaging away fluctuations of microscopic constituents of matter that will be encoded in the
thermodynamic coordinates Σ of the µSTDoF. The µSTDoF are the “really elementary” degrees of
freedom, even if treated statistically.

In a sense, frictionless CMS implement dissipation at a fundamental level, via the α (., Q)

component, which does not require any “smaller” constituent to exist. Simply, frictionless CMS
seem to teach that irreversibility do not require the “coarse graining of micro-things”, but rather
the appearance of the semi-metric component of 〈〈., .〉〉, yielding a Lyapunov Q growing with time
flow. The contribution of frictionless CMS at a fundamental level is two-fold: on the one hand,
they generalize the idea of entropy S (Σ) to Lyapunov dynamics generators Q (x); on the other hand,
their quantization might give hints to implement dissipation-irreversibility in terms of the fundamental
“microscopic” laws of physics [22].
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3.2. Stationary Points of CMS

The role of free energy F is, as in any Leibniz system, to provide the stationary points of the
dynamics at hand in terms of its extrema.

In the case of CMS with friction, due to Equation (21) and the nature of the phase space coordinates
x = (y, Σ), the condition ∂jF (x0) = 0 corresponds to this collection of conditions:

∂H
∂y

= 0,

∂H
∂Σ

+ α
∂S
∂Σ

= 0.

More precisely, considering the decomposition of the Hamiltonian in Equation (23), one
rather writes:

∂F
∂x

= 0 ⇔


∂H0

∂y
= 0,

∂U
∂Σ

+ α
∂S
∂Σ

= 0.

(27)

The relationship ∂H0
∂y = 0 prescribes the mechanical equilibrium (in radiation systems this

could also be a “radiative” equilibrium, in which case y is a field variable), while the relationship
∂U
∂Σ + α ∂S

∂Σ = 0 is the thermodynamic equilibrium request. The latter will fix α in a physically sensible
way, typically minus the temperature of the µSTDoF.

About the nature of maxima or minima of the stationary points (Equation (27)), it is sensible
to establish α by considering the physical sense of Equation (27), and then assessing whether

.
F has

a positive or negative sign. The fact that α is tuned so to match a particular “temperature”, i.e.,
a particular equilibrium state, stresses the whole construction of the CMS as the local description of a
complex system in the neighborhood of an equilibrium point towards which it is known to relax.

As far as the frictionless CMS are concerned, their dynamical generator F is still subdivided into a
Hamiltonian “plus some Lyapunov”:

F (x) = H (x) + αQ (x) ;

however, the steady state prescription

∂F
∂x

= 0 (28)

will have a different interpretation.

3.3. Two Simple Examples with Friction

Two very simple examples can be given, taken from Newtonian mechanics, and are very useful to
start getting acquainted with CMS. In the first example, in Section 3.3.1, the sub-systems represented
by the variables y and Σ are separable, which is not the case in the example in Section 3.3.2, where the
system shows an internal energy U (y, Σ).

3.3.1. The Point Particle in the Viscous Medium

In the first example the complete system is formed by a point particle of mass m moving in
three-dimensional space through an infinite viscous medium [14], so that its equations of motion read

d
→
x

dt
=

→
p
m

,
d
→
p

dt
= − ∂V

∂
→
x
− λ

m
→
p . (29)
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The foregoing equations would reduce to a Hamiltonian system d
dt
→
x = m−1→p and d

dt
→
p = −∂→

x
V

in the non-dissipative limit λ→ 0 , the dynamical variables of which would be y =
(→

x ,
→
p
)

, and with

Hamiltonian H0 (y) = 1
2m p2 + V

(→
x
)

. In order to recognize a metriplectic complete system one has
to include the viscous medium variables, introducing a very simple collection of (thermo)dynamical
coordinates, namely the medium entropy only Σ = (S): hence the whole Hamiltonian reads

H = H0 (y) + U (S)

(separable variables), with internal energy of the viscous medium U (S). The complete set of dynamical
variables is x =

(→
x ,
→
p , S

)
.

Note that, as the viscous medium is considered infinitely extended, S is rigorously an infinite
quantity. This creates no problem for our work, since

.
S is always finite (and positive), while

infinitesimal dS can be considered. The cartoon of the system is that of Figure 1.
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In order to construct the MBA for Equation (29) it is necessary to know the ODE for the entropy,
which is obtained by the classical relationship dQ = TdS, with T the temperature of the medium
and dQ the amount of thermal energy transferred from the mechanical degrees of freedom y to the
viscous medium. Actually, since the energy must be conserved, dQ is simply minus the power of
the dissipative force −m−1λ

→
p exerted by the medium on the point particle, times the infinitesimal

time interval dt: this power being wλ = −m−1λ
→
p ·m−1→p and dQ = −wλdt, one has dQ = m−2λp2dt,

and considering dS =
.
Sdt one ends up with:

.
S =

λp2

m2T
(30)

(obviously, the temperature of the medium is supposed to remain constant, while friction transfers such
a small amount of energy from the pointlike particle to the infinite medium: as commented before, the
CMS is constructed to mimic the relaxation to an equilibrium with this assigned temperature). Equation
(30) completes the ODEs of the complete system we are looking for, together with Equation (29).

According to Equation (21), the free energy of the system reads

F
(→

x ,
→
p , S

)
=

p2

2m
+ V

(→
x
)
+ U (S) + αS: (31)

the parameter α may be determined by imposing that the extrema of F represent steady states. The
steady state x0 is found as the solution of

∂F

∂
→
x

= 0,
∂F

∂
→
p
= 0,

∂F
∂S

= 0. (32)
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If Equation (31) is put into Equation (32) one finds

∂V

∂
→
x

(→
x 0

)
= 0,

→
p 0 = 0,

∂U
∂S

(S0) + α = 0:

the first and second equations mean that the point particle will stop at an extremum of the mechanical
potential, with null momentum (velocity); the third equation, better re-written as α = − ∂U

∂S (S0), instead
determines α as minus ∂U

∂S (S0), which is clearly the equilibrium temperature of the viscous medium T,
after the relationship ∂U

∂S = T due to Equilibrium Thermodynamics [1]. Equilibrium equations

∂V

∂
→
x

(→
x 0

)
= 0,

→
p 0 = 0, α = −T

allow us to re-write the free energy (Equation (31)) in the following way:

F
(→

x ,
→
p , S

)
=

p2

2m
+ V

(→
x
)
+ U (S)− TS. (33)

By the way, due to the relationship α = −T, the tensor G in (13) has to be negative semi-definite.
This is due to the construction of F as F = H + αS, hence to the negative value of α = −T: when
Equation (13) is applied one obtains

.
F = α (F, F), and since this has to be semi-positive, the form (., .),

i.e., G, must be semi-negative.
In order to complete the MBA one has to define suitable J and G. The tensor J is simply the

symplectic tensor in the
(→

x ,
→
p
)

space extended to the seven-dimensional manifold of
(→

x ,
→
p , S

)
.

In order to correctly define G, instead, one has to look for an R7,7 matrix matching the conditions of
Equations (24) and (25) for H and S, and give rise (together with the already established J) to the ODEs
(Equation (29)). The same arguments lead to the expression in Equation (39); see below.

The tensors will be written with respect to the components
→
x ,
→
p and S, so they will look like:

J =

 03,3 13,3 03,1

−13,3 03,3 03,1

01,3 01,3 0

 , G = 1
α


∣∣∣∂→

x
V
∣∣∣213,3−∂→

x
V⊗∂→

x
V∣∣∣∂→

x
V
∣∣∣2 03,3 03,1

03,3 λT13,3 −λm−1→p

01,3 −λm−1→p
T λp2

m2T

 . (34)

In Equation (34), note that G has the same definition as the sign of α, since the matrix multiplying
α−1 has either positive or null eigenvector. With the matrices defined in (34) the relationships

{ f , S} = 0, ( f , H) = 0

for any f are satisfied, moreover one obtains

{→
x , H

}
+ α

(→
x , S

)
=

→
p
m

,
{→

p , H
}
+ α

(→
p , S

)
= − ∂V

∂
→
x
− λ

m
→
p , α (S, S) =

λp2

m2T
,

meaning that we are in the presence of the correct tensors (Equation (34)) to define the MBA
reproducing Equations (29) and (30). All in all, with the tensors in Equation (34) and the generating
function F in Equation (33), we can state

.
f = 〈〈 f , F〉〉 for any observable f of the simple system.

3.3.2. The Piston and the Spring

The second example of a metriplectic system taken from everyday physics is a piston of mass
m and surface A, moving along a horizontal guide and pushed by a spring of constant k. This piston
makes work against a viscous gas of mass M, the pressure of which is indicated as P. This system is
depicted as in Figure 2.
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If no viscosity were present, the system would be conservative, i.e., Hamiltonian: the necessary,
independent dynamical variables would just be x and p of the piston; when energy is irreversibly
transferred between the mechanical degrees of freedom and the µSTDoF of the gas, due to viscosity,
some thermodynamic coordinate of the medium must be included: the entropy S of it is the simplest
candidate, so that in this case the dynamical variables of the complete system are collected in the vector
x = (x, p, S). The ODEs of x are written as [14]:

.
x =

p
m

,
.
p = −k (x− `)− PA− λ

p
m

,
.
S =

λp2

m2T
(35)

(the parameter ` is the equilibrium length of the spring, while T is the temperature of the gas, and the
same reasoning about dQ = TdS as in Section 3.3.1 has been applied). As far as the thermodynamics
of the gas is concerned, this case is more interesting than the one discussed above, where the point
particle could produce no variation in the infinite medium, apart from increasing its entropy. In
general, indeed, one may expect that the thermodynamic coordinates of the gas should be S and, e.g.,
the mass density ρ, so that its internal energy reads U (ρ, S), and the pressure P in (35) is defined as

PV = ρ
∂U
∂ρ

⇒ P =
ρ2

M
∂U
∂ρ

. (36)

Here the only fixed things of the gas are the area A of the piston and the mass M of the medium:
in general, its volume reads V (x) = A (L0 − x), so that the density will depend on the position of the
piston as

ρ (x) =
M

A (L0 − x)
⇒ ∂x

∂ρ
=

M
Aρ2 ,

∂ρ

∂x
=

Aρ2

M
. (37)

This x-dependence in the density implies that the coordinates of the complete system are
(x, p, S) instead of the redundant set (x, p, ρ, S); it also yields the dependence U (ρ (x) , S), so that
the subsystems “piston-attached-to-the-spring” and “gas” are not separable.

The whole Hamiltonian of the system includes the kinetic energy of the piston, the elastic energy
of the spring, and the internal energy of the viscous gas U (ρ (x) , S). Once it is written, it is very easy
to also write the free energy F:

H (x, p, S) =
p2

2m
+

k
2
(x− `)2 + U (ρ (x) , S) ,

F (x, p, S) =
p2

2m
+

k
2
(x− `)2 + U (ρ (x) , S) + αS.

(38)

In order for the generator F (x, p, S) to produce the correct ODEs (35), one just has to choose the
two tensors J and G as follows:

J =

 0 1 0
−1 0 0
0 0 0

 , G =
1
α


0 0 0
0 λT −λm−1 p

0 −λm−1 p
λp2

m2T

 , (39)
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written with respect to the dynamical variables (x, p, S). Last but not least, one may find out the
equilibria of the system by checking the extrema of the function F as:

∂F
∂x

= 0,
∂F
∂p

= 0,
∂F
∂S

= 0.

With the specific form in Equation (39), and considering the relationship among U, P, x, and ρ in
Equations (36) and (37), one obtains

x0 = `− PA
k

, p0 = 0, α = −T:

respectively, these are the balance between the gas and the spring forces, the zero velocity of the piston
and the correspondence of the parameter α to minus the temperature of the gas. Of course, equilibrium
x0 and p0 could have been calculated directly from Equation (36); the exercise presented here is just
intended to explain the metriplectic formalism in the very simple case under examination.

3.4. Classical Fluids

In fluid theories, in the absence of dissipation the energy transfer would take place among
degrees of freedom making sense at a macroscopic scale, without involving the granular nature of
matter; however, as “friction” is turned on by considering finite viscosity and thermal conduction,
the degrees of freedom of the microscopic particles forming the continuum play the role of the µSTDoF
discussed before.

About this, a remark is necessary, to stress the difference between these systems and those
discussed in Section 3.3. In the examples in Section 3.3, the complete system was subdivided into two
subsystems “materially” separated: in Section 3.3.1 there was a point particle treated deterministically
and a viscous fluid with µSTDoF, while in Section 3.3.2 the deterministic degrees of freedom were those
of the piston, while µSTDoF were attributed to the viscous gas against which the piston was working.
Dissipative continua do not show a “material separation” between the deterministic, Hamiltonian
part of the complete system and the µSTDoF draining energy irreversible and, hence, giving rise
to dissipation. Consider a “macroscopic infinitesimal” parcel, i.e., a portion of fluid containing a
thermodynamic number of particles and still being so small that the continuum field variables are
constant within it: the motion of the particles within the parcel represent the µSTDoF, while the
motion of the parcel’s center-of-mass (CoM) throughout the space represent the degrees of freedom
y in Section 3.1, with a deterministic dynamics. In a fluid context, the energy pertaining to the
center-of-mass of a given parcel δC is irreversibly converted by dissipation into the energy of the
µSTDoF relative to another parcel δC′ (δC and δC′ are different parcels, otherwise a mechanical system
would be able to alter its own CoM motion, against Newton’s Principles: this is why dissipative terms
appear in the equations of motion of fluid dynamics with space-derivative terms, taking into account
the different CoM velocities of nearby parcels [23]. With the dissipation due to currents the thing is
slightly subtler, because the energy irreversibly converted there comes from the magnetic degrees of
freedom [7,24]). The energy dissipated may then be transported, still irreversibly, by heat conduction
against temperature gradients.

Dissipative fluids may be understood as complete metriplectic systems in which the y and the
Σ just describe different degrees of freedom of the same material system: as explained before, these
variables describe the system at different space- and time-scales.

In the Lagrangian representation of dissipative fluids, the dynamical variables are the CoM

position
→
ζ
(→

a
)

and momentum
→
π
(→

a
)

of each fluid parcel, plus the variables relative to the CoM of

the same parcels, thermodynamically described through the entropy density s
(→

a
)

. The 3D continuous

index
→
a ∈ D0 materially labels the fluid parcels [25], and may refer to the initial position of the parcel
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that labels as
→
a =

→
ζ
(→

a , 0
)

, if
→
ζ
(→

a , t
)

is the position of the
→
a -th parcel at time t. The domain D0 is

the initial volume occupied by the continuous matter.
The subdivision between “Hamiltonian” variables y and µSTDoF variables Σ is simple,

y =

(→
ζ
(→

a
)

,
→
π
(→

a
))

, Σ =
(

s
(→

a
))

, while the mass ρ
(→

a
)

of the density
→
a -th parcel may be

expressed in terms of the initial mass density ρ0

(→
a
)

that characterizes the mass geometry of the

continuum and is assigned once and forever, and the Jacobian determinant J
(→

a
)
= det|| ∂

→
ζ

∂
→
a
||, as:

ρ
(→

a
)
=

ρ0

(→
a
)

J
(→

a
)

ρ
(→

a
)

would be redundant, as a dynamical variable, to the complete configuration

x =

(→
ζ
(→

a
)

,
→
π
(→

a
)

, s
(→

a
))

.

Excluding dissipative forces, the infinitesimal parcel described by the configuration x can be
attributed a Hamiltonian dynamics by considering its energy determined by the sum of a kinetic part,
a potential part giving rise to the pressure forces exerted by the surrounding parcels, and a part due to
external “conservative” forces. The total Hamiltonian of the fluid reads:

H
[→

ζ ,
→
π , s

]
=

w

D0

d3a

 π2
(→

a
)

2ρ0

(→
a
) + ρ0

(→
a
)

U

ρ0

(→
a
)

J
(→

a
) , s

(→
a
)+ ρ0

(→
a
)

V
(→

ζ
(→

a
)). (40)

The dependence of U on CoM variables
→
ζ through the Jacobian determinant qualifies this system

as a non-separable CMS.
The dissipation free motion of the fluid is generated by the foregoing Hamiltonian and the

Poisson bracket:

{ f , g} =
w

D0

d3a

 δ f

δ
→
ζ
(→

a
) · δg

δ
→
π
(→

a
) − δg

δ
→
ζ
(→

a
) · δ f

δ
→
π
(→

a
)
. (41)

The Hamiltonian limit of the fluid dynamics is then:

.
f
[→

ζ ,
→
π , s

]
=

{
f
[→

ζ ,
→
π , s

]
, H
[→

ζ ,
→
π , s

]}
. (42)

The symplectic bracket (41) is a canonical one, not different from those of ordinary point particles
of Newtonian Physics [16]. In particular, it does not contain any derivative with respect to the entropy
density s

(→
a
)

, so it does not involve any statistical proxy of the µSTDoF: this is a benefit brought by
the Lagrangian representation, while in the Eulerian one derivatives with respect to ρ and s appear [24].

Of course, microscopic degrees of freedom of the parcel are present in H
[→
ζ ,
→
π , s
]

, in particular through

the internal potential energy U

(
ρ0

(→
a
)

J
(→

a
) , s

(→
a
))

: still, due to the form of Equation (41), the entropy

density s
(→

a
)

is perfectly conserved

.
s
(→

a
)
=

{
s
(→

a
)

, H
[→

ζ ,
→
π , s

]}
= 0:
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as the ideal, dissipation-free motion of the fluid takes place, the amount s
(→

a
)

, encoding the complexity
of the particle motions internal to the macroscopic parcel, remains frozen to its original value. One
could well consider s

(→
a , t
)
= s

(→
a , 0
)
≡ s0

(→
a
)

a parameter rigidly assigned as the density ρ0

(→
a
)

),
so that the Hamiltonian Equation (40) would become a quantity as the H0 in Equation (20). In our case,
the “free Hamiltonian” H0 (y) would rather read

H0

[→
ζ ,
→
π

]
=

w

D0

d3a

 π2
(→

a
)

2ρ0

(→
a
) + ρ0

(→
a
)

U

ρ0

(→
a
)

J
(→

a
) , s0

(→
a
)+ ρ0

(→
a
)

V
(→

ζ
(→

a
)).

In the foregoing formula, H0 just depends on the CoM variables because the other ones are
frozen and “do not exist” as dynamical variables. Considering Equation (42), the fluid dynamics in
Lagrangian variables is written as:

.
ζα = πα,

.
πα = −ρ0

∂V
∂ζα

+ Ai
α

∂

∂ai

(
ρ0

∂U
∂J

)
, Ai

α =
εακλεimn

2
∂ζκ

∂am
∂ζλ

∂an ,

.
s = 0

(43)

(Greek indices refer to the vectors
→
ζ and

→
π , Latin ones to the 3D parcel-index

→
a ). The entropy density

s has zero Poisson bracket “with anything”:{
f , s
(→

a
)}

= 0 ∀ f , (44)

so does the total entropy of the fluid defined in Equation (46); see below: this renders it a Casimir
of (41).

Including the interaction with the µSTDoF means simply unfreezing the thermodynamic quantity
s
(→

a
)

: thanks to dissipative “forces”, it may now change its value. Considering the granular nature
of matter (i.e., including viscosity and thermal resistivity) will then turn Equation (43) into the
following ones: 

.
ζα = πα,

.
πα = −ρ0

∂V
∂ζα

+ Ai
α

∂

∂ai

(
ρ0

∂U
∂J

)
+ ΛαβγδJ∇β∇γ

(
πδ

ρ0

)
,

.
s =

J
ρ0T

Λαβγδ∇α

(
πβ

ρ0

)
∇γ

(
πδ

ρ0

)
+

Jκ
ρ0T
∇α∇αT.

(45)

The convention
→
∇ = ∂

∂
→
ζ

is intended. In Equation (45) the coefficient κ is the thermal conductivity,

while T is the temperature of the µSTDoF within the parcel, defined as always: T
(→

a
)
= ∂U

∂s
(→

a
) . As far

as the symbol Λαβγδ is concerned, we simply state

Λαβγδ = η

(
δδαδγβ + δδβδγα −

2
3

δαβδγδ

)
+ ζδαβδγδ:

this is the suitable tensor mimicking viscosity. In Equation (45) the entropy variation is due to the
non-ideal stress tensor: hence, to viscosity

J
ρ0T

Λαβγδ∇α

(
πβ

ρ0

)
∇γ

(
πδ

ρ0

)
,
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and to thermal conduction
Jκ

ρ0T
∇α∇αT,

i.e., to the two irreversible processes taking place. These are the processes draining energy out of the

parcels’ CoM degrees of freedom y =

(→
ζ
(→

a
)

,
→
π
(→

a
))

, smoothing the velocity difference between

nearby parcels (i.e., killing the gradients ∂→
a
→
π) and homogenizing temperature T via thermal diffusion.

It is possible to construct a functional derivative semi-metric bracket that defines an MBA and,
together with the Poisson bracket in Equation (41), can reproduce Equation (45). As usual, the entropy
of the µSTDoF responsible for dissipation must be introduced:

S [s] =
w

D0

d3aρ0

(→
a
)

s
(→

a
)

, (46)

which is a Casimir of Equation (41), as its integrand is (see Equation (44)), and composes the free
energy together with the Hamiltonian:

F
[→

ζ ,
→
π , s

]
= H

[→
ζ ,
→
π , s

]
+ αS [s] . (47)

The symmetric bracket completing the MBA to give rise to Equation (45) reads [23]:

( f , g) = 1
α

r

D0

Jd3a
{

TΛαβγδ

[
∇α
(

δ f
δπβ

)
− 1

ρ0T∇α
(

πβ

ρ0

)
δ f
δs

] [
∇γ

(
δg

δπδ

)
− 1

ρ0T∇γ
(

πδ

ρ0

)
δg
δσ

]
+

+κT2∇α
(

1
ρ0T

δ f
δs

)
∇α

(
1

ρ0T
δg
δs

)}
.

The Hamiltonian Equation (40) has null semi-metric bracket with anything, while the increase of
entropy is given by putting together Equation (46) and the third formula in Equation (45).

With this semi-metric bracket (which has the same definition of α, in terms of the sign)
Equation (45) is reproduced by assigning the usual metriplectic dynamics

.
f = { f , H} + α ( f , S)

for any physical functional f
[→

ζ ,
→
π , s

]
.

3.5. Kinetic Theory

The CMS described until now are essentially formed by a Hamiltonian system of variables y
plus a “thermal bath” of statistical variables Σ, indicated as µSTDoF. The interaction between the
two sub-manifolds of the phase space M is described by the metric part of the Leibniz bracket 〈〈., .〉〉
generating dynamics. In this section, instead, we will make the example of a dynamical system
that has only one dynamical variable and, still, may admit either a Hamiltonian description or a
metriplectic one depending on whether dissipative, time-asymmetric interactions are included or
not: together with the example of Section 3.6, this case permits us to introduce a subtler distinction
between the Hamiltonian and the non-Hamiltonian part of a MBA, namely the time-reversible and the
time-irreversible one, crucial for the conclusions in Section 4.

The example we are going to treat here is that of kinetic theories.
Kinetic theories represent a system of many identical particles through the so called Boltzmann

distribution in the µ-space [26], i.e., a single particle space R6 in which f = f
(→

x ,
→
v , t
)

is the probability

density that a particle of the system picked at random is at the position
→
x in the 3D space, with velocity

→
v at time t. We are discussing the so called Vlasov–Poisson system: a gas of electrically charged
particles is coupled to an electrostatic field represented by its scalar potential φ

(→
x
)

acting on the
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charged particles themselves; then, the equation of motion of the µ-space distribution f
(→

x ,
→
v , t
)

is
the Vlasov equation coupled with the Poisson equation for the electrostatic field [20]:

∂t f +
∂ f

∂
→
x
·→v − ∂ f

∂
→
v
· ∂φ

∂
→
x
[ f ] = Wcoll [ f ] . (48)

In Equation (48) the term −∂→
x

φ [ f ] represents the electrostatic field that, at any time, depends on
the distribution f itself through the charge distribution in the space, while Wcoll [ f ] is referred to as
the collision term representing the time variation of f

(→
x ,
→
v , t
)

due to two-particle collisions at that

given point
→
x at that time. The term φ [ f ] is constructed as a functional of f, rendering Equation (48) an

integro-differential equation:

φ
(→

x , t
)
=

w
d3v′

w
d3x′V

(∣∣∣→x −→x ′∣∣∣) f
(→

x
′
,
→
v
′
, t
)

.

The kernel V
(∣∣∣→x −→x ′∣∣∣) is simply the electrostatic potential in a point

→
x due to the presence of

the point particle at the position
→
x
′
: this determines the forces through which particles sense each other.

Kinetic theory states that equations such as Equation (48) are non-time-reversible due to the term
Wcoll [ f ], which in practice represents the dissipative term giving rise to the increase of entropy (the
so-called Boltzmann’s H-Theorem): the beautiful thing is that, in the collisionless limit Wcoll [ f ]→ 0 ,
what remains of Equation (48), i.e.,

∂t f +
∂ f

∂
→
x
·→v − ∂ f

∂
→
v
· ∂φ

∂
→
x
[ f ] = 0, (49)

is a Hamiltonian dynamical system [7], while the collisional Vlasov–Poisson system (48) is represented
as a CMS. In practice, the dissipative term in Equation (48), i.e., the two-particle collision term,
does determine the non-Hamiltonian, semi-metric contribution to the dynamical system and, needless
to say, is moved via a symmetric bracket by an entropic functional.

Consider, first of all, the functional

H [ f ] =
w

d3x
w

d3v f
(→

x ,
→
v
) mv2

2
+

1
2

w
d3x

w
d3vφ

(→
x , t
)

f
(→

x ,
→
v
)

(50)

and the Leibniz functional bracket

{A [ f ] , B [ f ]} =
r

d3x
r

d3v f
(→

x ,
→
v
)(

∂→
x

δA
δ f
(→

x ,
→
v
) · ∂→

v
δB

δ f
(→

x ,
→
v
) − ∂→

x
δB

δ f
(→

x ,
→
v
) · ∂→

v
δA

δ f
(→

x ,
→
v
)
)

: (51)

not only is {., .} in Equation (51) a Poisson bracket satisfying the Leibniz property, anti-symmetry,
and Jacobi identity; it also generates the collisionless Equation (49) once the Hamiltonian functional
H [ f ] defined in Equation (50) is made use of:

∂t f
(→

x ,
→
v
)
=
{

f
(→

x ,
→
v
)

, H [ f ]
}

.

In order to turn on collisions, and then obtain the Equation (48), one resorts Boltzmann’s entropy

S [ f ] = −k
w

d3x
w

d3v f
(→

x ,
→
v
)

ln f
(→

x ,
→
v
)

: (52)
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as the symmetric, semi-metric functional bracket

(A [ f ] , B [ f ]) =

= − L
2α

r
d3x

r
d3v

r
d3x′

r
d3v′

(
∂

∂vi
δA

δ f
(→

x ,
→
v
) − ∂

∂v′i
δA

δ f
(→

x
′
,
→
v
′)
)
∗

(
∂

∂vi
δB

δ f
(→

x ,
→
v
) − ∂

∂v′i
δB

δ f
(→

x
′
,
→
v
′)
)

f
(→

x ,
→
v
)

f
(→

x ,
→
v
′)  δij∣∣∣→v−→v ′∣∣∣ − (vi−v′i)(vj−v′j)∣∣∣→v−→v ′∣∣∣3

 δ3
(→

x −→x
′)

(53)

is defined, the collisional term may be obtained as

Wcoll

[
f ;
→
x ,
→
v
)
= α

(
f
(→

x ,
→
v
)

, S [ f ]
)

,

provided the collisional term Wcoll

[
f ;
→
x ,
→
v
)

is assumed to have the form [20]:

Wcoll

[
f ;
→
x ,
→
v
)
=

= L ∂
∂vi

r
d3v′

 δij∣∣∣→v−→v ′∣∣∣ − (vi−v′i)(vj−v′j)∣∣∣→v−→v ′∣∣∣3
 [ f

(→
x ,
→
v
) ∂ f

(→
x ,
→
v
′)

∂v′j
− f

(→
x ,
→
v
′) ∂ f

(→
x ,
→
v
)

∂vj

] .

Considering the full free energy functional and the MBA constructed through
Equations (51) and (53)

F [ f ] = H [ f ] + αS [ f ] , 〈〈A, B〉〉 = {A, B}+ (A, B) , (54)

Equation (48) is finally reproduced:

∂t f
(→

x ,
→
v
)
=
〈〈

f
(→

x ,
→
v
)

, F [ f ]
〉〉

(55)

(consider that the Hamiltonian is a null mode of the semi-metric component (H [ f ] , .) = 0, and the
entropy is a Casimir of the Poisson component {S [ f ] , .} = 0).

Something more should be stressed about Equation (55), to hint at concluding remarks. As cleverly
shown in [20], Equation (55) may be adapted to make the system relax into different equilibrium field
configurations f0

(→
x ,
→
v
)

, and the “tailoring” must be done on the entropic functional S in Equation (52):

since any functional of the form S [ f ] =
r

d3x
r

s
(

f
(→

x ,
→
v
))

d3v is a Casimir of the Poisson bracket
in Equation (51), to each function s ∈ C∞ (R, R) there will correspond an MBA, relaxing to a suitable
f0

(→
x ,
→
v
)

thanks to the action of S through α (., S [ f ])s; (., .)s is a semi-metric functional bracket
“tailored” on function s. For instance, the S in Equation (52) leads to the Boltzmann equilibrium with
absolute temperature T = −α, while if the function s ( f ) = −k [ f ln f + (1− f ) ln (1− f )] were used,
with a suitably adapted bracket (., .)s (see [20] for details), then f0

(→
x ,
→
v
)

would be a Fermi–Dirac one,
still with absolute temperature given by the constant α appearing in (54) as T = −α. This observation
may lead to the argument that the space of Boltzmann distributions L1 (µ) contains several possible
equilibria, around each one the general dynamics of f is well approximated by the proper MBA with
the proper s.

The other observation to be made on Equations (54) and (55) is that the CMS at hand has one field
variable only, i.e., the distribution f, so one could wonder where the “Hamiltonian” sub-system (i.e., y)
and the µSTDoF (i.e., Σ) are. The answer, contained in

.
A [ f ] = {A [ f ] , H [ f ]}+ α (A, S [ f ]), is that

indeed there does not exist any frictionless sub-system and any µSTDoF draining “ordered” energy
from it, there are not fundamental sub-systems: rather, there exist fundamental algebraic sub-structures,
i.e., components of the algebraic structure of dynamics, namely {., .} and (., .), apparently giving rise to
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deeply different behaviors with respect to time flow [27], i.e., “eternal perfect conservative Hamiltonian”
and “ageing time-irreversible entropic” evolutions.

3.6. Morrison’s Rotator

What is referred to as Morrison’s rotator here is a toy model very similar, in many aspects, to the
kinetic metriplectic theory described in Section 3.5; because the system has only one dynamic variable,

namely the angular momentum
→
L ∈ R3 of a rigid body of the Newtonian physics, let us refer to the

phase of the system as R3
L.

The free rigid rotator has equations of motion, written in terms of the components of
→
L in the

principal inertial coordinate system, given by:

.
L

i
=

εi
jkLjLk

I(i)
, (56)

where I(a) is the momentum of inertia with respect to the a-th principal axis, along which the component

of
→
L reads La. The symbol εi

jk is the partially contravariant form of Ricci SO(3)-tensor. The ODEs in
Equation (56) are straightforwardly reproduced by the Poisson bracket,

{ f , g} = −εi
jkLi ∂ f

∂Lj
∂g
∂Lk , (57)

provided that the mechanical energy of the rigid rotator 1
2

→
L ·→ω is used as a Hamiltonian, being

→
ω the

angular velocity of the system, with La = I(a)ωa. If the diagonal tensor of inertia σab = I(a)δab is used,
the Hamiltonian giving Equation (56) thanks to Equation (57) reads:

H
(→

L
)
= 1

2
(
σ−1)

ab LaLb,
.
L

i
=
{

Li, H
}

. (58)

In order to produce a CMS based on the Hamiltonian model in Equation (58), of course physical
friction could be added, for instance considering the rotation energy dissipation due to the µSTDoF of
a viscous fluid through which the rigid body is rotating. However, another way is possible, presented
originally in [20] as far as the author knows, and henceforward referred to as Morrison’s rotator, from

the name of the author of [20]; indeed, since any function W
(

L2), being L2 ≡
→
L ·
→
L , is a Casimir of the

Poisson bracket defined in Equation (57), hence any function

F
(→

L
)
= H

(→
L
)
+ αW

(
L2
)

(59)

may be used as free energy to build up an MBA, once the suitable semi-metric tensor Gij, and a
consequent semi-metric bracket (., .) are constructed:

Gij

(→
L
)
=

1
α

(∣∣∣∂→
L

H
∣∣∣2 δij −

∂H
∂Li

∂H
∂Lj

)
, ( f , g) = Gij ∂ f

∂Li
∂g
∂Lj . (60)

In Equation (60) the projector orthogonal to the
→
L -gradient of H has been used to construct G,

so it is clear that ( f , H) = 0 for any f. All in all, the right brackets to prepare a MBA with Equation (59)
as the free energy are ready:

〈〈 f , g〉〉 = { f , g}+ ( f , g) ,
.
f
(→

L
)
=

〈〈
f
(→

L
)

, F
(→

L
)〉〉

∀ f ∈ C∞ (R3, R
)

. (61)

The CMS of dynamics in Equation (61) represents a free rigid rotator that relaxes to become
aligned with one of its axes of inertia: it may be shown that the steady points of the system with free

energy in Equation (59) are the configurations with
→
L aligned along one principal axis of inertia, i.e.,
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with only one component: these are actually configurations in which the rigid rotator spins freely,
without dissipation. Again, as was already happening for the kinetic theory in Section 3.5, there exist
no macroscopic degrees of freedom the ordered energy of which is swallowed by the disordered
microscopic degrees of freedom giving friction: rather, Equation (61) represents an algebrized dynamical
system with a “time-reversible” symplectic part and an “ageing” metric part. It is pretty clear that this
MBA works in the same way as a CMS with friction; of course, the delicate point is to understand
what the function W

(
L2) of Equation (59) has to do physically with the entropies seen until now.

Morrison underlines how on the one hand constant W
(

L2) manifolds in R3
L are symplectic leaves as

the S-constant manifolds were in the other MBAs; on the other hand, how L2 “counts the degeneracy”
of the spinning states, grossly as entropy does [28].

4. Conclusions

In the review an attempt is made to present in a didactic way how, extending symplectic brackets
suitably, one is able to describe systems that relax to asymptotic equilibria. The reader interested in the
subject can read further in the references reported here, in particular [12,13] and [8–10]. The stress in
this paper is rather put on the physics–algebra interplay that apparently changes example by example,
while highlighting the common features of all the systems examined, possibly pointing towards new
interpretations of dissipative processes.

After having gone through this review, the reader should retain a few important facts, listed here.

1. (At least some) classical dynamical systems with dissipation may be formulated in terms of
bracket algebra, through a generalization of the symplectic brackets of Hamiltonian systems: this
is, the metriplectic bracket formalism. In bracket algebra formalism the symmetry properties are
much more under control and may be exploited, as we explained in some detail in Section 2.

2. The bracket algebra associated with a classical dissipative complete system is composed of the
Poisson bracket and the Hamiltonian, which describe “what the system is made like” (i.e., what
are its degrees of freedom and dynamical variables, what are its fundamental time scales, the core
of its phase space structure), and the metric brackets and the entropy, which describe “what the
system ages like”, relaxing to an asymptotically stable state. This kind of representation is referred
to as a complete metriplectic system. From the point of view exposed in [17], the symplectic part
of an MBA describes the being of the system, while the metric one encodes its becoming.

3. The metric component giving rise to dissipation is crucially symmetric and positive (semi-)
definite: this fact does allow irreversible motion to take place, and entropy to grow.

4. CMS may have their dissipative component either originated from the interaction of a
“macroscopic” Hamiltonian system with microscopic degrees of freedom (usually treated
statistically), giving rise to “friction” (examples in Sections 3.3 and 3.4); or from a “postulated”
non-Hamiltonian interaction among dynamical variables already involved in the Hamiltonian
component (examples in Sections 3.5 and 3.6).

5. In the cases studied in Sections 3.3 and 3.4 (dissipation with friction) and in Section 3.5 (dissipation
due to particle collisions), the observable responsible for the non-Hamiltonian, metric part of the
dynamical algebra is easily interpreted as the entropy of the system. In the system discussed in
Section 3.6, the interpretation of the same quantity is not completely clear, at least to the author.

The author is sure of the fact that, continuing with the development and application of MBA,
the role of dissipation in fundamental physics, even at an elementary particle level, will be clarified;
moreover, the algebraic nature of CMS is a blatant invitation to match what we learn at a classical
level with the quantum world. In this regard it is intuitive to stress the analogy between Equation (26)
and the Lindblad–Kossakowski equations of open quantum systems [15], where part of the motion is
determined by the Hamiltonian operator through the anti-symmetric commutator algebra, and part by
the Lindbladian operators, showing a symmetric structure. Symmetry and semi-definiteness are also
what appear to mimic the non-conservative part of quantum dynamics: as a final note, let us underline
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how these classical–quantum analogies appear to show up clearly after the algebrization of dynamics,
but would remain “hidden” without this algebraic reformulation.
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