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Abstract: We elucidate how Quantum Thermodynamics at temperature T emerges from
pure and classical SU(2) Yang–Mills theory on a four-dimensional Euclidean spacetime slice
S1 × R3. The concept of a (deconfining) thermal ground state, composed of certain solutions
to the fundamental, classical Yang–Mills equation, allows for a unified addressation of both
(classical) wave- and (quantum) particle-like excitations thereof. More definitely, the thermal
ground state represents the interplay between nonpropagating, periodic configurations which are
electric-magnetically (anti)selfdual in a non-trivial way and possess topological charge modulus unity.
Their trivial-holonomy versions—Harrington–Shepard (HS) (anti)calorons—yield an accurate a priori
estimate of the thermal ground state in terms of spatially coarse-grained centers, each containing one
quantum of action h̄ localized at its inmost spacetime point, which induce an inert adjoint scalar field
φ (|φ| spatio-temporally constant). The field φ, in turn, implies an effective pure-gauge configuration,
ags

µ , accurately describing HS (anti)caloron overlap. Spatial homogeneity of the thermal ground-state
estimate φ, ags

µ demands that (anti)caloron centers are densely packed, thus representing a collective
departure from (anti)selfduality. Effectively, such a “nervous” microscopic situation gives rise to
two static phenomena: finite ground-state energy density ρgs and pressure Pgs with ρgs = −Pgs

as well as the (adjoint) Higgs mechanism. The peripheries of HS (anti)calorons are static and
resemble (anti)selfdual dipole fields whose apparent dipole moments are determined by |φ| and T,
protecting them against deformation potentially caused by overlap. Such a protection extends to the
spatial density of HS (anti)caloron centers. Thus the vacuum electric permittivity ε0 and magnetic
permeability µ0, supporting the propagation of wave-like disturbances in the U(1) Cartan subalgebra
of SU(2), can be reliably calculated for disturbances which do not probe HS (anti)caloron centers.
Both ε0 and µ0 turn out to be temperature independent in thermal equilibrium but also for
an isolated, monochromatic U(1) wave. HS (anti)caloron centers, on the other hand, react onto
wave-like disturbances, which would resolve their spatio-temporal structure, by indeterministic
emissions of quanta of energy and momentum. Thermodynamically seen, such events are Boltzmann
weighted and occur independently at distinct locations in space and instants in (Minkowskian) time,
entailing the Bose–Einstein distribution. Small correlative ramifications associate with effective
radiative corrections, e.g., in terms of polarization tensors. We comment on an SU(2) × SU(2) based
gauge-theory model, describing wave- and particle-like aspects of electromagnetic disturbances
within the so far experimentally/observationally investigated spectrum.
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1. Introduction

Boltzmann’s statistical approach to kinetic gas theory can be considered an anticipation of
Quantum Physics. Assuming for simplicity a single atomic species of mass m, his equation reads(

∂t + ẋi∂xi +
1
m

Fi∂ẋi

)
f (~x, ~̇x, t) = ∂t f |coll

(i = 1, 2, 3) , (1)

where ~F is an external force field, and the term on the right-hand side denotes the collision
integral—a functional of the phase-space probability distribution f . Equation (1) would describe
a time-reversal invariant evolution of f like in Classical Mechanics (that is, if f (~x, ~̇x, t) satisfies
Equation (1) then so does f (~x,−~̇x,−t)) if the collision integral was identically zero or determined from
Classical Mechanics itself. However, the collision integral’s intrinsic indeterminism, expressed through
probabilistic changes from initial to final scattering states (molecular chaos), selfconsistently underlies
the concept of the probability distribution f and its time-reversal non-invariant evolution. Presently,
we use Quantum Mechanical or Quantum Field Theoretical amplitudes to compute ∂t f |coll

from
first principles for dilute gases (typical scattering lengths smaller than mean interparticle distance).
The arrow of time, expressing the asymptotic attainment of an ergodic (thermal) equilibrium state of
maximum entropy as a consequence of f ’s evolution via Boltzmann’s Equation (1), thus is a direct
consequence of the indeterminism inherent to the collision integral, and our modern understanding of
molecular chaos is that this integral be expanded into positive powers of h̄—Planck’s (reduced) quantum
of action (In the formal limit h̄→ 0 the quantity ∂t f |coll

is given by Classical Mechanics or vanishes).
The purpose of the present article is to discuss the emergence of Quantum Thermodynamics in pure
SU(2) Yang–Mills theories and to explore some of its consequences which appear to extend beyond
thermodynamics.

In contrast to thermalization of a dilute gas of massive (bosonic) particles, such as atoms
or molecules, by virtue of the collision integral in Boltzmann’s equation the emergence of
the Bose–Einstein quantum distribution is a much more fundamental and direct affair in pure
Yang–Mills theory. This is because classical SU(2) Yang–Mills theory on the Euclidean spacetime
R4 provides for (anti)selfdual and temporally periodic gauge-field configurations—so-called
Harrington–Shepard (HS) (anti)calorons (HS (anti)calorons represent the basic constituents of the
thermal ground state in the deconfining phase of SU(2) Yang–Mills Quantum Thermodynamics [1–3])
of topological charge modulus |k| = 1 and trivial holonomy [4–14]—which, in the singular
gauge used to construct them, exhibit boundary behavior around a central spacetime point x0

defining h̄. Indeterminism of Minkowskian processes involving (anti)caloron centers is an immediate
consequence which, together with spatial independence, implies the Bose–Einstein distribution for
thermal photons.

Interactions of photons with massive vector modes (adjoint Higgs mechanism) are mediated
by effective vertices, which occur through (anti)caloron centers, are feeble, and, for sufficiently high
temperatures, amount to a slight rescaling of T → T′ in thermodynamical quantities [15]. The transition
from T → T′ can be interpreted as a re-thermalization due to a collision integral in the sense of
Equation (1), associated with loop integration in the photon’s polarization tensor [15,16].

The very notion of a Minkowskian spacetime and the Poincaré group, however, relates to the
static structure of HS (anti)calorons spatially far from point x0 [17] if at least two gauge-group
factors SU(2) of disparate Yang–Mills scales [18] are invoked. More specifically, we will argue
that the spatial peripheries of HS (anti)calorons enable the propagation of coherent, wave-like
disturbances, as introduced, e.g., by classically oscillating electric charges, through undulating
polarizations of electric and magnetic dipole densities. The wave-particle duality of electromagnetic
disturbances would thus be understood in terms of the spatial peripheries and centers of (anti)selfdual,
Euclidean field configurations in SU(2) Yang–Mills theory.
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This paper is organized as follows. In Section 2 the construction of the thermal ground
state for deconfining SU(2) Yang–Mills thermodynamics, the properties of its effective thermal
excitations, and the physics of effective radiative corrections are sketched for the reader’s convenience.
Section 3 reviews observational and theoretical reasons for the postulate that an SU(2) rather
than a U(1) gauge principle underlies the fundamental description of thermal photon gases [2].
A discussion of how the spatial periphery of HS (anti)calorons provides electric and magnetic dipole
densities, which (i) are protected against (anti)caloron overlap; are (ii) associated with the alternating
electric and magnetic polarization of the ground state as induced by external disturbances ~E and
~B; and (iii) propagate these disturbances at a finite speed, being independent of frequency and
intensity within certain bounds governed by the Yang–Mills scale Λ, is performed in Section 4.
Both, propagation of an isolated monochromatic electromagnetic wave and of waves in a thermal
ensemble are addressed and confronted with experiment. Section 5 elucidates how short wave lengths,
which probe (anti)caloron centers, provoke indeterministic responses. Quantities, which associate with
(anti)caloron centers, are interpretable in a Minkowskian spacetime—a concept induced by overlapping
(anti)caloron peripheries—if they do not depend on analytic continuation from imaginary to real time.
Only integral, gauge-invariant quantities qualify. In particular, the integral of the Chern–Simons
current Kµ over the 3-sphere of vanishing 4D radius (topological charge), centered at the inmost
spacetime point of an (anti)caloron, and therefore the (anti)caloron action SC,A = 8π2/e2 is physical
in this sense. Here e denotes the effective gauge coupling. It turns out that SC,A = h̄ [19,20]. As it
seems, h̄ is the only physical quantity which can be associated with the center of an (anti)caloron.
What can be measured in response of probing such a center is h̄ in combination with classical physical
quantities such as frequency or wave number of a disturbance which, temporarily, is propagated
by spatial (anti)caloron peripheries. We show that the statistical independence of the emission of
(monochromatic) quanta of energy and momenta implies the Bose–Einstein distribution. Section 6
summarizes the present work.

If not stated otherwise we work in (super-)natural units c = h̄ = kB = 1 from now on, c denoting
the speed of light in vacuum and kB Boltzmann’s constant.

2. Mini-Review on Deconfining Thermal Ground State, Excitations, and Radiative Corrections

Let us briefly review how the thermal ground state in the deconfining phase of thermal
SU(2) Quantum Yang–Mills theory emerges from HS (anti)calorons of topological charge modulus
|k| = 1 [4]. A crucial observation is that the energy momentum tensor θµν vanishes identically on these
(anti)selfdual, periodic Euclidean field configurations when considered in isolation. This implies that
HS (anti)calorons do not propagate. Moreover, their spatial peripheries are static, meaning that
an adiabatically slow approach of centers, inducing a finite density thereof, does not generate
any propagating disturbance on distances larger than the spatial radius R (to be specified below)
that is associated with an (anti)caloron center. On the other hand, given that the Euclidean time
dependence of field-strength correlations within the central region set by R spatially can be coarse
grained into a mere choice of gauge for the inert, adjoint scalar field φ of space-time independent
modulus |φ| [1,2] and taking into account that there is a preferred value R ∼ |φ|−1 at a given
temperature T [19] it is clear that no (potentially to be continued) gauge-invariant Euclidean time
dependencies leak out from an (anti)caloron center to the periphery. (Static peripheries cannot
resolve and therefore deform centers. However, their spatial overlap, as facilitated by dense
packing of centers, introduces a departure from (anti)selfduality and thus finite energy density and
pressure [2].) Moreover, topologically trivial, effectively propagating disturbances are governed by
an action which is of the same form as the fundamental Yang–Mills action since their (Minkowskian)
time dependence can be introduced adiabatically into the physics of overlapping (anti)caloron
peripheries and since off-shellness, introduced by just-not-resolved and thus integrated edges of
(anti)caloron centers, does not change the form of the action thanks to perturbative renormalizability,
see below.
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Let us be more specific. For gauge group SU(2) the Harrington–Shepard (HS) caloron (C)—a
gauge-field configuration whose components Aµ (µ = 4, 1, 2, 3) assume values in the SU(2) Lie algebra
SU(2)—is given as follows (antihermitian group generators ta (tr tatb = − 1

2 δab with a, b = 1, 2, 3)):

Aµ = η̄a
µνta∂ν log Π(τ, r) , (2)

where r ≡ |~x|, η̄a
µν denotes the antiselfdual ’t Hooft symbol [13], η̄a

µν = εa
µν − δaµδν4 + δaνδµ4 (εa

µν

the totally antisymmetric symbol in three dimension with ε1
23 = 1 and εa

µν = 0 for µ = 4 or ν = 4).
The prepotential Π(τ, r) with

Π(τ, r) = 1 +
πρ2

βr

sinh
(

2πr
β

)
cosh

(
2πr

β

)
− cos

(
2πτ

β

) (3)

is derived by an infinite superposition of the temporally shifted prepotential Π0(x) of a singular-gauge
instanton [13,14] with topological charge k = 1 on R4 to render Π(τ, r) periodic in τ. One has

Π0(x) = 1 +
ρ2

x2 , (4)

where ρ is the instanton scale parameter. The associated antiselfdual field configuration (A) is obtained
in replacing η̄a

µν by ηa
µν (selfdual ’t Hooft symbol) in Equation (2). Configuration (2) is singular at

τ = r = 0 where the topological charge k = 1 on S1 × R3 is localized in the sense that the integral of
the Chern–Simons current Kµ with

Kµ =
1

16π2 εµαβγ

(
Aa

α∂β Aa
γ +

1
3

εabc Aa
α Ab

β Ac
γ

)
(5)

over a three-sphere S3
δ of radius δ, which is centered at τ = r = 0, is unity for δ → 0. Since the

configuration C of Equation (2) is selfdual (and the associated configuration A is antiselfdual) the
action of the HS (anti)caloron is given in terms of its topological charge k = ±1 and the gauge-coupling
constant g as

SC = SA =
8π2|k|

g2 =
8π2

g2

∫
S3

δ

dΣµKµ =
8π2

g2 . (6)

Moreover, since Equation (6) holds in the limit δ→ 0 the action SC = SA admits a Minkowskian
interpretation. Based on [21–25] and on the fact that the thermal ground state emerges from
|k| = 1 caloron/anticalorons, whose scale parameter ρ essentially coincides with the inverse
of maximal resolution, |φ|−1, in deconfining SU(2) Yang–Mills thermodynamics, it was argued
in [19], see also [20], that SC and SA both equal h̄ if the effective theory emergent from the spatial
coarse-graining, see below, is to be interpreted as a local quantum field theory. With [26], see also [17],
we now investigate how the field strengths of C and A look like away from their centers at τ = r = 0.

For |x| � β one has

Π(x) = (1 +
π

3
s
β
) +

ρ2

x2 + O(x2/β2) , (7)

where s is given as

s ≡ π
ρ2

β
. (8)

From Equations (2) and (7) one obtains the following expression for Fµν = 1
2 εµνκλFκλ ≡ F̃µν on

the caloron (C)

Fa
µν = −4ρ′

2 η̄a
αβ

(x2 + ρ′2)2
Iαµ Iβν + O(x2/β4) , (9)
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where Iαµ ≡ δαµ − 2 xαxµ

x2 . At small four-dimensional distances |x| from the caloron center the field
strength thus behaves like the one of a singular-gauge instanton with a renormalized scale parameter

ρ′2 = ρ2

1+ π
3

s
β

. For |x| � β the field strength tensor Fµν thus exhibits a dependence on τ which would

give rise to a nontrivial analytic continuation with no Minkowskian interpretation. For r � β the
selfdual electric and magnetic fields Ea

i and Ba
i are static:

Ea
i = Ba

i ∼ −
x̂a x̂i
r2 − 1

rs (δ
a
i − 3x̂a x̂i)

(1 + r
s )

2 . (10)

Here x̂i ≡ xi
r and x̂a ≡ xa

r . A simplification of Equation (10) occurs for β� r � s as

Ea
i = Ba

i ∼ −
x̂a x̂i
r2 . (11)

This is the field of a static non-Abelian monopole of unit electric and magnetic charges (dyon).
For r � s� β Equation (10) reduces to

Ea
i = Ba

i ∼ s
δa

i − 3 x̂a x̂i

r3 , (12)

representing the field strength of a static, selfdual non-Abelian dipole field. The dipole moment pa
i of

the latter is given as
pa

i = s δa
i . (13)

For A one simply replaces Ea
i = Ba

i by Ea
i = −Ba

i in Equations (10)–(12).
It is instructive to discuss a slight deformation of the HS caloron towards non-trivial holonomy,

keeping s fixed and maintaining selfduality [11]. A holonomy u � π/β then produces a nearly
massless and de-localized magnetic monopole (charged w.r.t. U(1) ⊂ SU(2) left unbroken under
A4(|~x| → ∞) = ut3 6= 0 where ta (a = 1, 2, 3) now denotes the hermitian generator of SU(2),
normalized to tr tatb = 1

2 δab) and its localized massive antimonopole, the latter centered at r ∼ 0—a
position which nearly coincides with the spatial locus of topological charge of the (anti)caloron [11].
The centers of the mass densities of both particles are separated by s. For r � s the massive
antimonopole appears like a purely magnetic charge. However, as r increases beyond s this magnetic
charge is increasingly screened by the presence of the delocalized magnetic monopole such that the
non-Abelian, selfdual field strength of Equation (12) prevails (no reference to the scale u) (In contrast,
the definition of an Abelian field strength, see [27], requires that u 6= 0 to be able to define
the SU(2) unit vector Â4 everywhere except for the two central points of the magnetic charge
distributions). Moreover, it was shown in [12] that u � π/β leads to monopole-antimonopole
attraction under the influence of small field fluctuations. This renders the interpretation of s as the
scale of magnetic monopole-antimonopole separation irrelevant for the physics of (slightly deformed)
HS (anti)caloron peripheries.

Let us now come back to the question how field φ emerges thanks to HS (anti)calorons. We have
discussed in [3] why the following definition of a family of phases associated with the inert field φ is
unique and, as a whole, transforms homogeneously under fundamental gauge transformations

{φ̂a} ≡ ∑C,A tr
∫

d3x
∫

dρ ta Fµν(τ,~0) {(τ,~0), (τ,~x)}

× Fµν(τ,~x){(τ,~x), (τ,~0)},
(14)
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where the Wilson line {(τ,~0), (τ,~x)} is defined as

{(τ,~0), (τ,~x)} ≡ P exp
[

i
∫ (τ,~x)

(τ,~0)
dzµ Aµ(z)

]
,

{(τ,~x), (τ,~0)} ≡ {(τ,~0), (τ,~x)}† ,
(15)

the integration in Equation (15) is along the straight spatial line connecting the points (τ,~0) and (τ,~x),
and the sum is over configuration C of Equation (2) and its antiselfdual partner A. Moreover,
Fµν ≡ ∂µ Aν − ∂ν Aµ − [Aµ, Aν] denotes the Yang–Mills field-strength tensor, and the symbol P
demands path ordering. On C and A path ordering actually is obsolete since the spatial components
of the gauge field represent a hedge-hog configuration which fixes the direction in SU(2) in terms
of the direction in 3-space. As a consequence, all factors, associated with infinitesimal line elements,
contributing to the group element of Equation (15) commute, and therefore their order is irrelevant.
One can show [1,3] that in performing the integrations over~x and ρ in Equation (14) and by re-instating
temporal shifts τ → τ + τC,A, the family {φ̂a} is parameterized, modulo global gauge rotations,
by four real parameters, two for each “polarization state” for harmonic motion in a plane of SU(2).

This uniquely associates a linear differential operator D of order two with {φ̂a}: D ≡ ∂2
τ +

(
2π
β

)2
.

Moreover, one shows that the result of the ρ-integration, which depends cubically on its upper cutoff ρu,
hence is sharply dominated by ρu whatever the value of this cutoff turns out to be.

Operator D exhibits an explicit temperature (β) dependence. However, due to the fact that the
action in Equation (6), which determines the weight in the partition function that is introduced by
HS (anti)calorons, is not temperature dependent such an explicit temperature dependence must not
appear in the effective, thermal Yang–Mills action (ETYMA) obtained from a spatial coarse-graining
in combination with integrating out these (anti)calorons. Therefore, in deriving the part of ETYMA,
which is solely due to the field φ, by demanding it to be stationary w.r.t. variations in φ at a fixed value
of β (Euler–Lagrange equation) the explicit β dependence in D is to be absorbed into the φ-derivative
of a potential V(φ). Demanding consistency of a first-order Bogomol’nyi-Prasad-Sommerfield
(BPS) equation, which needs to be satisfied by φ owing to the fact that it embodies spatial field-strength
correlations on (anti)selfdual gauge-field configurations, one derives the following first-order equation
for V

∂V(|φ|2)
∂|φ|2 = −V(|φ|2)

|φ|2 , (16)

whose solution reads

V(|φ|2) = Λ6

|φ|2 . (17)

Here Λ denotes an arbitrary mass scale (the Yang–Mills scale). This implies that

|φ| =
√

Λ3β

2π
. (18)

Scale |φ|−1 represents a minimal length scale in evaluating the consequences of ETYMA.
Therefore, ρu ∼ |φ|−1. The condition su � β, which is required for Equations (11) and (12) to
actually represent static field strengths, is always satisfied provided that the dimensionless temperature
λ ≡ 2πT

Λ � 1. Namely, one then has

su

β
≡ π

(
ρu

β

)2
∼ π

(
λ3/2

2π

)2

=
λ3

4π
� 1 . (19)

Also, it is true that
ρu

β
∼ λ3/2

2π
� 1 . (20)
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That the condition λ� 1 is satisfied in the deconfining phase of SU(2) Yang–Mills thermodynamics
is a consequence of the evolution equation for the effective coupling e. This evolution follows from
the demand of thermal consistency of the Yang–Mills gas of non-interacting thermal quasi-particle
fluctuations and their thermal ground state [2], based on ETYMA density

Leff[aµ] = tr
(

1
2

GµνGµν + (Dµφ)2 +
Λ6

φ2

)
. (21)

In Equation (21) Gµν = ∂µaν − ∂νaµ − ie[aµ, aν] ≡ Ga
µν ta denotes the field strength of the effective

trivial-topology gauge field aµ = aa
µ ta, Dµφ = ∂µφ− ie[aµ, φ], and e is the effective gauge coupling.

The latter takes the value e =
√

8π almost everywhere in the deconfining phase (in natural units
h̄ = kB = c = 1) [3,28,29]. One can show [3,19] that Leff is uniquely determined as in Equation (21),
resting on the facts that the effective k = 0 field aµ is governed by the first term due to perturbative
renormalizability [30–32], gauge invariance fixes the second term, and no higher-dimensional
mixed operators, involving fields aµ and φ, may appear due to the impossibility of the former to resolve
the physics leading to the latter (inertness). The action density of Equation (21) predicts the existence
of one massless and two massive (adjoint Higgs mechanism, thermal quasi-particle excitations)
directions in SU(2) provided that their interactions are feeble and justifiedly expandable into a growing
number of vertices. In unitary-Coulomb gauge (a completely fixed, physical gauge) constraints
on admissible four-momentum transfers can be stated precisely. These constraints imply a rapid
numerical convergence of radiative corrections [15,33], and, by counting the number of constraints
versus the number of radial loop variables in dependence of loop number, it was conjectured in [3,34]
that one-particle irreducible bubble diagrams vanish, starting from a finite loop number. Note that
Equation (20) states the independence of φ’s modulus on Euclidean time τ, and Equations (19) and (12)
indicate that an (anti)selfdual static dipole field only emerges spatially far from the central region of an
(anti)caloron, the latter being bounded by a spatial sphere of radius |φ|−1 ∼ ρu.

3. Mini-Review on the Postulate SU(2)CMB (Thermal Photon Gases)

In [2] we have postulated that thermal photon gases, fundamentally seen, should be subject to an
SU(2) rather than a U(1) gauge principle.

Theoretically, such a postulate rests on the facts that in the deconfining phase of Yang–Mills
thermodynamics the gauge symmetry SU(2) is broken to U(1) by the field φ and that the interaction
between massive and massless excitations is feeble with the exception of the low-frequency regime
at temperatures not far above the critical temperature Tc for the deconfining-preconfining phase
transition [15,16,35]. Observationally, however, the physics of the deconfining-preconfining phase
boundary [3,36], the presence of a nontrivial thermal ground state, giving rise to massive quasi-particle
fluctuations and therefore an equation of state p = p(ρ) 6= 1

3 ρ, and feeble radiative effects influencing
the propagation properties of the massless mode [3,37,38] allow to confront the SU(2) postulate
with reality. As for the former, a highly significant cosmological radio excess at frequencies
ν ≤ 1 GHz [39], when considered in the SU(2) framework, links the evanescence of low-frequency
electromagnetic waves belonging to the Cosmic Microwave Background (CMB) to an (incomplete)
condensation phenomenon involving screened and ultralight electric charges (In units, where
h̄ is re-instated as a dimensionful quantity, one has e =

√
8π/
√

h̄ almost everywhere in the
deconfining phase. This and the fact that the thermal ground state is sharpy dominated by (anti)caloron
radii ρu ∼ |φ|−1, see Section 2, imply that the (anti)caloron action equals h̄ [19]. The fact that the
(unitless) Quantum Electrodynamics (QED) fine-structure constant α is given as α = Q2

4πh̄ , where Q
denotes the charge of the electron, implies an electric-magnetically dual interpretation of the U(1)
charge content [27] of SU(2) field configurations [19]: Q ∝ 1/e). This gives rise to a (partial) Meissner
effect, and hence frequencies smaller than the implied Meissner mass mγ do not propagate but
constitute an ensemble of evanescent waves (In Section 4 we show that these low frequencies, indeed,
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associate with classical waves). As a result, a re-shuffling of spectral power, creating a maximum
at zero frequency, takes place at small CMB frequencies. Because mγ is (critically and thus rapidly)
increasing when T is decreased below Tc [2] the observation of a spectral-excess anomaly in the CMB
at small frequencies implies that the present baseline temperature of the CMB, T0 = 2.725 K, practically
coincides with Tc. This fixes the Yang–Mills scale Λ of the theory by virtue of Λ = 2π

λc
Tc ∼ 10−4 eV [36]

(λc ≡ 13.87 [2]) which prompts the name SU(2)CMB. Based on the precise experimental match Tc = T0

and on the availability of the (practically one-loop exact) equation of state p = p(ρ) of deconfining
SU(2) Yang–Mills thermodynamics [2], a prediction of the CMB redshift (z)—temperature (T) relation
is accomplished [40] which exhibits strong violations of conformal behavior at T ∼ 2 T0 where z ∼ 2.1
(conventionally: z ∼ 1). As a consequence, the discrepancy between the redshift zre for instantaneous
re-ionization of the intergalactic medium, as extracted with zre ∼ 11 from the depletion of peaks
in the CMB TT angular power spectrum by appealing to the conventional, conformal z–T relation
T/T0 = z + 1 [41], and as observed with zre ∼ 6 by detection of the Gunn–Peterson trough for
z ≥ zre in high-redshift quasar spectra [42], is resolved [40]. Finally, with Tc = T0 one predicts that
the temperature dependence of radiatively induced effects at low frequencies such as anomalies in
blackbody spectra [15,16,35] (spectral gap, extending from zero to about 17 GHz at T ∼ 5.4 Kelvin)
as well as the thermal excitation of longitudinally propagating magnetic-field modes [43] (several,
partially superluminal, low-frequency branches whose combined energy densities match the order of
magnitude of the field strength (∼10−8 Gauss) squared of intergalactic magnetic fields extracted from
small-angle CMB anisotropies [44]).

4. Dipole Densities: (Anti)caloron Peripheries and Thermal Wave Propagation

In this section, we discuss the vacuum parameters of Classical Electromagnetism—electric
permittivity ε0 and magnetic susceptibility µ0—and their possible relation to the thermal-ground state
properties caused by (anti)caloron peripheries, see also [17]. It will become clear that, in describing
thermal photon gases, classical aspects of the thermal ground state of SU(2)CMB are limited to very
low frequencies.

We have seen by virtue of Equations (19) and (20) that a probe being sensitive to spatial distances r
from a given (anti)caloron center, which are much greater than the scale su (su itself being much greater
than the coarse-graining scale ρu ∼ |φ|−1), detects the static (anti)selfdual dipole field of Equation (12).
The electromagnetic field, which propagates through the deconfining thermal ground state in absence
of any explicit electric charges, is considered a monochromatic plane wave of wave length l ∼ r. Such a
field associates with a density of (anti)selfdual dipoles, see Equation (12). Because they are given by
pa

i = suδa
i their dipole moments align along the direction of the exciting electric or magnetic field both

in space and in SU(2). Note that at this stage the definition of what is to be viewed as an Abelian
direction in SU(2) is a global gauge convention such that all spatial directions of the dipole moment pa

i
are a priori thinkable. In a thermal situation and unitary gauge φ = 2 t3 |φ| we would thus set a = 3
which implies that ~p = su ê3.

Per spatial coarse-graining volume Vcg of radius |φ|−1 = ρ =
√

Λ3

2πT with

Vcg =
4
3

π|φ|−3 , (22)

the center of a selfdual HS caloron or the center of an antiselfdual HS anticaloron [3] resides. Note the
large hierachy between su (the minimal spatial distance to the center of a (anti)caloron, which allows
to identify the static, (anti)selfdual dipole) and the radius of the sphere |φ|−1 defining Vcg,

su

|φ|−1 =
1
2

λ3/2 = 25.83
(

λ

λc

)3/2
. (23)
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If the exciting field is electric, ~Ee, then it sees twice the electric dipole pa
i (cancellation of magnetic

dipole between caloron and anticaloron), if it is magnetic, ~Be, it sees twice the magnetic dipole pa
i

(cancellation of electric dipole between caloron and anticaloron, ~E = −~B ⇔ −~E = ~B). To be definite,
let us discuss the electric case in detail, which is characterized by ~Ee. The modulus of the according
dipole density ~De||~Ee is given as

|~De| =
2su

Vcg

=
3

4π
Λ2λ1/2

c

(
λ

λc

)1/2
. (24)

In Classical Electromagnetism the relation between the fields ~Ee and ~De is

~De = ε0~Ee , (25)

where
ε0 = 5.52703× 107 Q

V m
(26)

is the electric permittivity of the vacuum, and Q = 1.602× 10−19 Ampere seconds (A s) denotes the
elementary unit of electric charge (electron charge), both quoted in SI units.

According to electromagnetism the energy density ρEM carried by an external electromagnetic
wave with |~Ee| = |~Be| is

ρEM =
1
2
(ε0|~Ee|2 +

1
µ0
|~Be|2) =

1
2
(ε0 +

1
µ0

)|~Ee|2 . (27)

In natural units we have ε0µ0 = 1/c2 = 1, and therefore (To set ε0µ0 = 1 is a short cut. This would
have come out if we had treated the magnetic case explicitly.) one has µ0 = 1/ε0. Thus

ρEM = ε0|~Ee|2 . (28)

The ~Ee-field dependence of ρEM is converted into a fictitious temperature dependence by
demanding that the temperature of the thermal ground state of SU(2)CMB adjusts itself such as to
accommodate ρEM in terms of its ground-state energy density ρgs [2],

ρEM = ρgs = 4πΛ3T ⇔ |~Ee| = Λ2

√
2

λc

ε0

(
λ

λc

)1/2
. (29)

Equation (29) generalizes the thermal situation of ground-state energy density (see below),
where ground-state thermalization is induced by a thermal ensemble of excitations, to the case where
the thermal ensemble is missing but the probe field induces a fictitious temperature and energy density
to the ground state. Combining Equations (24), (25) and (29), and introducing the ratio ξ between the
non-Abelian monopole charge Q′ in the dipole and the (Abelian) electron charge (In natural units,
the actual charge of the monopole constituents within the (anti)selfdual dipole is 1/g where g is the
undetermined fundamental gauge coupling. This is absorbed into ξ.) Q, we obtain

ε0[Q(V m)−1] = 3√
32π

(
Λ[m−1]

Λ[eV]

)1/2
ξQ
√

ε0[Q(V m)−1] ⇔

ε0[Q(V m)−1] = 9
32π2

Λ[m−1]

Λ[eV]
(ξQ)2 .

(30)

Notice that ε0 does not exhibit any temperature dependence and thus no dependence on the
field strength ~Ee. It is a universal constant. In particular, ε0 does not relate to the state of fictitious
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ground-state thermalization which would associate to the rest frame of a local heat bath. To produce
the measured value for ε0 as in Equation (26) the ratio ξ in Equation (30) is required to be

ξ ≡ Q′

Q
= 19.56 . (31)

Thus, compared to the electron charge, the charge unit associated with a (anti)selfdual
non-Abelian dipole, residing in the thermal ground state, is gigantic. The discussion of µ0 proceeds
in close analogy to the case of ε0. (It would be µ−1

0 defining the ratio between the modulus of the
magnetic dipole density and the magnetic flux density |~B|.) Here, however, the comparison between
non-Abelian magnetic charge and an elementary, magnetic, and Abelian charge is not facilitated since
the latter does not exist in electrodynamics.

The consideration above, linking the density of (anti)selfdual static dipoles in the thermal ground
state to an exciting field-strength modulus |~Ee| via a fictitious temperature T, which represents the
energy density of the thermal ground state in terms of the classical field-energy density introduced
by |~Ee|, has assumed isolated propagation of a monochromatic plane wave. How would the argument
that the thermal ground state associates with the classical vacuum parameters ε0 and µ0 have to
be modified if a thermodynamical equilibrium subject to a genuine thermodynamical temperature
T prevails? The condition that wavelength l must be substantially larger than su amounts to

l =
2π

xT
� su =

2π2T2

Λ3 ⇔ x � 1
π

(
Λ
T

)3
, (32)

where x ≡ 2πν
T , and ν denotes the frequency of the wave. In particular, for T = Tc (32) states that

x � 1
π

(
2π

λc

)3
∼ 0.0296 (λc = 13.87) . (33)

Considering that the maximum of Planck’s spectral energy density uPlanck = 2
π T3 x3

ex−1 occurs
at x = 2.82 we conclude that wave-like propagation in a thermodynamical situation is restricted
to the deep Rayleigh–Jeans regime where spectral energy density is (classically) given (Radiative
effects in SU(2) Yang–Mills thermodynamics alter the low-frequency behavior of the Rayleigh–Jeans
spectral intensity [16]: there is a spectral gap νg such that no radiance is predicted to occur for ν ≤ νg

(screening), and there is, compared to the conventional Rayleigh–Jeans spectrum, an exponentially
decaying overshoot (anti-screening). However, νg ∝ T−1/2 and therefore this radiative modification of
the Rayleigh–Jeans spectrum can be neglected at temperatures much higher than T0 = 2.725 K.) as

uRJ =
2
π

T3x2 = 8πTν2 . (34)

To convert uRJ into an energy density it needs to be multiplied by a (constant) band width ∆ν.
Notice that both, ρRJ ≡ uRJ∆ν = 8πTν2∆ν and the energy density of the thermal ground state
ρgs ≡ 4πTΛ3, compare with Equation (29), depend linearly on T. Therefore, an average electric
field-strength modulus |~Ee| in the Rayleigh–Jeans regime, defined as

ρRJ = 8πTν2∆ν = ρEM = ε0|~Ee|2 ⇔ |~Ee| = 2ν

√
λcΛ∆ν

ε0

(
λ

λc

)1/2
, (35)

also yields temperature independence of ε0,

ε0 ≡
|~De|
|~Ee|

=
9

64π2
Λ[m−1]

Λ[eV]
(ξ̃Q)2 × Λ3

ν2∆ν

[
1
]

, (36)
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where
[
1
]

indicates that the preceding fraction is to be evaluated in natural units (h̄ = kB = c = 1) so

that it is dimensionless. The charge of a monopole in the dipole is represented by ξ̃Q. This charge now
is perceived by the ensemble of waves with frequencies contained in the band ∆ν. Since ε0 should be a
frequency independent quantity we need to demand that

ξ̃2 = C
ν2∆ν

Λ3 , (37)

where C = 2ξ2, compare with Equation (30). We conclude that the charge of a monopole making
up the dipole as perceived by the ensemble of waves with frequencies contained in the band ∆ν is
increasingly screened with decreasing frequency ν.

Finally, from the condition l � su and Equation (29) one obtains (natural units)

|~Ee|4ν� 8Λ9 . (38)

Relation (38) needs to be obeyed by any classically propagating, monochromatic electromagnetic
wave. Its violation indicates that the propagation of electromagnetic field energy no longer is mediated
by an adiabatic time-harmonic modulation of the polarization state of electric and magnetic dipole
densities of the vacuum, as provided by overlapping (anti)caloron peripheries, but by the quantum
physics of (anti)caloron centers. Setting Λ = ΛCMB, (38) is a strong restriction on admissible frequencies
at commonly occurring intensities in the propagation of electromagnetic waves. Such a restriction,
however, is not supported by experience. In [18] it was therefore proposed to add flexibility to
the value of Λ by postulating a product SU(2)CMB× SU(2)e of gauge groups with Λe ∼ me ∼ 0.5 MeV,
see also [2,3], subject to a mixing angle of the unbroken (diagonal) subgroups which is adjusted
depending on whether or not this gauge dynamics plays out in a thermal or nonthermal situation
or any intermediate thereof. (In the present Standard Model of particle physics such a mixing
between the U(1) subalgebra of SU(2)W and U(1)Y, the latter being regarded as a fundamental
gauge symmetry, is subject to a fixed value of the associated Weinberg angle.) According to (38)
the large value of Λe allows for the propagation of electromagnetic waves throughout the entire
experimentally accessed frequency spectrum at commonly experienced intensities. However, by virtue
of Equation (29) those intensities usually relate to (fictitious) temperatures that are much lower than
Tc,e ∼ 2.21 Λe. As a consequence, the hierarchy between su and |φ|−1, taking place for λc ≥ λ, actually
is inverted in physical wave propagation subject to SU(2)e. That is, the center of an (anti)caloron would
extend well beyond a typical wavelength, thus in principle introducing hard-to-grasp nonthermal
quantum behavior. Still, since (38) does not depend on the concept of a temperature anymore we may
regard it as universally valid: it needs to be satisfied by any monochromatic, classically propagating
electromagnetic wave.

5. Bose–Einstein Distribution: (Anti)caloron Centers and Indeterministic Emission of Quanta of
Energy and Momentum

The derivation of the dipole density in Equation (24) has appealed to the independence and
inertness of (anti)caloron centers in “sourcing” their respective peripheries, the latter supporting
static dipole fields. This is consistent since fields propagating by virtue of peripheries never
probe centers. The fact that the thermal ground state actually is a spatial arrangement of densely packed
(anti)caloron centers, implying profound spatial overlaps of (anti)caloron peripheries, is implemented
by Equation (29) which assigns a finite energy density to this ground state in terms of some temperature
T which, in turn, is determined by the field-strength modulus |~Ee| in the sense of an adiabatic
deformation of the isotropic, thermal situation. (Anti)caloron centers are probed, however, if the
wavelength l of a propagating disturbance approaches the value su—a situation when dipole moments
induced by time-harmonic monopole accelerations, see Equation (11), yield inconsistencies [17].
This mirrors the fact that Maxwell’s equations are void of magnetic sources (locality).
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As the wave length l of a would-be propagating disturbance substantially falls below su we need
to consider the physics inherent to the central region of an (anti)caloron which is anything but classical,
see Section 3. Thus the classical quantities wave length l and frequency ν both cease to be applicable
as physical concepts. On the other hand, the only trivially continuable and thus physical quantity
associated with the central region of an (anti)caloron is the quantum of action h̄. This can be used
to transmute the no longer applicable classical concepts l and ν into valid concepts |~p| = h̄2πl−1

(momentum modulus) and E = h̄2πν (energy). As a consequence, it is the indeterministic emission
of a quantum of momentum and energy (photon) that is expected as the response of an (anti)caloron
center to disturbances whose classical propagation over distances larger than l is excluded. Since, apart
from small correlative effects, which are induced by effective Yang–Mills vertices and computable
in the theory (21), see [15,16,33,35,43], (anti)caloron centers act spatio-temporally independently,
the derivation of the mean photon occupation number n̄ proceeds as usual. Namely, the Boltzmann
weight pn of an n-fold photon event, each photon possessing energy E in the thermal ensemble, is the
nth power of the Boltzmann weight p1 of a single photon event

p1(x) = e−x ⇒ pn(x) = e−nx
(

x ≡ E
kBT

)
. (39)

Therefore, the partition function Z(x) reads

Z(x) =
∞

∑
n=0

pn(x) =
1

1− e−x . (40)

Finally, mean photon number n̄(x) is given as

n̄(x) = 1
Z(x) ∑∞

n=0 npn(x)

= − d log Z(x)
dx = 1

ex−1 ≡ nB(x) ,
(41)

where nB(x) denotes the Bose–Einstein distribution function.

6. Conclusions

In this contribution we have given a sketchy overview on how the thermal ground state emerges
in SU(2) Yang–Mills theory in terms of a spatial coarse-graining over the field-strength correlation
within the center of an electric-magnetically (anti)selfdual (anti)caloron gauge-field configuration of
topological charge modulus unity and trivial holonomy [4], giving rise to an effective inert scalar field φ,
and a pure-gauge solution ags

µ of the effective Yang–Mills field equations, sourced by φ. Details of this
process can be studied in [1,3].

After motivating the postulate by observational facts that thermal photon gases should be subject
to an SU(2) rather than a U(1) gauge principle we have subsequently addressed the question of
how the SU(2) thermal ground state remains a valid concept in supporting the propagation of
electromagnetic waves. Namely, the electric permittivity ε0 and the magnetic permeability µ0 of
the vacuum, which are parameters of Classical Electromagnetism, are related to their respective
dipole densities emerging from the peripheries of (anti)calorons while their central regions, r ≤ |φ|−1,
are densely packed spatially. Both, ε0 and µ0 turn out to be temperature independent, and this
derivation can be performed for an isolated, monochromatic wave and spectral bands within the deep
Rayleigh–Jeans regime in a given (conventional) black-body spectrum.

The last part of this paper dealt with the physics implied by the central regions of (anti)calorons.
We have argued here that the classical concepts frequency and wave length necessarily convert
into quanta of energy and momentum (photon) by virtue of the localization of the quantum of
action at the inmost spacetime point within the center of an (anti)caloron. Since, modulo small
correlative effects—computable in terms of radiative corrections in the effective theory—central regions
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in (anti)calorons are, in a Minkowskian sense, spatiotemporally independent one concludes that,
thermodynamically, the Boltzmann weight of an n-photon event in the gas factorizes into Boltzmann
weights of a single-photon event. This implies the Bose–Einstein distribution function.
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