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Abstract: Given a seven-element set X = {1, 2, 3, 4, 5, 6, 7}, there are 30 ways to define a Fano plane
on it. Let us call a line of such a Fano plane—that is to say an unordered triple from X—ordinary
or defective, according to whether the sum of two smaller integers from the triple is or is not equal
to the remaining one, respectively. A point of the labeled Fano plane is said to be of the order s,
0 ≤ s ≤ 3, if there are s defective lines passing through it. With such structural refinement in mind,
the 30 Fano planes are shown to fall into eight distinct types. Out of the total of 35 lines, nine
ordinary lines are of five different kinds, whereas the remaining 26 defective lines yield as many as
ten distinct types. It is shown that no labeled Fano plane can have all points of zero-th order, or
feature just one point of order two. A connection with prominent configurations in Steiner triple
systems is also pointed out.
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1. Introduction

The Fano plane is the smallest projective plane. It consists of seven lines and seven points, with
three points on a line and, dually, three lines per point, where every pair of points is connected by
a line, every line intersects every other line, and there are four points such that no line contains
more than two of them. It is well known [1–3] that there are thirty different Fano planes on a given
seven-element set. Slightly rephrased, there are thirty different ways to label the points of the Fano
plane by integers from 1 to 7, two labeled Fano planes having zero, one or three lines in common,
and each line occurring in six Fano planes. The set of thirty labeled Fano planes can be uniquely
partitioned into two sets (say A and B) of fifteen elements each, such that any two labeled Fanos
in the same set have just one line in common. Following the labeling adopted by Polster [4], the
two sets read

A1 : {124, 136, 157, 235, 267, 347, 456}, B1 : {127, 136, 145, 235, 246, 347, 567},

A2 : {127, 136, 145, 234, 256, 357, 467}, B2 : {125, 136, 147, 234, 267, 357, 456},

A3 : {125, 136, 147, 237, 246, 345, 567}, B3 : {124, 136, 157, 237, 256, 345, 467},

A4 : {125, 134, 167, 236, 247, 357, 456}, B4 : {127, 134, 156, 236, 245, 357, 467},

A5 : {127, 135, 146, 236, 245, 347, 567}, B5 : {124, 135, 167, 236, 257, 347, 456},

A6 : {124, 137, 156, 236, 257, 345, 467}, B6 : {125, 137, 146, 236, 247, 345, 567},

A7 : {123, 147, 156, 245, 267, 346, 357}, B7 : {123, 145, 167, 247, 256, 346, 357},

A8 : {124, 135, 167, 237, 256, 346, 457}, B8 : {126, 135, 147, 237, 245, 346, 567},

A9 : {126, 137, 145, 235, 247, 346, 567}, B9 : {124, 137, 156, 235, 267, 346, 457},
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A10 : {123, 145, 167, 246, 257, 347, 356}, B10 : {123, 146, 157, 245, 267, 347, 356},

A11 : {126, 134, 157, 237, 245, 356, 467}, B11 : {125, 134, 167, 237, 246, 356, 457},

A12 : {125, 137, 146, 234, 267, 356, 457}, B12 : {126, 137, 145, 234, 257, 356, 467},

A13 : {123, 146, 157, 247, 256, 345, 367}, B13 : {123, 147, 156, 246, 257, 345, 367},

A14 : {127, 134, 156, 235, 246, 367, 457}, B14 : {126, 134, 157, 235, 247, 367, 456},

A15 : {126, 135, 147, 234, 257, 367, 456}, B15 : {127, 135, 146, 234, 256, 367, 457},

where for triples of integers we use a shorthand notation {a, b, c} = abc.

2. Refined Structure of Numbered Fano Planes

Given a line abc, where, without loss of generality, we can take 1 ≤ a < b < c ≤ 7,
we shall distinguish between the cases when a + b = c and a + b 6= c and call the former/latter
ordinary/defective [5]; for the sake of convenience, in the above-given sets A and B, all ordinary
lines are denoted by overbars. Furthermore, a point of the labeled Fano plane is said to be of order s,
0 ≤ s ≤ 3 if there are s defective lines passing through it; hence, in addition to two different kinds of
lines, a labeled Fano plane can potentially feature up to four distinct types of points. A detailed
inspection of each of the 30 labeled Fano planes given above shows that they fall, in terms of
such structural refinement, into eight different types, as portrayed in Figure 1 and summarized in
Table 1. It is also interesting to compare the distributions of types within each 15-element set, given
in Tables 2 and 3, as well as cardinalities of individual types, listed in Table 4; note a pronounced
asymmetry between sets A and B.

Figure 1. A diagrammatic illustration of representatives of eight distinct types of numbered Fano
planes. A point of order three, two, one, and/or zero is represented by red, blue, green, and/or yellow
color, respectively; heavy lines are defective. The types α and γ do not exist; i.e., it is impossible to
label the Fano plane in such a way that all or just five of its lines would be ordinary.
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Table 1. The eight distinct types of labeled Fano planes, each being uniquely characterized by the
number of points of every particular order. To better understand the symmetry pattern, we arrange
complementary types into pairs and also list the two non-existent types α and γ.

Type Points of Order

0 1 2 3

(α) (7) (0) (0) (0)
α′ 0 0 0 7
β 4 3 0 0
β′ 0 0 3 4
(γ) (2) (4) (1) (0)
γ′ 0 1 4 2
δ1 1 3 3 0
δ′1 0 3 3 1
δ2 0 6 0 1
δ′2 1 0 6 0

Table 2. Types of Fano planes in set A.

Plane 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Type γ′ β′ β′ γ′ β′ γ′ γ′ β′ γ′ β β′ α′ β′ δ2 β′

Table 3. Types of Fano planes in set B.

Plane 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Type δ1 α′ α′ γ′ δ′2 α′ δ′2 α′ γ′ γ′ δ′1 γ′ δ1 γ′ α′

Table 4. Cardinalities of individual types of Fano planes.

Type (α) β (γ) δ1 δ2 α′ β′ γ′ δ′
1 δ′

2

Set A - 1 - 0 1 1 7 5 0 0
Set B - 0 - 2 0 5 0 5 1 2

Total - 1 - 2 1 6 7 10 1 2

As easily discernible from Figure 1, the different types of Fano planes—and the dual pairs
formed by them—are more readily ascertained by the number of defective lines they contain; the
only exception is the case when there are three defective lines, where one has to distinguish whether
these are concurrent or not. From this perspective, the lack of a plane of type γ becomes even
more interesting. We can see through exhaustion that there is no such plane, but it would be really
interesting to see if there are some geometric explanations for why it is impossible.

In addition to classifying planes, we can also classify lines in terms of the types of six planes
passing through each of them, the corresponding findings being given in Table 5. We find that nine
ordinary lines are of five different kinds, whereas the remaining 26 defective lines yield as many as
ten distinct types.

To conclude the paper, let us have a look at Figure 1 and focus on that sub-geometry in each
labeled Fano plane representative which is formed by defective lines and points lying on them.
We shall find the Fano plane itself and, using the language of [6], all its derivatives depicted in
Figure 2 that play a crucial role in classifying Steiner triple systems (e.g., [7,8]). As readily discerned
from Figure 1, the semihead lies in a type-β′ plane, the mia in a type-γ′ plane, a sail is hosted by the
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type-δ′1 plane, the Pasch configuration is located in a type-δ′2 plane, the triangle in a type-δ1 plane, and
the Fano plane itself coincides with a type-α′ plane. It should also be pointed out that if one instead
considers sub-geometries formed by ordinary lines, then both the Fano plane and its derivate mia
are absent.

PaschMiaSemihead Sail Triangle

Figure 2. Five distinguished Fano derivatives, with their traditional names, found within labeled
Fano planes.

Table 5. The types of lines; nine ordinary lines go first. Lines belong to a given type if they possess
the same string of parameters.

Line (α) β (γ) δ1 δ2 α′ β′ γ′ δ′
1 δ′

2

123 - 1 - 1 0 0 1 2 0 1
145 - 1 - 1 0 0 1 2 0 1
257 - 1 - 1 0 0 1 2 0 1
347 - 1 - 1 0 0 1 2 0 1
156 - 0 - 1 1 0 0 4 0 0
235 - 0 - 1 1 0 0 4 0 0
246 - 1 - 2 1 0 1 0 1 0
167 - 1 - 0 0 0 1 1 1 2
134 - 0 - 0 1 0 1 3 1 0
124 - 0 - 0 0 1 1 3 0 1
236 - 0 - 0 0 1 1 3 0 1
247 - 0 - 0 0 1 1 3 0 1
346 - 0 - 0 0 1 1 3 0 1
357 - 0 - 0 0 1 1 3 0 1
456 - 0 - 0 0 1 1 3 0 1
136 - 0 - 1 0 2 2 1 0 0
147 - 0 - 1 0 2 2 1 0 0
345 - 0 - 1 0 2 2 1 0 0
567 - 0 - 1 0 2 2 1 0 0
126 - 0 - 0 0 1 2 3 0 0
157 - 0 - 0 0 1 2 3 0 0
245 - 0 - 0 0 1 2 3 0 0
467 - 0 - 0 0 1 2 3 0 0
135 - 0 - 0 0 2 3 0 0 1
237 - 0 - 0 0 2 3 0 0 1
256 - 0 - 0 0 2 3 0 0 1
127 - 0 - 1 1 1 2 1 0 0
367 - 0 - 1 1 1 2 1 0 0
146 - 0 - 0 0 3 2 1 0 0
234 - 0 - 0 0 3 2 1 0 0
137 - 0 - 0 0 2 0 4 0 0
267 - 0 - 0 0 2 0 4 0 0
356 - 1 - 0 0 1 1 2 1 0
457 - 0 - 0 1 2 1 1 1 0
125 - 0 - 0 0 3 1 1 1 0



Entropy 2016, 18, 312 5 of 5

3. Conclusions

The Fano plane occurs in algebraic geometry and geometric algebra in a number of
disguises [9,10], providing a link between such important mathematical concepts as design theory,
error-correcting codes, Latin squares, skew-Hadamard matrices, Klein’s quartic curve, and Leech’s
eight-dimensional minimal sphere-packing lattice, being perhaps most recognized as a “gadget”
completely describing the algebra structure of the octonions [11]. The above-described properties of
labeled Fano planes clearly demonstrate that there is still much that this prominent object of discrete
mathematics is likely to teach us. Although some readers may find the adopted labeling of Fano
planes rather arbitrary or unnatural, there is already a piece of solid motivation for it stemming from
its successful use in discovering an interesting sequence of nested finite geometries associated with
Cayley–Dickson algebras [5]. An even more intriguing question is whether a similar strategy could
also be applied to get deeper insight into so-called q-analogs of the Fano plane, where there are still
many open problems, even for q = 2, to be properly addressed (for a recent review, see [12]).

Obviously, any finite geometry (point–line incidence structure) with lines of size three can be
looked at this way. We have already performed the corresponding examination of the Möbius–Kantor
(83)-configuration, the Pappus (93)-configuration, as well as the Desargues (103)-configuration, and
plan to publish its outcome in a separate paper.
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