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Abstract: In this paper, a duopoly game model with double delays in hydropower market is
established, and the research focus on the influence of time delay parameter on the complexity
of the system. Firstly, we established a game model for the enterprises considering both the current
and the historical output when making decisions. Secondly, the existence and stability of Hopf
bifurcation are analyzed, and the conditions and main conclusions of Hopf bifurcation are given.
Thirdly, numerical simulation and analysis are carried out to verify the conclusions of the theoretical
analysis. The effect of delay parameter on the stability of the system is simulated by a bifurcation
diagram, the Lyapunov exponent, and an entropic diagram; in addition, the stability region of the
system is given by a 2D parameter bifurcation diagram and a 3D parameter bifurcation diagram.
Finally, the method of delayed feedback control is used to control the chaotic system. The research
results can provide a guideline for enterprise decision-making.
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1. Introduction

As the demand for power increases, the supply is proportionately increased. However, the cost
of thermal power, which is generated by non-renewable resources, is extremely high. Therefore, the
development of hydroelectric power is a more sensible choice. In this paper, the game process of
power output of two hydropower enterprises is considered. In practice, there is an obvious relationship
between the amount of electricity generated and the amount of water reserves. As a result, the water
reserves, the current output, and the output of the time delay are mainly considered to make an
electricity output plan. Therefore, it is very meaningful to study the game competition of the electricity
output of the two-oligopoly enterprises.

Electricity is an energy source of great significance, related to country development and societal
stability, so has always been the focus of research. As for studies on energy in relation to economic
strategies and the environment, Weidou [1] analyzed China’s energy policies and provided reasonable
suggestions for the supply and consumption of China’s energy, which would ensure the sustainable
development of China’s social energy economy. Nwaobi [2] proposed an economic model based on
the emission reduction policy, and gave an empirical analysis of Nigeria as an example. Vera et al. [3]
are in the process of analyzing the problem of 3E. They established a national energy index system
to develop the energy policy and realize the sustainable development of society, the economy, the
environment, and energy. Omri [4] analyzed the relationship between economic growth and a group
of parameters: energy consumption, electricity consumption, nuclear consumption, and renewable
energy consumption.
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In recent years, the oligopoly game has always been the frontier research area of renewable energy,
especially the nonlinear dynamic model, which is closely related to real life. Using the entropy theory
and chaos theory to establish an oligopolistic competition game model, establishing a measuring
method for uncertainty, and eliminating uncertainty all have broad applicability.

Dajka et al. [5] considered a two-player quantum game in the presence of a thermal decoherence
modeled in terms of a rigorous Davies approach. This shows how the energy dissipation and pure
decoherence affect the payoffs of the players of the game. Harré et al. [6] considered the issue about
how changes in the underlying incentives can move us from an optimal economy to a sub-optimal
economy, meanwhile making it impossible to collectively navigate our way to a better strategy without
forcing us to pass through a socially undesirable “tipping point”.

The power market of the three-oligopoly game was analyzed by Ma [7], where the complex
dynamic characteristics of the system are studied, and the dynamic behavior of the game is given,
providing an excellent practical guideline that is of great significance. Batabyal [8] took the international
trade of renewable resources as the background, did corresponding analysis using the Stackelberg
differential model, and pointed out that the policy tool has an important role in promoting energy
conservation. This study has important implications for the conservation of renewable energy.
As for the Bertrand model, Sun et al. [9] proposed a three-oligopoly game model, which is based
on the cold rolling market of China and studied the complex dynamic characteristics of the game
process. Basing on the Markov information structure, Halkos et al. [10] put forward a renewable
energy and non-renewable energy Nash game, and carried out the analysis of its strategy by using the
utility function, which is of great significance in practice. Liao [11] analyzed the role of developing
hydro-energy, wind energy, nuclear power, and so forth. Yoon and Ratti [12] examined the effect of
energy price uncertainty on firm-level investment with data on U.S. manufacturing firms.

Chaos analysis and applications in dynamical systems are observed in many practical applications
in engineering, biology, and economics [13–15]. Sun and Tian established an energy resource
demand-supply system based on the background of the real energy resources demand and supply in
the East and the West of China [16], and have obtained a series of findings [17,18].

In this paper, we study the problem of the oligopoly game in the market of hydroelectric power
using nonlinear theory and complex dynamics theory. We analyze the complex dynamic characteristics
of the system and study the influence of the time delay and weight on the system. Moreover, an
effective method for controlling a chaotic system is carried out.

This paper is organized as follows. In Section 2, a continuous differential duopoly game mode
with two delays is established. In Section 3, we focus on analyzing the existence and stability of Hopf
bifurcation. In Section 4, we carry out numerical simulation and analysis by using the methods of the
attractor, bifurcation diagram, Lyapunov exponent, entropic, etc. to study the influence of delay and
weight on the stability of the system. In Section 5, we elaborate on delayed feedback control, which is
an effective control method of chaos. Finally, the conclusions of this paper are given in Section 6.

2. The Model

In the market of hydroelectric power, we want to find the total economic variables: electrovalence,
market demand, and water reserves. The conditions need to be met when the market reaches
equilibrium. So, in this paper, we focus on the influence of the time delay parameter on the dynamic
characteristics of the system.

Assumptions are listed as follows:

1. The electricity market is composed of two hydropower enterprises.
2. The output of electricity quantity is only related to the amount of water reserves and electrovalence.
3. Electricity price is determined by the output of electricity quantity of two enterprises and

social demand.
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4. In order to generate electricity and ensure water storage safety, the minimum water reserve
is Xmin the maximum water reserve is Xmax. Therefore, the water reserves X must satisfy
X ∈ (Xmin, Xmax).

The inverse demand function for the electricity market is p(q) = p− q, where p is electrovalence,

q =
N
∑

i=1
qi is the demand of electrical energy, and p is the highest price of the electrical energy [9].

In the electricity market, the cost function C(X) is related to its own water reserves X [10,11].
Xmin is the water reserve when C(Xmin) = p. Obviously, x = X− Xmin is the effective water reserve.
When X ≤ Xmin, hydro power stations will suspend power generation. The unit cost of water reserves
is c(x) = p− cx. If water is renewable, and the growth rate of the water reserve is k, then

.
x = kx. So,

the water reserves should meet
.
x = kx− q.

In the process of the market game, every player in the game has to achieve its own
profit maximization:

π = [p(q)− c(xi)] qi = (cxi − q) qi.

So, the problem of the game strategy for each oligopoly can be expressed as the
optimization problem:

max
qi

∫ ∞

0
e−θt(cxi − q)qidt (1)

s.t.
.
xi = kxi − qi, (2)

where θ is discount factor, θ > 0, qi ≥ 0, xi ≥ 0 and i = 1, 2.
Solving the optimization problem (1) with its Hamiltonian function:

Hi = (cxi − q2)qi + λi(kxi − qi), (3)

where λi is a co-state variable. Solving:

∂Hi

∂qi
= 0,

.
λi = −

∂Hi

∂xi
+ θλi.

Simultaneously we can obtain:

.
qi +

.
q = (θ − k)(

.
qi +

.
q) + c(2k− θ)xi, i = 1, 2. (4)

The sum of the two parts of Equation (4) is obtained, and, using q =
N
∑

i=1
qi and x =

N
∑

i=1
xi (N = 2),

we can derive:
.
q = (θ − k)q +

c(2k− θ)

N + 1
x. (5)

With Equations (4) and (5), we can calculate the game strategy for each oligopoly as:

.
qi = (θ − k)qi + c(2k− θ)xi −

c(2k− θ)

3
x. (6)

In the actual operation of the electricity market, in order to ensure the sustainable development
of electric energy, as well as the stability of the electrovalence, the electricity supply of the market
should be fixed in a certain period of time, to ensure that the supply of electricity is not too large or too
small, which leads to fluctuations in market price. Suppose that in a certain period of time, the largest
electricity supply is a, so

.
qi positive correlation with vi(a− q), vi is the change rate of electricity supply.

Therefore, integrating Equations (5) and (6) and vi(a− q), we can obtain a double oligopoly game
model for the hydroelectric power market:
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.
x1 = kx1 − q1
.
x2 = kx2 − q2
.
q1 = v1(a− q2 − q1)

[
(θ − k)q1 − c(2k− θ)x2 +

2
3 c(2k− θ)x1

]
.
q2 = v2(a− q1 − q2)

[
(θ − k)q2 − c(2k− θ)x1 +

2
3 c(2k− θ)x2

] . (7)

In the actual operation process of the electric power enterprise, it is not only necessary to consider
the current market demand; we also need to consider the market demand of τ time early, which makes
the final decision results closer to the actual situation. In this paper, we assume that the duopoly
considers time delay. The delay parameters are τ1 and τ2 respectively. That is:

qi(t) = µiqi(t) + (1− µi)qi(t− τi), (8)

and 0 < µi < 1, i = 1, 2 is the weight of the current period price.
We know that the time delay does not affect the system’s solution. Therefore, the equilibrium point

E∗(0, 0, 0, 0) of Equation (7) is also the equilibrium point with a time delay system. So, in this paper,
we analyze the delay decision with the equilibrium point of E∗(0, 0, 0, 0). Then, from Equations (7)
and (8), the linear system with time delay is:

.
x1 = kx1 − q1,
.
x2 = kx2 − q2,
.
q1(t) = av1

[
(θ − k)(µ1q1(t) + (1− µ1)q1(t− τ1))− c(2k− θ)x2(t) + 2

3 c(2k− θ)x1(t)
]

,
.
q2(t) = v2(a− µ1q1(t)− (1− µ1)q1(t− τ1)− µ2q2(t)− (1− µ2)q2(t− τ2))[

(θ − k)(µ2q2(t) + (1− µ2)q2(t− τ2))− c(2k− θ)x1(t) + 2
3 c(2k− θ)x2(t)

]
.

(9)

3. Stability and Existence of Hopf Bifurcation

Equation (9) is linearized at the equilibrium point E∗(0, 0, 0, 0) by using s Jacobian matrix.
So Equation (9) can be converted to:

.
x1 = kx1 − q1,
.
x2 = kx2 − q2,
.
q1 = A1q1(t) + B1(1− µ1)q1(t− τ1) + C1x1(t) + D1x2(t),
.
q2 = µ2q2(t) + A2(1− µ2)q2(t− τ2)− (aν2M + M)x1(t) + aν2Nx2(t)

− B2µ2q1(t)q2(t)− B2(1− µ2)q1(t)q2(t− τ2) + ν2µ1q1(t)− ν2µ1q1(t)Nx2(t)
− C2µ2q1(t− τ1)q2(t)− C2(1− µ2)q1(t− τ1)q2(t− τ2) + D2Mq1(t− τ1)x1(t)
− D2Nq1(t− τ1)x2(t)− E2q2(t)

2 − E2(1− µ2)q2(t)q2(t− τ2) + ν2µ2Mq2(t)x1(t)
− ν2µ2Nq2(t)x2(t)− F2µ2q2(t)q2(t− τ2)− F2(1− µ2)q2(t− τ2)

2

+ G2Mq2(t− τ2)x1(t)− G2Nq2(t− τ2)x2(t),

(10)

where
A1 = aν1µ1(θ − k), B1 = aν1(θ − k), C1 =

2
3

acν1(2k− θ),

D1 = −aν1c(2k− θ), M = c(2k− θ), N =
2
3

c(2k− θ), A2 = aν2(θ − k),

B2 = ν2µ1(θ − k), C2 = ν2(1− µ1)(θ − k), D2 = ν2(1− µ1),

E2 = ν2µ2(θ − k), F2 = ν2(1− µ2)(θ − k), G2 = ν2(1− µ2).

The characteristic equation of Equation (10) is

λ4 + f13λ3 + f12λ2 + f11λ + f10 + ( f23λ3 + f22λ2 + f21λ + f20)e−λτ1

+( f33λ3 + f32λ2 + f31λ + f30)e−λτ2 + ( f42λ2 + f41λ + f40)e−λ(τ1+τ2) = 0
, (11)
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where
f13 = −2k− µ2 − A1,

f12 = C1 + k2 + 2A1k + A1µ2 + 2kµ2 + Nav2,

f11 = D1µ1v2 − A1k2 − k2µ2 − C1k− C1µ2 − 2A1kµ2 − NaA1v2 − Nakv2,

f10 = C1kµ2 −MD1 + A1k2µ2 − C1kµ1v2 −MaD1v2 + NaC1v2 + NaA1kv2,

f23 = B1µ1 − B1,

f22 = 2B1k− 2B1kµ1 + B1µ2 − B1µ1µ2,

f21 = B1k2µ1 − B1k2 − NaB1ν2 − 2B1kµ2 + NaB1µ1ν2 + 2B1kµ1µ2,

f20 = B1k2µ2 − B1k2µ1µ2 + NaB1kv2 − NaB1kµ1v2,

f33 = A2µ2 − A2,

f32 = A1 A2 − 2A2kµ2 + 2A2k− A1 A2µ2,

f31 = −A2k2 + A2k2µ2 − A2C1 − 2A1 A2k + 2A1 A2kµ2 + A2C1µ2,

f30 = A1 A2k2 + A2C1k− A2C1kµ2− A1 A2k2µ2,

f42 = A2B1 + A2B1µ1µ2 − A2B1µ1 − A2B1µ2,

f41 = 2A2B1kµ2 − 2A2B1k + 2A2B1kµ1 − 2A2B1kµ1µ2,

f40 = A2B1k2 − A2B1k2µ1 − A2B1k2µ2 + A2B1k2µ1µ2.

3.1. Case 1 τ1 = 0, τ2 > 0

For τ1 = 0, Equation (11) reduces to:

λ4 + A3λ3 + B3λ2 + C3λ + D3 + (E3λ3 + F3λ2 + G3λ + H3)e−λτ2 = 0 (12)

with
A3 = f13 + f23, B3 = f12 + f22, C3 = f11 + f21, D3 = f10 + f20,

E3 = f33, F3 = f32 + f42, G3 = f31 + f41, H3 = f30 + f40.

Let λ = iω1, (ω1 > 0) be the root of Equation (12). Then, we can get:{
(F3ω2

1 − H3)sinω1τ2 + (G3ω1 − E3ω3
1)cosω1τ2 = A3ω3

1 − C3ω1

(G3ω1 − E3ω3
1)sinω1τ2 − (F3ω2

1 − H3)cosω1τ2 = −ω4
1 − D3

. (13)

From Equation (13), we can obtain:

cosω1τ2 =
(F3 − A3E3)ω

6
1 + (A3G3 − H3 + C3E3)ω

4
1 + (D3F3 − C3G3)ω

2
1 − D3H3

(G3ω1 − E3ω3
1)

2
+ (F3ω2

1 − H3)
2 . (14)

Squaring both sides, adding both equations, and regrouping by powers of ω1, we can get:

ω8
1 + (A2

3 − E2
3)ω

6
1 + (2D3 − 2A3C3 + 2G3E3 − F2

3 )ω
4
1 + (C2

3 − G2
3 + 2H3F3)ω

2
1 + D2

3 − H2
3 = 0. (15)

Let r1 = ω2
1 , then Equation (15) becomes:

r4
1 + (A2

3 − E2
3)r

3
1 + (2D3 − 2A3C3 + 2G3E3 − F2

3 )r
2
1 + (C2

3 − G2
3 + 2H3F3)r1 + D2

3 − H2
3 = 0. (16)
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If the values of the coefficient are given, it is easy to get the root of Equation (16). In order to give
the main results in this paper, we make the following assumption: (H1) Equation (16) has at least one
positive root.

If condition (H1) holds, we know that Equation (15) has at least one positive root ω10, such that
Equation (12) has a pair of purely imaginary roots ±iω10. The corresponding critical value of the
delay is

τ20 =
1

ω10
arccos

(F3 − A3E3)ω
6
10 + (A3G3 − H3 + C3E3)ω

4
10 + (D3F3 − C3G3)ω

2
10 − D3H3

(G3ω10 − E3ω3
10)

2
+ (F3ω2

10 − H3)
2 . (17)

Next, take the derivative with respect to τ2 in Equation (12), we can obtain:[
dλ

dτ2

]−1
=

(4λ3 + 3A3λ2 + 2B3λ + C3)eλτ2 + (3E3λ2 + 2F3λ + G3)

λ(E3λ3 + F3λ2 + G3λ + H3)
− τ2

λ
.

Thus

Re
[

dλ(τ20)

dτ2

]−1

λ=iω10

=
Q1Q3 + Q2Q4

Q2
1 + Q1

2
, (18)

where
Q1 = E3ω4

10 − G3ω2
10, Q2 = H3ω10 − F3ω3

10,

Q3 = 4ω3
10sinω10τ20 − 3A3ω2

10cosω10τ20 − 2B3ω10sinω10τ20 − 3E3ω2
10 + G3 + C3cosω10τ20,

Q4 = 2B3ω10cosω10τ20 − 3A3ω2
10sinω10τ20 − 4ω3

10cosω10τ20 + 2F3ω10 + C3sinω10τ20.

If condition (H2): Q1Q3 + Q2Q4 6= 0, then Re
[

dλ(τ20)
dτ2

]−1

λ=iω10
6= 0. According to the Hopf

bifurcation theorem in [19], we obtain the following results.

Theorem 1. If the conditions (H1)–(H2) hold, the equilibrium point E∗ of Equation (9) is asymptotically stable
for τ2 ∈ [0, τ20) and unstable for τ2 > τ20; Equation (9) undergoes a Hopf bifurcation when τ2 = τ20.

3.2. Case 2 τ1 > 0, τ2 > 0

We consider τ1 as a parameter, and τ2 in its stability region τ2 ∈ [0, τ20). At this point, the
characteristic equation is Equation (11).

Let λ = iω2, (ω2 > 0) is the root of Equation (11). Then, we can get:{
A4cosω2τ1 + B4sinω2τ1 = C4

A4sinω2τ1 − B4cosω2τ1 = D4
, (19)

where
A4 = f21ω2 − f23ω3

2 + f42ω2
2sinω2τ2 + f41ω2cosω2τ2 − f40sinω2τ2

B4 = f22ω2
2 − f20 + f42ω2

2cosω2τ2 − f41ω2sinω2τ2 − f40cosω2τ2

C4 = f13ω3
2 − f11ω2 + f33ω3

2cosω2τ2 − f32ω2
2sinω2τ2 − f31ω2cosω2τ2 + f30sinω2τ2

D4 = f12ω2
2 −ω4

2 − f10 + f33ω3
2sinω2τ2 + f32ω3

2cosω2τ2 − f31ω2sinω2τ2 − f30cosω2τ2.

From Equation (19), we can obtain:

cosω2τ1 =
A4C4 − B4D4

A2
4 + B2

4
. (20)
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Similar to Section 3.1, we can get:

ω8
2 + A5ω7

2 + B5ω6
2 + C5ω5

2 + D5ω4
2 + E5ω3

2 + F5ω2
2 + G5ω2 + H5 = 0, (21)

where
A5 = −2 f33sinω2τ2 − 2 f32cosω2τ2,

B5 = f 2
13 + 2 f33 f13cosω2τ2 − 2 f12 + f 2

33 − f 2
23,

C5 = −2 f32 f13sinω2τ2 − f32 f33sin2ω2τ2 + 2 f33 f12sinω2τ2

+ 2 f32 f12cosω2τ2 + 2 f31sinω2τ2 + 2 f42 f23sinω2τ2
,

D5 = −2 f13 f11 − 2 f33 f11cosω2τ2 − 2 f31 f13cosω2τ2 − 2 f31 f33cos2ω2τ2 + f 2
12

+ 2 f10 + f 2
32 − 2 f31sin2ω2τ2 − f31 f32sin2ω2τ2 + 2 f30cosω2τ2 + 2 f21 f23

+ 2 f41 f23cosω2τ2 − f 2
22 − f 2

42 − 2 f42 f22cosω2τ2

,

E5 = − f31 f32sin2ω2τ2 + 2 f32 f11sinω2τ2 + 2 f30 f13sinω2τ2 − 2 f33 f10sinω2τ2

− 2 f32 f10cosω2τ2 − 2 f31 f12sinω2τ2 + 2 f30 f32 − 2 f42 f21sinω2τ2 − 2 f40 f23sinω2τ2
,

F5 = f 2
11 + 2 f31 f11cosω2τ2 − 2 f10 f12 + f 2

31 − 2 f30 f12cosω2τ2 − f 2
21 + 2 f20 f22

+ 2 f42 f20cosω2τ2 − f 2
41 + 2 f41 f22sinω2τ2 + 2 f40 f22cosω2τ2 + 2 f42 f40

,

G5 = f30 f31sin2ω2τ2 − 2 f30 f11sinω2τ2 + 2 f31 f10sinω2τ2 + f30 f31sin2ω2τ2

− 2 f41 f21cosω2τ2 + 2 f40 f21sinω2τ2 − 2 f41 f20sinω2τ2
,

H5 = f 2
10 + f 2

30 + 2 f30 f10cosω2τ2 − f 2
20 − f 2

40 − 2 f40 f20cosω2τ2.

We assume that (H3): Equation (21) has k positive roots, they are ω2i, i = 1, 2, ..., k. The
corresponding delay parameter values are:

τ1i =
1

ω2i
arccos

A4C4 − B4D4

A2
4 + B2

4
+

2jπ
ω2i

(i = 1, 2, ..., k; j = 0, 1, 2, ..., ). (22)

We let
τ10 = min

{
τ1i

(j) |i = 1, 2, ..., k; j = 0, 1, ...,
}

. (23)

When τ1 = τ10, Equation (11) has a pair of purely imaginary roots ±iω20.
Next, taking the derivatives for τ1 in Equation (11), we can get:[

dλ

dτ1

]−1
=

A6eλ(τ1+τ2) + B6eλτ2 + C6eλτ1 + D6

E6eλτ2 + F6
− τ1

λ
,

where
A6 = 4λ3 + 3 f13λ2 + 2 f12λ + f11, B6 = 3 f23λ2 + 2 f22λ + f21,

C6 = −τ2 f33λ3 + (3 f33 − τ2 f32)λ
2 + (2 f32 − τ2 f31)λ + f31 − τ2 f30,

D6 = −τ2 f42λ2 − τ2 f41λ− τ2 f40 + 2 f42 + f41,

E6 = f23λ4 + f22λ3 + f21λ2 + f20λ, F6 = f42λ3 + f41λ2 + f40λ.

Thus

Re
[

dλ(τ10)

dτ1

]−1

λ=iω20

=
Q5Q7 + Q6Q8

Q2
5 + Q2

6
, (24)

Q5 = f23ω4
20cosω20τ2 + f22ω3

20sinω20τ2 − f21ω2
20cosω20τ2 − f20ω20sinω20τ2 − f41ω2

20,

Q6 = f23ω4
20sinω20τ2 − f22ω3

20cosω20τ2 − f21ω2
20sinω20τ2 + f20ω20cosω20τ2 − f42ω3

20 + f40ω20,
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Q7 = 4ω3
20sinω20(τ10 + τ2)− 3 f13ω2

20cosω20(τ10 + τ2)− 2 f12ω20sinω20(τ10 + τ2)

+ f11cosω20(τ10 + τ2)− 3 f23ω2
20cosω20τ2 − 2 f22ω20sinω20τ2 + f21cosω20τ2

− τ2 f33ω3
20sinω20τ10 − (3 f33 − τ2 f32)ω

2
20cosω20τ10 − (2 f32 − τ2 f31)ω20sinω20τ10

+ ( f31 − τ2 f30)cosω20τ10 + τ2 f42ω2
20 − τ2 f40 + 2 f42 + f41

,

Q8 = −4ω3
20cosω20(τ10 + τ2)− 3 f13ω2

20sinω20(τ10 + τ2) + 2 f12ω20cosω20(τ10 + τ2)

+ f11sinω20(τ10 + τ2)− 3 f23ω2
20sinω20τ2 + 2 f22ω20cosω20τ2 + f21sinω20τ2

+ τ2 f33ω3
20cosω20τ10 − (3 f33 − τ2 f32)ω

2
20sinω20τ10 + (2 f32 − τ2 f31)ω20cosω20τ10

+ ( f31 − τ2 f30)sinω20τ10 − τ2 f41ω20

.

If condition (H4): Q5Q7 + Q6Q8 6= 0, then Re
[

dλ(τ10)
dτ1

]−1

λ=iω20
6= 0. According to the Hopf

bifurcation theorem in [19], we have the following results.

Theorem 2. For τ2 ∈ [0, τ20), if the conditions (H3)–(H4) hold, then the equilibrium E∗ of Equation (9) is
asymptotically stable for τ1 ∈ [0, τ10) and unstable when τ1 > τ10. Equation (9) has a Hopf bifurcation at
τ1 = τ10.

4. Numerical Simulation and Analysis

In order to examine the correctness of the theoretical analysis, the numerical simulation and
analysis are carried out in this part. We set a = 2, θ = 0.036, c = 0.1, ν1 = 25, ν2 = 1.3, µ1 = 0.4,
µ2 = 0.6, k = 0.05.The initial values of x1, x2, q1, q2 are 0.1, 0.2, 0.3, and 0.4, respectively. Then
Equation (9) becomes:

.
x1 = 0.05x1 − q1,
.
x2 = 0.05x2 − q2,
.
q1 = (−0.28q1 − 0.42q1(t− τ1)− 0.32x2 + 0.21x1,
.
q2 = (2.6− 0.52q1 − 0.78q1(t− τ1)− 0.78q2 − 0.52q2(t− τ2))

(−0.0084q2 − 0.0056q2(t− τ2)− 0.0064x1 + 0.00427x2);

. (25)

4.1. The Influence of τ2 on the Stability of Equation (25)

For τ1 = 0, from Equations (15)–(18) we can get ω10 = 21.462, τ20 = 2.829, Q1Q3 + Q2Q4 =

132.746 6= 0, so (H1)–(H2) hold. By Theorem 1 we can know that when τ2 ∈ [0, τ20), Equation (25)
is asymptotically local stable; when τ2 > τ20, Equation (25) is unstable. Figures 1–3 show the
above properties.

Figure 1a is a bifurcation diagram about τ2 of Equation (25). It can be seen that as τ2 increases,
the system undergoes bifurcation at τ2 = 2.829. That is to say, the system will lose its steady state,
even descending into chaos. Figure 1b represents the largest Lyapunov exponent with respect to τ2.
A Lyapunov index value less than 0 indicates that the system is stable; a value greater than 0 indicates
that the system is instable, even chaotic; when the value equals 0, the system undergoes bifurcation.
From Figure 1b we can see that the system has bifurcation at τ2 = 2.829. This is consistent with the
conclusions of the theoretical analysis.

Figures 2 and 3 further show the influence of τ2 on the stability of the system. When τ2 is on
both sides of the value of τ20, the stability of the system changes significantly. Figure 2 is stable for
τ2 = 2 < τ20 = 2.829; Figure 3 is unstable as τ2 = 3.5 > τ20 = 2.829.
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Figure 4 that entropy is stable when τ2 < 2.829. The starting point of the rapid increase of entropy is
at τ2 = 2.829. As τ2 increases, the entropy increases gradually. This shows that with a greater τ2, the
system is more chaotic and it will take longer for it to return to stability.Entropy 2016, 18, 317 11 of 19 
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4.2. The Influence of τ1 on the Stability of Equation (25)

When we let τ2 = 1.5 ∈ [0, τ20), from Equations (21)–(24) we can obtain ω20 = 18.492, τ10 = 2.648,
Q1Q3 + Q2Q4 = 81.735 6= 0, so that (H3)–(H4) hold. Using Theorem 2 we find that when τ1 ∈ [0, τ10),
Equation (25) is asymptotically local and stable; as τ1 > τ10, Equation (25) is unstable. Figures 5–7
show the above properties.

The analysis process is similar to case 1. Figure 5 shows the evolution of the system in detail with
the increase of τ1. When τ1 = 2.648, the system undergoes bifurcation. The bigger τ1 is, the more
chaotic the system becomes. Therefore, the enterprise must take reasonable time delay parameters to
ensure the system is in a stable state.

Figures 6 and 7 show that the system has a bifurcation when τ10 = 2.648. It is also the demarcation
point between the stable and unstable conditions of the system.
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Basin of attraction is an effective tool to measure the stability of the system. When the basin area
is larger, the system is more stable. From Figure 8, it is known that with an increase of τ1, the area of
the basin decreases gradually, which means the stable elements in the system are reduced and the
unstable factors are increased.
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Figure 8. The change of basin of attraction with an increase of τ1 for τ2 = 1.5. (a) τ1 = 2.3; (b) τ1 = 2.5;
(c) τ1 = 2.7.

4.3. The Influence of τ1 and τ2 on the Stability of Equation (25)

In this part, we study the effects of τ1 and τ2 on the stability of the system. Let τ1 ∈ [1, 3] and
τ2 ∈ [1, 3]. This ensures that a combination of τ1 and τ2 appears bifurcation in the region of [1, 3]× [1, 3]
plane. From Figure 9 we see that with an increase of τ1 and τ2, the system gradually loses its stability
and enters a chaotic state. When the system is in a state of chaos (the blue region in Figure 10), the
maximum value of q1 is 82.15 for τ1 = 3, τ2 = 3; the minimum value of q1 is−34.93 for τ1 = 2.75, τ2 = 3.
When the system is in a stable state (the green region in Figure 10), the value of q1 is basically stable at
1.284. Therefore, in order to maintain the stability of the system, it is necessary to keep τ1 and τ2 in the
green region of Figure 10.

From Section 4.2, we know that when τ1 = 2.648 and τ2 = 1.5, the system undergoes bifurcation.
It can be seen from Figure 10 that the point (2.648, 1.5) is on the boundary between stability and
instability. This is consistent with the theoretical analysis in Section 4.2.

The analysis is similar to Figure 4. When τ1 and τ2 are in the green region of Figure 10, the entropy
is essentially the same, and the system is in a stable state. As τ1 and τ2 are in the blue region of
Figure 10, the entropy increases sharply, which means that the system is instable and the degree of
chaos is increasing. The above properties are shown in Figure 11.
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4.4. The Influence of τ1, τ2 and µ1 on the Stability of Equation (25)

This part focuses on the influence of τ1, τ2 and µ1 on the stability of q1. It can be seen from
Figure 12 that the changes in τ1 and µ1 have a greater impact on the stability of q1, while τ2 has little
effect on q1. With the increase of τ1, the system becomes unstable, and the system will be changed
from an instable state to a stable state with the increase of µ1. That is, when (τ1, τ2, µ1) is in the green
region of Figure 13, the system is stable; when (τ1, τ2, µ1) is in the blue region of Figure 13, the system
is not stable, and even in a state of chaos. Therefore, when the hydropower enterprises are making
power output decisions, they must ensure the combination of parameter values is in the green area in
Figure 13.
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Only adjusting the control parameter μ  while the other parameters are kept constant to realize 
the control of chaos. Similar to the derivation process in Section 3, the system can obtain bifurcation 
point 0.07909μ =  for 1 3τ = , 2 1.5τ = . From Figure 14, we can see that Equation (26) changes from 
a chaotic state to a steady state as μ  increases. When 0.07909μ = , the system undergoes 
bifurcation. That is to say, when (0,0.07909)μ ∈ , the system is chaotic; when (0.07909,0.2]μ ∈ , the 
system is stable. 

Figure 13. 3D parameter bifurcation in the (τ1, τ2, µ1) plane, where different colors represent different
regions of q1: stability region (green) and chaotic region (blue). For interpretation of the references to
color in this figure, the reader is referred to the web version of this article.

5. Chaos Control

Through the previous analysis, we know that if the parameter values are not reasonable, the
system will be instable, even chaotic. A system in a state of chaos will lead to market fluctuations.
Therefore, some measures must be taken to maintain the stability of the system. The instable system
can be controlled to restore it to a stable state.
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From the analysis in Section 4.2, we know that when τ1 = 3, τ2 = 1.5, the system is chaotic; the
effect is shown in Figure 7. From Figure 10 of Section 4.3, τ1 = 3, τ2 = 1.5 is in the blue region; it can
be clearly seen that the system is chaotic. We consider the following control system using the delayed
feedback control method:

.
x1 = 0.05x1 − q1,
.
x2 = 0.05x2 − q2,
.
q1 = (−0.28q1 − 0.42q1(t− τ1)− 0.32x2 + 0.21x1,
.
q2 = (2.6− 0.52q1 − 0.78q1(t− τ1)− 0.78q2 − 0.52q2(t− τ2))

(−0.0084q2 − 0.0056q2(t− τ2)− 0.0064x1 + 0.00427x2)− µ(q2 − q2(t− τ2)).

. (26)

Only adjusting the control parameter µ while the other parameters are kept constant to realize the
control of chaos. Similar to the derivation process in Section 3, the system can obtain bifurcation point
µ = 0.07909 for τ1 = 3, τ2 = 1.5. From Figure 14, we can see that Equation (26) changes from a chaotic
state to a steady state as µ increases. When µ = 0.07909, the system undergoes bifurcation. That is to
say, when µ ∈ (0, 0.07909), the system is chaotic; when µ ∈ (0.07909, 0.2], the system is stable.Entropy 2016, 18, 317 17 of 19 
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In order to verify the correctness of the above analysis, set 0.03 0.07909μ = < ; according to the 
analysis, the system should be chaotic at this time. Figure 15 proves the correctness of the conclusion. 
When we let 0.15 0.07909μ = > , it can be seen that the system is stable at this time in Figure 16; that 
is, the chaotic system has been effectively controlled. 
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Figure 15. Equation (26) is instable when 0.03 0.07909μ = <  for 1 23, 1.5τ τ= = . (a) Time series 

plot; (b) attractor. 
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Figure 16. Equation (26) is stable when 0.15 0.07909μ = >  for 1 23, 1.5τ τ= = . (a) Time series plot; 

(b) attractor. 

Figure 14. The influence of µ on the stability of Equation (26). (a) Bifurcation diagram; (b) the Largest
Lyapunov exponent.

In order to verify the correctness of the above analysis, set µ = 0.03 < 0.07909; according to the
analysis, the system should be chaotic at this time. Figure 15 proves the correctness of the conclusion.
When we let µ = 0.15 > 0.07909, it can be seen that the system is stable at this time in Figure 16; that is,
the chaotic system has been effectively controlled.
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6. Conclusions

A game model of the duopoly with two delays in the hydropower market is established.
The influence of time delay parameters on the stability of the game model is studied. Firstly, the
existence and stability of Hopf bifurcation are studied, and the conditions of bifurcation are given.
The analysis is carried out in two aspects: τ1 = 0, τ2 > 0 and τ1 > 0, τ2 > 0. Secondly, the numerical
simulation and analysis are carried out on the theoretical derivation. The specific analysis is developed
from four aspects: the influence of τ2 on the stability of the system for τ1 = 0 simulated by using time
series, attractor, bifurcation diagram, Lyapunov exponent, and entropic; τ2 fixed, the influence of τ1 on
the stability of the system discussed by using time series and basin of attraction; the influence of τ1

and τ2 on the stability of the system displayed by 3D surface chart, 2D parameter bifurcation diagram,
and 3D entropic diagram; the influence of τ1, τ2, and µ1 on the stability of the system simulated
through a 4D cubic chart and 3D parameter bifurcation diagram. The stability regions of the system
are given for each aspect of the specific analysis. The conclusions of the above analysis can provide
decision-making guidelines for enterprises to maintain market stability. Finally, the chaotic system is
controlled effectively by the method of delayed feedback control, which can efficiently return a chaotic
system to a stable state. For future study, we can consider the influence of more factors on the stability
of the system, so that it is closer to reality.
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