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Abstract: We show that for a finite von Neumann algebra, the states that maximise Segal’s entropy
with a given energy level are Gibbs states. This is a counterpart of the classical result for the algebra
of all bounded linear operators on a Hilbert space and von Neumann entropy.
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1. Introduction

Let B(H) be the algebra of all bounded linear operators on a Hilbert space H, and let tr be the
canonical trace on B(H). For a state ρ on B(H) represented by a density matrix D, its von Neumann
entropy is defined by

S(ρ) = − tr D log D.

Now, let H be the Hamiltonian of a physical system whose (bounded) observables are represented
by B(H). The expected value of the energy in the state ρ is given by

ρ(H) = tr DH.

Let E, belonging to the spectrum of H, be a fixed energy level. We are interested in the states for
which the expected value of the energy equals E; i.e., in the states ρ such that ρ(H) = E. The classical
result says that the maximal value of the entropy for such states is attained for a so-called Gibbs state;
that is, a state with the density matrix eβH

tr eβH for some β ∈ R. In this note, we aim to show a similar
result in the situation where B(H) is replaced by a finite von Neumann algebra, and the von Neumann
entropy is replaced by Segal’s entropy.

2. Preliminaries and Notation

Let M be a finite von Neumann algebra with a normal finite faithful trace τ, identity 1, and predual
M∗. As usual, we assume that τ is normalised (i.e., τ(1) = 1), so τ is itself a normal faithful state.
By M+, we shall denote the set of positive operators in M, and by S, the set of normal states of M
(i.e., S = {0 6 ρ ∈M∗ : ρ(1) = 1}). For x ∈M, the spectrum of x will be denoted by sp x.

The trace τ can be extended to the space L1(M, τ) consisting of densely defined closed operators
affiliated with M such that for each z ∈ L1(M, τ), τ(z) is finite; in particular, M ⊂ L1(M, τ).

Let N be a von Neumann subalgebra of M. There exists a normal faithful conditional expectation
E : M → N such that τ ◦ E = τ. This expectation can be extended to a map from L1(M, τ) onto
L1(N, τ|N), denoted by the same symbol, which retains the basic properties of the original conditional
expectation; in particular,

τ(Ez) = τ(z), z ∈ L1(M, τ),
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and
E(zx) = zEx, x ∈M, z ∈ L1(N, τ|N).

For each 0 6 ρ ∈M∗, there is a selfadjoint positive operator hρ ∈ L1(M, τ) such that

ρ(x) = τ(xhρ) = τ(hρx), x ∈M.

By analogy with the case B(H), the hρ as above will be called the density matrix of ρ.
The Segal entropy of ρ—denoted by S(ρ)—is defined as

S(ρ) = −τ(hρ log hρ),

where hρ is the density matrix of ρ; i.e., for the spectral representation of hρ

hρ =
∫ ∞

0
λ e(dλ),

we have
S(ρ) = −

∫ ∞

0
λ log λ τ(e(dλ)).

Let us note that Segal’s entropy is well-defined (though it may be minus infinity) and nonpositive
for the states, since, on account of the inequality

−λ log λ 6 1− λ,

we have

S(ρ) = −
∫ ∞

0
λ log λ τ(e(dλ)) 6

∫ ∞

0
(1− λ) τ(e(dλ))

= τ
( ∫ ∞

0
e(dλ)

)
− τ

( ∫ ∞

0
λ e(dλ)

)
= τ(1− hρ) = 1− ρ(1),

and the right-hand side of the inequality above is always finite, and equals zero for ρ being a state.
The Segal entropy in connection with quantum measurement theory was employed in [1], where

it was shown that a weakly repeatable measurement is a maximal state entropy one, and that under
some natural conditions, the converse is true, even in a slightly stronger form; i.e., a maximal state
entropy measurement satisfying these conditions is repeatable (The reader should be warned that the
definition of Segal’s entropy adopted in [1] differs from ours by a minus sign, so the conclusions there
are about minimal entropy instead of maximal). So far, Segal’s entropy has not found many other
applications in physics or information theory, and we hope that this paper may arouse some interest
among physicists or information theorists for this notion.

Some further properties of Segal’s entropy were investigated in [2–8].

3. Maximum Segal’s Entropy States

The function introduced below plays a crucial role in our further considerations.

Lemma 1. Let h be a selfadjoint element in M which is not a multiple of the identity, and let f be defined as

f (t) =
τ(heth)

τ(eth)
, t ∈ R.

The function f is strictly increasing.
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Proof. We have

f ′(t) =
τ
(

h2eth
)

τ
(

eth
)
−
[
τ
(

heth
)]2

[
τ
(
eth
)]2 .

Define on M a scalar product 〈·|·〉 by the formula

〈x|y〉 = τ (x∗y) , x, y ∈M.

For x = heth/2 and y = eth/2, we obtain by the Schwarz inequality[
τ
(

heth
)]2

= |〈x|y〉|2 6 〈x∗|x〉〈y∗|y〉 = τ
(
h2eth)τ(eth).

Hence, f ′(t) > 0 for all t ∈ R with the equality if and only if heth/2 = λeth/2 for some λ

which contradicts the assumption. Thus, f ′(t) > 0 for all t ∈ R, and we arrive at the conclusion of
the lemma.

In what follows, we fix an arbitrary Hamiltonian h (i.e., h is a selfadjoint element of M) and put

λm = min{λ : λ ∈ sp h}, λM = max{λ : λ ∈ sp h}.

For each t ∈ R, we define the Gibbs states ρt as the states with density matrices ht =
eth

τ(eth)
. Let us

begin with the following simple observation.

Lemma 2. The following inclusion holds

{ρ(h) : ρ ∈ S} ⊂ [λm, λM].

Moreover, if for some Gibbs state ρβ we have ρβ(h) = λm or ρβ(h) = λM, then, respectively, h = λm1 or
h = λM1.

Proof. We have
λm1 6 h 6 λM1,

consequently, for each ρ ∈ S we get—applying ρ to the elements of the inequality above—

λm 6 ρ(h) 6 λM,

which shows the inclusion.
Furthermore, assume for example that for some β ∈ R, we have ρβ(h) = λM. Then,

0 = ρβ(λM1− h) = τ(hβ(λM1− h)) = τ
(
h1/2

β (λM1− h)h1/2
β

)
,

and since
h1/2

β (λM1− h)h1/2
β > 0,

and τ is faithful, we obtain
h1/2

β (λM1− h)h1/2
β = 0,

which yields h = λM1. In the same way, we show that h = λm1 if ρβ(h) = λm1.

The result above shows that for the Gibbs states we cannot have ρt(h) = λm or ρt(h) = λM unless
h is a multiple of the identity. However, the values between λm and λM can be attained as shown in
the following proposition.
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Proposition 1. Let E ∈ (λm, λM). Then, there is a unique β ∈ R such that for the Gibbs state ρβ, we have
ρβ(h) = E.

Proof. Let f be the function as in Lemma 1; in particular, we have

f (t) = ρt(h).

Take an arbitrary α ∈ (λm, λM), and observe that

f (t) =
τ(heth)

τ(eth)
=

τ(het(h−α1))

τ(et(h−α1))
, t ∈ R.

Let

h =
∫ λM

λm
λ e(dλ)

be the spectral representation of h. We have

f (t) =

∫
[λm ,α) λet(λ−α) τ(e(dλ)) +

∫
[α,λM ] λet(λ−α) τ(e(dλ))∫

[λm ,α) et(λ−α) τ(e(dλ)) +
∫
[α,λM ] et(λ−α) τ(e(dλ))

>

∫
[λm ,α) λet(λ−α) τ(e(dλ)) + α

∫
[α,λM ] et(λ−α) τ(e(dλ))∫

[λm ,α) et(λ−α) τ(e(dλ)) +
∫
[α,λM ] et(λ−α) τ(e(dλ))

.

(1)

Since λ− α < 0 for λ ∈ [λm, α), we obtain for such λ

lim
t→∞

et(λ−α) = 0,

and the Lebesgue Dominated Convergence Theorem yields

lim
t→∞

∫
[λm ,α)

λet(λ−α) τ(e(dλ)) = lim
t→∞

∫
[λm ,α)

et(λ−α) τ(e(dλ)) = 0.

To estimate the remaining integral, take an arbitrary fixed γ ∈ (α, λM) to obtain∫
[α,λM ]

et(λ−α) τ(e(dλ)) >
∫
[γ,λM ]

et(λ−α) τ(e(dλ))

>
∫
[γ,λM ]

et(γ−α) τ(e(dλ)) = et(γ−α)τ(e([γ, λM])).

Since e([γ, λM]) 6= 0 and γ− α > 0, we get

lim
t→∞

et(γ−α)τ(e([γ, λM])) = +∞,

consequently,

lim
t→∞

∫
[α,λM ]

et(λ−α) τ(e(dλ)) = +∞.

The estimates obtained yield (after passing to the limit in Formula (1)),

lim
t→∞

f (t) > α,

and since α was arbitrary in (λm, λM), it follows that

lim
t→∞

f (t) > λM.
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On the other hand, since f (t) = ρt(h), Lemma 2 yields the inequality λm 6 f (t) 6 λM; hence,

lim
t→∞

f (t) = λM.

An analogous reasoning leads first to the inequality

lim
t→−∞

f (t) 6 λm,

and hence
lim

t→−∞
f (t) = λm.

Now, since f is continuous and increasing, the Darboux property yields that for each E ∈ (λm, λM)

there is a unique β ∈ R such that
E = f (β) = ρβ(h).

Now we are in a position to prove the main result of the paper.

Theorem 1. Let h be a Hamiltonian in M, and let E ∈ (λm, λM) be arbitrary, where λm and λM are as before.
Then, there exists a unique β ∈ R such that

sup{S(ρ) : ρ ∈ S, ρ(h) = E} = S(ρβ);

that is, the maximal value of Segal’s entropy for the states in which the energy level is fixed is attained for a
Gibbs state. Moreover, this Gibbs state is the only one for which the maximal value of entropy is attained.

Proof. Let β ∈ R be such that for the Gibbs state ρβ

ρβ(h) = E;

according to Proposition 1, the β as above exists and is unique. For hβ being the density matrix of ρβ,
we have

log hβ = βh− log τ
(
eβh)

1.

Let ρ ∈ S, with the density matrix hρ, be such that ρ(h) = E. We have

τ(hρ log hβ) = τ
(
hρ

(
βh− log τ

(
eβh)

1
))

= βτ(hρh)− τ
(

log τ
(
eβh)hρ

)
= βρ(h)− log τ

(
eβh)τ(hρ) = βE− log τ

(
eβh).

On the other hand,

S(ρβ) = −τ(hβ log hβ) = −τ
(
hβ

(
βh− log τ

(
eβh)

1
))

= −βτ(hβh) + log τ
(
eβh)τ(hβ)

= −βρβ(h) + log τ
(
eβh) = −βE + log τ

(
eβh),

and thus
S(ρβ) = −τ(hρ log hβ). (2)

Now the basic inequality
τ(a(log a− log b)) > 0 (3)
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obtained in ([7], Theorem 1) for density matrices a and b of states ρa and ρb, respectively, with finite
entropy, yields that for all ρ with finite entropy, we have

S(ρ) = −τ(hρ log hρ) 6 −τ(hρ log hβ) = S(ρβ),

and since ρ was arbitrary, the claim follows.
Now assume that for some state ρ with density matrix hρ such that ρ(h) = E, we have

S(ρ) = S(ρβ).

On account of Equality (2), this yields

τ(hρ log hρ) = τ(hρ log hβ). (4)

Let A be the von Neumann algebra generated by hρ (more precisely, A is the (abelian) algebra
generated by the spectral projections of hρ), and let E be a faithful normal conditional expectation from
M onto A such that τ ◦E = τ. The operator hρ log hβ—as a product of an operator from L1(M, τ) and
an operator from M—is in L1(M, τ), so we may apply conditional expectation E to it, obtaining

τ(hρ log hρ) = τ(E(hρ log hβ)) = τ(hρE(log hβ)). (5)

The function (0,+∞) 3 t 7→ log t is operator concave; hence, from Jensen’s inequality, we obtain
(keeping in mind that hβ is bounded)

E(log hβ) 6 logEhβ,

consequently,
h1/2

ρ E(log hβ)h1/2
ρ 6 h1/2

ρ (logEhβ)h1/2
ρ ,

which yields the inequality

τ(hρE(log hβ)) = τ(h1/2
ρ E(log hβ)h1/2

ρ )

6 τ(h1/2
ρ (logEhβ)h1/2

ρ ) = τ(hρ logEhβ).
(6)

Relations (5) and (6) now yield

τ(hρ log hρ) 6 τ(hρ logEhβ);

i.e.,
τ(hρ(log hρ − logEhβ)) 6 0.

Since Ehβ is a density matrix, we get (by virtue of Inequality 3),

τ(hρ(log hρ − logEhβ)) = 0.

Now Ehβ (and consequently, logEhβ) are in A, so logEhβ commutes with hρ, and from the
equality above we infer—taking into account ([7], Theorem 2)—that

hρ = Ehβ,

in particular, hρ is bounded.
Now let B be the (abelian) von Neumann algebra generated by the Hamiltonian h (in particular,

we have hβ ∈ B and log hβ ∈ B), and let F be a normal faithful conditional expectation from M onto B
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such that τ ◦ F = τ. The function [0,+∞) 3 t 7→ t log t is operator convex, so from Jensen’s inequality
we obtain

Fhρ(logFhρ) 6 F(hρ log hρ).

By virtue of Inequality (3) and the fact that Fhρ is a density matrix, from Equality (4) we get

τ(Fhρ(log hβ)) = τ(F(hρ log hβ)) = τ(hρ log hβ) = τ(hρ log hρ)

=τ(F(hρ log hρ)) > τ(Fhρ(logFhρ)) > τ(Fhρ(log hβ)).

Thus, we have
τ(Fhρ(log hβ)) = τ(Fhρ(logFhρ)) = τ(F(hρ log hρ)). (7)

Since
F(hρ log hρ)− Fhρ(logFhρ) > 0,

and
τ(F(hρ log hρ)− Fhρ(logFhρ)) = 0,

the faithfulness of τ yields
F(hρ log hρ) = Fhρ(logFhρ).

From ([3], Appendix B.5), it follows that

hρ = Fhρ;

i.e., Equality (7) becomes
τ(hρ log hβ) = τ(hρ log hρ),

or
τ(hρ(log hρ − log hβ)) = 0. (8)

Now, since hρ = Fhρ ∈ B, it follows that hρ and hβ commute, and from Equality (8) we
obtain—referring once more to ([7], Theorem 2)—that

hρ = hβ,

which ends the proof.

Remark 1. It should be noted that the equality

τ(hρ(log hρ − log hβ)) = 0 (9)

means that
S(ρ, ρβ) = 0,

where S(ρ, ρβ) is the relative entropy of the states ρ, ρβ. This relative entropy is defined in ([4],Chapter 5) by
means of the relative modular operator, but it can be shown that for finite von Neumann algebras with a normal
faithful finite trace τ, we have

S(ρ, ρβ) = τ(hρ(log hρ − log hβ)).

Now, referring to ([4], Corollary 5.6) gives the equality

ρ = ρβ.
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In our approach, we have chosen a simpler and more straightforward way without reference to any advanced
theory of von Neumann algebras; in particular, to a rather sophisticated definition of the relative entropy based
on the notion of the relative modular operator.

4. Conclusions

We have shown that for an arbitrary finite von Neumann algebra M with a normal finite trace τ,
a state that maximises Segal’s entropy with a given energy level is a unique Gibbs state, i.e., a state ρβ

defined for β ∈ R by the formula

ρβ(x) = τ

(
x

eβh

τ
(
eβh
)), x ∈M,

with some fixed selfadjoint h ∈ M. This result is analogous to the classical one concerning von
Neumann’s entropy defined by means of the canonical trace on the full algebra B(H). Since the
definition of Segal’s entropy applied to the full algebra and the canonical trace leads to von Neumann’s
entropy, it would be interesting to obtain such a result for Segal’s entropy in the case of semifinite
von Neumann algebras. Another interesting question would be extending Segal’s definition to the
states with their density matrices not necessarily in the algebra, and proving the maximisation condition
in this case. However, in both the cases a serious difficulty arises, namely, an appropriate definition
of Gibbs state is not clear due to the fact that the operator eβh need not be of trace class. Overcoming
these difficulties seems to be an interesting challenge.
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