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Abstract: The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
has been used to propose a new method for filtering time series originating from nonlinear systems.
The filtering method is based on fuzzy entropy and a new waveform. A new waveform is defined
wherein Intrinsic Mode Functions (IMFs)—which are obtained by CEEMDAN algorithm—are firstly
sorted in ascending order (the sorted IMFs is symmetric about center point, because at any point,
the mean value of the envelope line defined by the local maxima and the local minima is zero),
and the energy of the sorted IMFs are calculated, respectively. Finally, the new waveform with axial
symmetry can be obtained. The complexity of the new waveform can be quantified by fuzzy entropy.
The relevant modes (noisy signal modes and useful signal modes) can be identified by the difference
between the fuzzy entropy of the new waveform and the next adjacent new waveform. To evaluate
the filter performance, CEEMDAN and sample entropy, Ensemble Empirical Mode Decomposition
(EEMD) and fuzzy entropy, and EEMD and sample entropy were used to filter the synthesizing
signals with various levels of input signal-to-noise ratio (SNRin). In particular, this approach is
successful in filtering impact signal. The results of the filtering are evaluated by a de-trended
fluctuation analysis (DFA) algorithm, revised mean square error (RMSE), and revised signal-to-noise
ratio (RSNR), respectively. The filtering results of simulated and impact signal show that the filtering
method based on CEEMDAN and fuzzy entropy outperforms other signal filtering methods.
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1. Introduction

Understanding the real-time characterization of impact events in mechanical systems is important
for health monitoring and reliability analysis [1,2]. The instrumented falling weight impact (IFWI)
technique really started to develop with the progress of electronic boards able to record short time
events [3,4]. At present, experimental research for impact tests mainly focuses on the vertical falling
weight impact [5,6]. However, there are few studies on the oblique impact test. To simulate these
events and estimate the real-time characterization of impact events, an experimental rig was designed
to measure the real-time signal under different pendulum angle conditions during the impact test.

However, the measured signal often contains noise when the experiment is conducted. The noise
behaves as unwanted frequencies and amplitude oscillations. These oscillations corrupt the signal
information. Thus, it is very much necessary to develop a method to extract signal information
from the noisy signal. At present, there are many filtering methods that fall mainly into two classes:
one is a linear filter and the other a non-linear filter. Linear filters such as an average filter [7] and
a Winer filter [8] are suitable to filter signal from a stationary system. However, when the signal
comes from a non-linear and non-stationary system, a non-linear filter works best for filtering out
noise—the wavelet filter is widely used [9]. The signal is split into low and high frequency coefficients
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in the wavelet filter. The filtered signal can be obtained by soft or hard threshold mechanisms [10].
However, the wavelet basis function has to be pre-defined, and this method is not adaptive in essence.

Empirical Mode Decomposition (EMD) was introduced by Huang [11]. This algorithm is
an alternative method for analyzing data from non-stationary and non-linear systems, and behaves
as the filter bank [12]. The signal can be adaptively decomposed into a set of Intrinsic Mode
Functions (IMFs) by EMD. The IMFs carry the detailed information of the signal. For noisy signals,
the EMD can decompose the noisy signal into noisy signal modes and useful signal (noise-less)
modes. The main task based on EMD filtering is to identify the two class modes (noisy and useful
signal modes). Recently, Albert et al. [13] and Peng [14] used a correlation-based threshold to
identify the relevant modes (noisy signal modes and useful signal modes). However, the strong
correlation between the noisy signal and the first mode make it difficult to identify the relevant mode.
Boudraa [15] proposed the consecutive mean squared error (CMSE) to find the relevant modes by
setting an appropriate threshold method, but the method can be trapped in a local minima in some
situations. To void the case, Boudraa [16] introduced a new method to select the relevant mode by
the striking similarity between the probability density function (pdf) of the input signal and each IMF.
However, this method performs poorly for the filtering signals containing fractional Gaussian noise
when the Hurst parameter is close to unity [17]. There are also some filtering algorithms based on
EMD [18–20]. However, mode mixing—in which oscillations of different amplitudes are found in
a mode, or similar oscillations are encountered in different modes—often occurs in EMD decomposition.
This phenomenon prevents the complete extraction of the signal information. To overcome this
disadvantage, Wu and Huang [21] introduced the Ensemble Empirical Mode Decomposition (EEMD),
which is a method based on the EMD algorithm. The method follows a study of the statistical
characteristic of white noise, and adds white noise of a uniform frequency distribution into EMD to
avoid mode mixing. However, if the mean square error (MSE) of the added white noise is large, this will
lead to a decrease in the signal-to-noise ratio (SNR) and influence the accuracy of the decomposed
result. Even if the ensemble size is increased, the decomposed effect cannot improve dramatically,
and the computation time is also increased. If the MSE of the added white noise is small, it will decrease
the accuracy of the decomposed result, and it is inevitable to bring mode mixing in the low frequency
part of IMF obtained by EEMD decomposition. So, EEMD does not completely solve the mode mixing
problem. At present, some EEMD-based filtering methods are developed [22,23]. However, the EEMD
algorithm introduces new problems. The added white noise is not eliminated fully, and the additional
modes may have been produced because of the interaction between original signal and white noise.
To resolve these problems, the complete EEMD with adaptive noise (CEEMDAN) was introduced [24].
This method can overcome additional modes, and eliminates the added white noise. At present,
the CEEMDAN has been applied in the analysis of laser speckle [25] and short-term wind speed
forecasting [26]. However, its use in signal filtering can be found in a few references [27,28].

In this paper, a new filtering method is proposed. First, the original signal is decomposed by
CEEMDAN to obtain IMFs. The axial symmetry waveform (new waveform) can be obtained by
sorting IMFs and subsequent calculation of the energy of sorted IMFs. Through calculation the fuzzy
entropy of the new waveform, the relevant modes (noisy modes and useful signal modes) can be
identified. The criterion of the selected mode is the maximum of the difference between adjacent
fuzzy entropies. The simulated signal and measured impact signal are used to filter by the proposed
filtering method. For simulated signals with different noise levels, filtering with CEEMDAN and
sample entropy, EEMD and fuzzy entropy, and EEMD and sample entropy are compared to evaluate
the signal filtering performance. For the measured signal, CEEMDAN and fuzzy entropy, wavelet filter,
moving averaging filter, and median filter are used to filter, respectively. The filter performance
can be evaluated by de-trended fluctuation analysis (DFA) algorithm, revised mean squared error
(RMSE), and revised signal-to-noise ratio (RSNR). The filtering result of simulated and measured
signals show that the filtering method based on CEEMDAN and fuzzy entropy outperforms the other
filtering methods.
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2. Related Works

2.1. Improved Empirical Mode Decomposition

Since the empirical mode decomposition (EMD) [11] was proposed by Huang, this algorithm
has been successfully applied to filter signals. However, mode mixing occurs in the process of EMD
decomposition. To overcome this problem, the EEMD [21] was introduced by adding white noise into
the signal. However, the algorithm brings a new drawback. The added noise cannot be eliminated
fully, and may produce additional spurious modes. To overcome this drawback, the CEEMDAN
algorithm [24] is proposed to resolve the residual white noise and the mode mixing problem.
The following is the decomposed steps of the CEEMDAN algorithm:

(1) Decompose signal x(t) + w0εi(t) to obtain the first mode by using EMD algorithm.

c1(t) =
1
N

N

∑
i=1

ci
1(t)i ∈ {1, . . . , N} (1)

where w0 is the ratio of the standard deviation of the added white noise, εi(t) is the white noise
with unit variance under condition of the i-th ensemble number, N is the total ensemble number,
and ci

1(t) is the first mode obtained EMD decomposition under the condition of i-th signal:
x(t) + w0εi(t).

(2) Compute the difference signal
r1(t) = x(t)− c1(t) (2)

(3) Decompose r1(t) + w1E1
(
εi(t)

)
to obtain the first mode and define the second mode by

c2(t) =
1
N

N

∑
i=1

E1

(
r1(t) + w1E1

(
εi(t)

))
(3)

Here, E1 and εi(t) stand for a function to extract the first IMF decomposed by EMD and the white
noise with unit variance, respectively.

(4) For k = 2, . . . , K, calculate the k-th residue and obtain the first mode. Define the (k + 1)-th mode
as follows:

ck+1(t) =
1
N

N

∑
i=1

E1

(
rk(t) + wkEk

(
εi(t)

))
(4)

where Ek(·) is a function to extract the k-th IMF decomposed by EMD.
(5) Repeat step (4) until the residue contains no more than two extremes. The residual mode is then

defined as:

R(t) = x(t)−
K

∑
k=1

ck(t) (5)

Therefore, the signal x(t) can be expressed as follows:

x(t) =
K

∑
k=1

ck(t) + R(t) (6)

2.2. Fuzzy Entropy

In 1948, Shannon introduced entropy into information theory and proposed the concept of
information entropy to measure the uncertainty of an event. Afterwards, the concept of entropy
was generalized. The approximate entropy (ApEn) [29], sample entropy (SampEn) [30], and fuzzy
entropy [31] have been gradually proposed. ApEn and SampEn have the characteristics of needing
shorter data, anti-noise, and being resistant to interference compared to Shannon entropy. The similarity
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of two vectors is defined by step function, which has the property of a two-state classifier. If the input
sample meets certain conditions, the sample belongs to some class; otherwise, it belongs to another class.
However, the noise signal can be decomposed into noisy modes and noise-less modes by CEEMDAN
algorithm. The main task is to identify the demarcation point between noisy mode and noise-less mode.
However, the demarcation point is fuzzy and sometimes difficult to identify by Shannon entropy,
approximate entropy, and sample entropy. Afterwards, fuzzy entropy—defined by using a fuzzy
function—is introduced to distinguish the demarcation fuzziness. The fuzzy entropy is introduced to
identify fuzziness between the noisy mode and noise-less mode. The fuzzy entropy algorithm was
introduced by Chen et al. [31], in which fuzzy sets were introduced to improve the statistical stability.
The detailed description for the fuzzy entropy is as follows:

(1) Given a time sequence {x(i) : 1 ≤ i ≤ N} (N is the sample size) to form a sequence segment by
choosing m consecutive values in time sequence x(i)

Xm
i = {x(i), x(i + 1), . . . , x(i + m− 1)} − x0(i) (i = 1, 2, . . . , N −m) (7)

The vector Xm
i represents m consecutive x(i) values but removing the baseline x0(i).

The x0(i) expression is shown as follows:

x0(i) =
1
m

m−1

∑
j=0

x(i + j) (i = 1, 2, . . . , N −m) (8)

(2) The distance d
[

Xm
i , Xm

j

]
between the vector Xm

i and Xm
j is defined

dm
ij = d

[
Xm

i , Xm
j

]
= max

k∈(0,m−1)
{|(x(i + k)− x0(i))− (x(j + k)− x0(j))|} (9)

Here, i, j = 1, 2, . . . , N −m, i 6= j.

(3) The similarity degree Dm
ij between Xm

i and Xm
j is expressed by the fuzzy function µ

(
dm

ij , n, r
)

.
The expression of similarity Dm

ij is as follows:

Dm
ij = µ

(
dm

ij , n, r
)
= e−(d

m
ij /r)n

(10)

(4) Definition function

φm(n, r) =
1

N −m

N−m

∑
i=1


1

N −m

N−m

∑
j = 1
j 6= i

Dm
ij

 (11)

(5) For m + 1 dimension function, repeat steps (1) to (4), and obtain φm+1(n, r)

φm+1(n, r) =
1

N −m

N−m

∑
i=1


1

N −m

N−m

∑
j = 1
j 6= i

Dm+1
ij

 (12)
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(6) The fuzzy entropy is defined by:

FuzzyEn(m, n, r) = ln φm(n, r)− ln φm+1(n, r) (13)

Here, m is the embedding dimension, n is the similarity weight, r is the tolerance threshold,
and N is the segment length.

3. Filtering Method

3.1. Identifying the Relevant Mode

The noisy signal x(t) is decomposed into noisy modes and useful signal (noise-less modes) modes,
as follows:

x(t) =
k−1

∑
i=1

IMFi +
K

∑
i=k

IMFi (14)

Here, the noisy modes are the first (k − 1) modes, and the remaining are the useful signal modes
(except residue). The main task is to identify the k index of this mode to filter signal. Through the further
analysis to satisfy the conditions for obtaining IMFs (at any point, the mean value of the envelope
line defined by the local maxima and the local minima is zero), it assumes that the symmetric
waveform about the center point can be obtained by sorting the IMFs. To identify the relevant
modes (noisy modes and useful signal modes) more effectively, the energy of the sorted IMFs are
calculated to obtain the axis symmetric waveform. The obtained waveform is defined as the new
waveform. For the convenience of calculation, the new waveform is normalized (the normalized new
waveform is abbreviated to NNW). The complexity of the normalized new waveform is measured
by fuzzy entropy [31]. Through the experiment, it is found that the fuzzy entropy of the NNWs of
the noisy modes is around a certain value, and that of useful signal modes is around another certain
value. When the difference is done for adjacent fuzzy entropies, and the absolute value is done for
the difference, it shows that the difference of adjacent fuzzy entropy for the NNW of noisy modes or
useful signal modes is a small change, and that the difference of noisy mode or useful signal mode is
larger, and is the maximum among the difference of absolute value. Thus, the index k of mode can be
found by this method. After finding the index k of the relevant mode, the first (k − 1) modes are forced
to be zero (hard threshold value), and the remaining modes are summed to obtain the filtered signal.
The filtering steps are as follows:

(1) The noisy signal x(t) is decomposed to obtain IMFi (i = 1, . . . , N) by EMD or the improved version.
(2) Each IMF is sorted in ascending order, and the energy of the sorted data is calculated and then

normalized to obtain a new waveform (the normalized new waveform is defined as NNW).
(3) The complexity of each NNWi (except residue) is calculated by fuzzy entropy, and the value of

fuzzy entropy is marked as Ei (i = 1, . . . , M − 1). Here, M is the number of modes by EMD or
the improved version.

(4) The difference of adjacent Ei is obtained, and the absolute value of the difference is calculated.

Dj =
∣∣Ej − Ej+1

∣∣(j = 1, 2, . . . , M− 2) (15)

(5) The relevant mode is identified.
r = argmax

(
Dj
)
+ 1 (16)

(6) The filtered signal is obtained.

x̃(t) =
M

∑
m=r

IMFm(t) (17)
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3.2. Application

Now, the original signal is filtered using the proposed filtering method. Signal x(t) comprises
two periodic signals of differing frequencies (one frequency f1 is 3 Hz, and the other f2 is 6 Hz,).

x(t) = cos(2π f1t) + sin(2π f2t) (18)

Here, the input signal-to-noise ratio (SNRin) is 3 dB, and the length of data is 1024. The signal x(t)
is decomposed into nine modes by CEEMDAN (the ratio of the standard deviation of added white
noise is 0.15, and ensemble number is 80). If the signal x(t) is known, the seventh and eighth modes
are the useful signal mode, and the other are the noisy modes (except residue). The filtered signal is
the sum of last three modes (the seventh, eighth, and ninth modes).

Now, the proposed filtering method is used to filter noisy signal. To evaluate the proposed filtering
method, it is tested fifty times to prove the filtering effect statistically. For each filtering, the IMFs
are first sorted by ascending order, then the energy of the sorted IMFs are calculated and normalized.
Figure 1 shows the IMFs obtained by CEEMDAN, Figure 2 shows the sorted IMFs in ascending
order (from the Figure 2, it is found that the sorted IMFs (SIMFs) are symmetrical about the center
point), and Figure 3 shows each NNW (except residue) (Figures 1–3 are IMFs, SIMFs, and the NNW
obtained by the first test respectively). From Figure 3, it can be seen that the first six NNWs are
the waveform corresponding to noisy modes, and the last two NNWs are the waveform corresponding
to useful signal modes (noise-less modes). The situation of the remaining 49 tests are similar to the first.
The averaged fuzzy entropy of each NNW is in Table 1 for the fifty-run statistical test. The averaged
fuzzy entropy of the first six modes is approximately 0.04, and that of last two modes are around 0.02.
The absolute value of the difference of adjacent fuzzy entropy is shown in Figure 4. The absolute value
of the difference of the sixth and seventh NNW is larger than the others in Figure 4. This illustrates
that starting with the seventh IMF is the useful mode. The filtered signal is shown in Figure 5b.
This shows that the noisy signal modes and useful signal modes can be effectively identified by
the proposed method.

Entropy 2017, 19, 13 6 of 13 

 

( )r argmax 1jD= +  (16) 

(6) The filtered signal is obtained. 

( ) ( )
M

m
m r

x t IMF t
=

=  (17) 

3.2. Application 

Now, the original signal is filtered using the proposed filtering method. Signal x(t) comprises 
two periodic signals of differing frequencies (one frequency 	  is 3 Hz, and the other 	 is 6 Hz,). 

( ) ( ) ( )1 22 2x t cos f t sin f tπ π= +  (18) 

Here, the input signal-to-noise ratio (SNRin) is 3 dB, and the length of data is 1024. The signal  is 
decomposed into nine modes by CEEMDAN (the ratio of the standard deviation of added white noise 
is 0.15, and ensemble number is 80). If the signal  is known, the seventh and eighth modes are 
the useful signal mode, and the other are the noisy modes (except residue). The filtered signal is the 
sum of last three modes (the seventh, eighth, and ninth modes).  

Now, the proposed filtering method is used to filter noisy signal. To evaluate the proposed 
filtering method, it is tested fifty times to prove the filtering effect statistically. For each filtering, the 
IMFs are first sorted by ascending order, then the energy of the sorted IMFs are calculated and 
normalized. Figure 1 shows the IMFs obtained by CEEMDAN, Figure 2 shows the sorted IMFs in 
ascending order (from the Figure 2, it is found that the sorted IMFs (SIMFs) are symmetrical about 
the center point), and Figure 3 shows each NNW (except residue) (Figures 1–3 are IMFs, SIMFs, and 
the NNW obtained by the first test respectively). From Figure 3, it can be seen that the first six NNWs 
are the waveform corresponding to noisy modes, and the last two NNWs are the waveform 
corresponding to useful signal modes (noise-less modes). The situation of the remaining 49 tests are 
similar to the first. The averaged fuzzy entropy of each NNW is in Table 1 for the fifty-run statistical 
test. The averaged fuzzy entropy of the first six modes is approximately 0.04, and that of last two 
modes are around 0.02. The absolute value of the difference of adjacent fuzzy entropy is shown in 
Figure 4. The absolute value of the difference of the sixth and seventh NNW is larger than the others 
in Figure 4. This illustrates that starting with the seventh IMF is the useful mode. The filtered signal 
is shown in Figure 5b. This shows that the noisy signal modes and useful signal modes can be 
effectively identified by the proposed method. 

 

Figure 1. The intrinsic mode functions (IMFs) obtained by the CEEMDAN (complete Ensemble 
Empirical Mode Decomposition (EEMD) with adaptive noise) algorithm (except residue). 

IM
F1

IM
F2

IM
F3

IM
F4

IM
F5

IM
F6

IM
F7

IM
F8

Figure 1. The intrinsic mode functions (IMFs) obtained by the CEEMDAN (complete Ensemble
Empirical Mode Decomposition (EEMD) with adaptive noise) algorithm (except residue).



Entropy 2017, 19, 13 7 of 14
Entropy 2017, 19, 13 7 of 13 

 

 

Figure 2. The sorted IMFs (SIMF) of each IMF (except residue). 

 
Figure 3. The transformed waveform of each mode (except residue). NNW: normalized new 
waveform. 

Table 1. The averaged fuzzy entropy of each NNW. 

Changed Waveform NNW1 NNW2 NNW3 NNW4 NNW5 NNW6 NNW7 NNW8 
Fuzzy Entropy 0.0438 0.0446 0.0458 0.0469 0.0455 0.0406 0.0246 0.0212 

 

Figure 4. The absolute value of the difference of adjacent fuzzy entropy. 

S
IM

F1

S
IM

F2

S
IM

F3

S
IM

F4

S
IM

F5

S
IM

F6

S
IM

F7

S
IM

F8

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

NNW of IMF1 NNW of IMF2 NNW of IMF3 NNW of IMF4

NNW of IMF5 NNW of IMF6 NNW of IMF7 NNW of IMF8

Figure 2. The sorted IMFs (SIMF) of each IMF (except residue).

Entropy 2017, 19, 13 7 of 13 

 

 

Figure 2. The sorted IMFs (SIMF) of each IMF (except residue). 

 
Figure 3. The transformed waveform of each mode (except residue). NNW: normalized  
new waveform. 

Table 1. The averaged fuzzy entropy of each NNW. 

Changed Waveform NNW1 NNW2 NNW3 NNW4 NNW5 NNW6 NNW7 NNW8 
Fuzzy Entropy 0.0438 0.0446 0.0458 0.0469 0.0455 0.0406 0.0246 0.0212 

 

Figure 4. The absolute value of the difference of adjacent fuzzy entropy. 

S
IM

F1

S
IM

F2

S
IM

F3

S
IM

F4

S
IM

F5

S
IM

F6

S
IM

F7

S
IM

F8

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

NNW of IMF1 NNW of IMF2 NNW of IMF3 NNW of IMF4

NNW of IMF5 NNW of IMF6 NNW of IMF7 NNW of IMF8

Figure 3. The transformed waveform of each mode (except residue). NNW: normalized new waveform.

Table 1. The averaged fuzzy entropy of each NNW.

Changed Waveform NNW1 NNW2 NNW3 NNW4 NNW5 NNW6 NNW7 NNW8

Fuzzy Entropy 0.0438 0.0446 0.0458 0.0469 0.0455 0.0406 0.0246 0.0212

Entropy 2017, 19, 13 7 of 13 

 

Figure 2. The sorted IMFs (SIMF) of each IMF (except residue). 

 
Figure 3. The transformed waveform of each mode (except residue). NNW: normalized  
new waveform. 

Table 1. The averaged fuzzy entropy of each NNW. 

Changed Waveform NNW1 NNW2 NNW3 NNW4 NNW5 NNW6 NNW7 NNW8 
Fuzzy Entropy 0.0438 0.0446 0.0458 0.0469 0.0455 0.0406 0.0246 0.0212 

 

Figure 4. The absolute value of the difference of adjacent fuzzy entropy. 

0 200 400 600 800 1000
-2

0

2

S
IM

F1

0 200 400 600 800 1000
-1

0

1

S
IM

F2

0 200 400 600 800 1000
-1

0

1

S
IM

F3

0 200 400 600 800 1000
-0.5

0

0.5

S
IM

F4

0 200 400 600 800 1000
-0.5

0

0.5

S
IM

F5

0 200 400 600 800 1000
-0.5

0

0.5

S
IM

F6

0 200 400 600 800 1000

Samples

-2

0

2

S
IM

F7

0 200 400 600 800 1000

Samples

-2

0

2

S
IM

F8

center point

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

0 500 1000
0

0.5

1

Samples

 

 

NNW of IMF1 NNW of IMF2 NNW of IMF3 NNW of IMF4

NNW of IMF5 NNW of IMF6 NNW of IMF7 NNW of IMF8

1 2 3 4 5 6 7

the index of absolute value of the difference of adjacent fuzzy entropy

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

th
e 

di
ffe

re
nc

e 
of

 a
dj

ac
en

t f
uz

zy
 e

nt
ro

py

 

Figure 4. The absolute value of the difference of adjacent fuzzy entropy.



Entropy 2017, 19, 13 8 of 14
Entropy 2017, 19, 13 8 of 13 

 

 
Figure 5. The noisy signal and filtered signal. (a) The noisy signal; (b) The original signal and filtered 
signal. 

4. Results and Discussion 

In this part, the proposed filtering method is evaluated by two kinds of signal: simulated signal, 
and measured impact signal. 

4.1. Simulated Signal Filtering  

Here, the five kinds of simulated signal in Figure 6 are used as test signal to filter out noise. To 
compare the filtered result, the CEEMDAN and fuzzy entropy, CEEMDAN and sample entropy, 
EEMD and fuzzy entropy, and EEMD and sample entropy are used to filter, and the filtering 
performance is evaluated at various input signal-to-noise ratios (SNRin). The SNRin ranges from 1 dB 
to 11 dB with a fixed step of 2 dB. To quantize the filtering result, the output signal-to-noise ratio 
(SNRout) and mean square error (MSE) are performed to compare. 

( )( )

( ) ( )( )

2

1
out 10

2

1

SNR 10

N

n
N

n

y n
log

y n y n

=

=

 
 
 =
 − 
 



 
 (19) 

( ) ( )( )2

1

1MSE
N

n

y n y n
N =

= −   (20) 

where  is the noise-less signal, and  is the filtered signal.  

 
Figure 6. The five kinds of simulated signal. 

0 200 400 600 800 1000

-3

-2

-1

0

1

2

3

(a) Samples

A
m

pl
itu

de
 

 

 

0 200 400 600 800 1000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Samples

A
m

pl
itu

de

 

 
Filtered signal
Original signal

Noisy signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-5

0

5

10

Samples

A
m

pl
itu

de

0 500 1000 1500 2000
0

5

10

A
m

pl
itu

de

0 500 1000 1500 2000
-10

0

10

A
m

pl
itu

de

0 500 1000 1500 2000
-2

0

2

Samples

A
m

pl
itu

de

0 500 1000 1500 2000
-5

0

5

Samples

A
m

pl
itu

de

(a)

(b) (c)

(d) (e)

Figure 5. The noisy signal and filtered signal. (a) The noisy signal; (b) The original signal and
filtered signal.

4. Results and Discussion

In this part, the proposed filtering method is evaluated by two kinds of signal: simulated signal,
and measured impact signal.

4.1. Simulated Signal Filtering

Here, the five kinds of simulated signal in Figure 6 are used as test signal to filter out noise.
To compare the filtered result, the CEEMDAN and fuzzy entropy, CEEMDAN and sample entropy,
EEMD and fuzzy entropy, and EEMD and sample entropy are used to filter, and the filtering
performance is evaluated at various input signal-to-noise ratios (SNRin). The SNRin ranges from
1 dB to 11 dB with a fixed step of 2 dB. To quantize the filtering result, the output signal-to-noise ratio
(SNRout) and mean square error (MSE) are performed to compare.

SNRout = 10log10


N
∑

n=1
(y(n))2

N
∑

n=1
(ỹ(n)− y(n))2

 (19)

MSE =
1
N

N

∑
n=1

(ỹ(n)− y(n))2 (20)

where y(n) is the noise-less signal, and ỹ(n) is the filtered signal.
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Figure 6. The five kinds of simulated signal. (a) Blocks; (b) Bumps; (c) Heavysine;
(d) y = cos(2πt) + sin(5πt); (e) y = cos(3πt) + sin(11πt) + sin(2.5πt).
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However, EEMD and CEEMDAN involve added white noise and ensemble number. The obtained
IMFs is sensitive to the selection of the parameters related to EEMD and CEEMDAN algorithms.
To evaluate the filtering results objectively, the ratio of the standard deviation of the added noise
is fixed (0.15). The only change is the ensemble number. For each SNRin, the different values of
ensemble number are set to obtain corresponding SNRout. The statistical results can be obtained by
averaging the SNRout. Here, about a hundred values for ensemble number for each SNRin have been
tested: that is, values 10–500 with steps of 5. Figures 7 and 8 are the statistical SNRout and MSE
for four filtering methods (according to references [31,32] and experimentally, the three parameters
(m, n, r) for the fuzzy entropy are (1,0.2,1) and for sample entropy, the parameters (m, r) are (2,0.15)).

Figures 7a–e and 8a–e correspond to filtering results of the signal of Table 2. From Figures 7 and 8,
the conclusion is drawn that the SNRout of the filtering method based on CEEMDAN and fuzzy
entropy is larger than the others, and the MSE of the filtering method based on CEEMDAN and
fuzzy entropy is smaller than the others. This shows that the proposed filtering method outperforms
the other filtering methods.
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Figure 7. The statistical output signal-to-noise ratio (SNRout) for different simulated signals with
various input SNR (SNRin). (a) Blocks; (b) Bumps; (c) Heavysine; (d) y = cos(2πt) + sin(5πt);
(e) y = cos(3πt) + sin(11πt) + sin(2.5πt).
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Table 2. The five kinds of simulated signal.

Order Signal Length of Data

a Blocks 2048
b Bumps 2048
c Heavysine 2048
d y = cos(2πt) + sin(5πt) 2048
e y = cos(3πt) + sin(11πt) + sin(2.5πt) 2048

4.2. Impact Signal Filtering

In this part, the measurement system is developed to understand the real-time characterization
of impact events in mechanical systems. It is important to evaluate health monitoring and reliability
analysis. Traditional drop test is generally a vertical drop. To understand characteristics of oblique
impact, a novel experiment rig—a swinging rod mechanism—was designed as in Figure 9. The rod
can rotate on axis to realize different impact angles. A piezoelectric acceleration sensor was installed as
in Figure 9 (the amplitude range of the sensor was ±1000 g, the frequency range was 0.3 KHz–10 KHz,
and the sensitivity was 500 mV/g). The voltage signal was acquired by an eight channel synchronous
data acquisition card, and the sampling rate was 100 KHz.
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Figure 9. A sketch of the experimental setup.

Now, the experiment was conducted under the condition of a 30◦ impact angle. The impact
signal was contaminated by coloured noise. The peak value of the impact signal contained the main
parameter of physical structure. However, impact time was short, and amplitude of the impact
signal changed quickly. Filtering is difficult for impact signals. A traditional bandpass filtering may
retrieve the oscillatory component of the signal, but the premise is that the filter parameter is known.
The proposed filtering method in this paper can be used to filter noisy signals without knowledge of
the signal parameter. The statistical experiment was done for the impact signal by the CEEMDAN and
fuzzy entropy under the condition of about a hundred values for ensemble number for: values 10–500
with steps of 5, and ratio of the standard deviation of the added noise 0.1. The filtering efficiency
was compared with proposed filtering method, wavelet filter (the mother wavelet: db10, and level
of decomposition: 8), median filter (the size of the sliding window: 6), and moving average filter
(the size of the sliding window: 3) in Figure 10. The run times for the CEEMDAN (the ratio of
added white noise is the 0.1, and the ensemble number is ten) and entropy, DWT(Discrete Wavelet
Transform), median filter, and moving averaging filters were 7.6377 s, 0.9675 s, 0.0018 s, and 0.0094 s,
respectively (the laptop computer used: i5-3230M, CPU: 2.60 GHz, Lenovo, Shen Zhen, China).
Figure 10 shows that these methods extract signal information with noticeable ripples and fluctuations.
However, the filtered signal based on CEEMDAN and entropy was very smooth and showed signal
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characteristics. From the computing result, the filter based on CEEMDAN required more computing
time; however, the filtering effect was the greatest among the four filtering methods, and the computing
time for the filter method based on CEEMDAN also met the engineering requirement.
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Figure 10. The measured signal and the filtering results of the four filtering methods.

De-trended fluctuation analysis (DFA) is widely used to measure the smoothness of time series.
Reference [33] indicates that the larger value of the fractal scaling index (α) in the DFA algorithm,
the smoother the time series. To quantify the filtering result, the DFA was used to measure the filtering
effect for the above four filtering methods. The fractal scaling index (α) value for each method is in
Figure 11. It shows that the α value of the filtering method based on the CEEMDAN and fuzzy entropy
is larger than the other three filtering methods. It also illustrates that the performance of the proposed
filtering method worked best among the other filtering methods.
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Figure 11. The fractal scaling index of the four filtering methods. (a) CEEMDAN + fuzzy entropy filter
method; (b) Wavelet filter method; (c) Median filter method; (d) Moving averging filter method.

In addition, when checking the definition of the mean square error (MSE) and output signal-to-noise
ratio (SNRout), it is found that the original signal y(n) is unknown in Equations (19) and (20), which is
often used to evaluate the filtering effectiveness. Now, the noisy signal and filtered signal are
known for the measured signal. To evaluate the filtering effectiveness, the original signal y(n) in
Equations (19) and (20) is replaced with noisy signal, these equations being re-defined as RMSE
and RSNRout, respectively. It is obvious that the evaluated result is opposite to MSE and SNRout.
That means that the larger (smaller) the RMSE (RSNRout) is, the better the filtering result [27].
Here, the RSNRout and RMSE are introduced to evaluate the filtering performance. Table 3 shows
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the values of RSNRout and RMSE. To be easily observed, the fractal scaling index (α) is also in Table 3.
From Table 3, it is found that the RSNR, RMSE, and the fractal scaling index (α) of the filtering method
based on CEEMDAN and fuzzy entropy are smallest, largest, and largest respectively. The result
shows that the filtering method based on CEEMDAN and fuzzy entropy had the best performance in
removing noise.

Table 3. Values of revised mean squared error (RMSE), revised output signal-to-noise ratio (RSNRout),
and fractal scaling index for different filtering methods.

Filter Method RSNRout RMSE Fractal Scaling Index (α)

CEEMDAN 7.5352 0.0086 0.2578
Wavelet 7.9124 0.0082 0.2473
Median 8.5065 0.0075 0.2453

Moving Averaging 8.2266 0.0080 0.2461

5. Conclusions

In this paper, a novel filtering method was proposed to filter out simulated signal and the impact
signal using the CEEMDAN and fuzzy entropy. For the simulated signal filtering, the CEEDAN and
fuzzy entropy, CEEMDAN and sample entropy, EEMD and fuzzy entropy, and EEMD and sample
entropy are compared to filter simulation signal with different input signal to noise ratio statistically.
When SNR and MSE are used to measure the filtering, it shows that the filtering method based on
CEEMDAN and fuzzy entropy work best. For the impact signal, three kinds of evaluated criteria for
filtering effect are introduced (RSNR, RMSE, and DFA). The result shows that the proposed filtering
method outperforms the others in removing noise. From the simulated signal and measured signal,
the proposed filtering method (CEEMDAN and fuzzy entropy) is more suitable to filter than the other
filtering methods.
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