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Abstract: The issue of unitary evolution during creation and evaporation of a black hole remains
controversial. We argue that some prominent cures are more troubling than the disease, demonstrate
that their central element—forming of the event horizon before the evaporation begins—is not
necessarily true, and describe a fully coupled matter-gravity system which is manifestly unitary.
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1. Introduction: Unitarity Lost

Black hole physics became a particularly fascinating area of study with the discovery of Hawking
radiation [1]. Its emission completes a thermodynamic picture of black holes, but also leads to the
infamous information loss problem [2–7].

Following [5] the problem can be stated as follows: A black hole evaporates (completely or
to a Planck-scale remnant) within a finite time. The initial state of the collapsing matter had a low
entropy. If the correlations between the inside and outside of the black hole are not restored during the
evaporation, then by the time it has terminated, an initial low-entropy state will have evolved into a
high-entropy state, implying that some “information” will have been lost.

Over the years numerous information-theoretic considerations have been applied to this problem.
In the meantime quantum information theory became an established cross-disciplinary field [8,9],
and its impact ranges from the first technological applications to changing ways we think about other
areas, including gravity [10,11].

Typically, the information loss and recovery arguments employ quantum fields on a fixed
background spacetime. This approach excludes the back-reaction of radiation on the metric,
while allowing the black hole mass to become time-dependent. The matter Hilbert space is often
represented asH ≡ HM ⊗Hin ⊗Hout, whereHM is the Hilbert space of the infalling matter, andHin

andHout are the Hilbert spaces of the ingoing and outgoing Hawking radiation.
Figure 1 presents the conjectured “information loss” Penrose diagram describing this process.

It pictures a black hole evaporation as a sequence of Schwarzschild black holes that terminates in a
thermal matter state in flat spacetime. That is a lot of assumption: a spherically symmetric metric for
which Figure 1 is the Penrose diagram might be parameterized using the null coordinates as

ds2 = −g(u, v)dudv + r2(u, v)dΩ. (1)

However, the locus of points r(u, v) = 0 would have to be (i) regular for advanced time v < v0,
for some v0; (ii) singular for v0 ≤ v ≤ v1; and (iii) regular again for v > v1. Thus without a mechanism
for dynamical singularity avoidance, this diagram represents an unlikely and computationally
unjustified physical scenario.
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Figure 1. A conceptual description of black hole formation and evaporation. Trajectory of an outside
observer is marked as a thin line that terminates at the future timelike infinity i+.

These circumstances have not deterred using Figure 1 as the starting point for solving the
information loss problem. The goal is to come up with ways in which unitarity can be rescued
by extracting information from behind the horizon. (See [6,7] for recent reviews).

We argue in Section 2 that some popular solutions are not only incomplete, but also raise
conceptual issues that are potentially as serious as the original information loss problem. Although
a quantum theory of gravity may require dramatic changes of quantum theory, we think there is no
need to postulate them as yet. In Section 3 we show a simple model where evaporation prevents the
horizon from even forming. While not making the entropy increase of matter any smaller, it makes
clear that taking into account the full matter-gravity system is essential. Section 1 presents a model
of a coupled scalar field and gravity in spherical symmetry. The classical analysis of this system
results in the Hamiltonian constraint and the Hamiltonian, making its quantum counterpart unitary
by construction. Discussion of Section 5 points that Figure 1 is the wrong starting point, and outlines
new information-theoretical aspects to the entropy problem.

We use the (−+++) signature of the metric and set c = h̄ = G = kB = 1.

2. Scrambling for Information

Three key quantum features—no-cloning, monogamy of entanglement [8,9,12], and a lesser-known
no-disentanglement [13] results are often violated by proposals of information recovery that begin
with Figure 1.

The no-cloning theorem—that no unitary, or a more general completely positive (see Section 5)
quantum process allows ρ → ρ ⊗ ρ—appears to be violated by postulating matter unitarity:
if information contained in the infalling matter turns up in the outgoing radiation, then cloning
of information must have occurred. This problem is apparently resolved by the principle of observer
complementarity [14]; it is the statement that unverifiable cloning behind a horizon is not an issue.

Another serious problem arises from considering entanglement monogamy: given two strongly
entangled systems HA and HB, neither can be strongly entangled with a third system HC.
Almheiri et al. (AMPS) [15] produced an observer that could witness strong entanglement between
modes crossing the horizon (HA) and early emitted radiation (HB) on the one hand, and between
the early and late radiation (HC) on the other. Hence observer complementarity does not preserve
monogamy. Their cure is to introduce severe “back reaction" in the form of a firewall, while ignoring
its effect on the geometry.
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There are issues with this rescue attempt. One potential issue is that while the firewall saves
monogamy, the cost is that it discards the equivalence principle [16,17]. Moreover, while entanglement
is a fragile quantum resource, perfect disentanglement, which takes an entangled state into the direct
product of its reduced states

ρAB → ρA ⊗ ρB, ρA = trBρAB, ρB = trAρAB (2)

cannot be realized by a linear quantum process [13]. Among the byproducts of disentanglement are
violation of maximal bounds on our ability to distinguish non-orthogonal quantum states [13,18],
cloning, and violation of uncertainty relations [19]. From the quantum-informational view, the firewall
works is designed as a universal disentangler with its accompanying adverse consequences. Indeed,
the firewall in at least one concrete toy model [20] behaves as disentangler.

Another idea is the “ER = EPR” proposal [21], which postulates a wormhole connecting the
interior of a black hole to the asymptotic region outside the horizon. This gives information recovery
through nontrivial topology. Among other issues this likely violates the topological censorship
theorem [22].

Setting up a wormhole is a non-trivial task. Let us consider the constraint equations of general
relativity. The simplest solution for scalar matter (phase space variables φ, Pφ) is obtained by setting
(ADM momentum) πab = 0 and Pφ = 0. This immediately solves the spatial diffeomorphism constraint.
Then with the Misner ansatz [23]

ds2 = ψ4(r)
(

dr2 + r2dΩ2
)

, (3)

the hamiltonian constraint becomes

∇2ψ +
1
8
(φ,r )2ψ = 0. (4)

With φ = 0, the simplest solution is the wormhole ψ(r) = 1 + m/r. With matter, an easy way to
solve this equation is to take a distorted wormhole function ψ(r) and find φ. This is possible only if
∇2ψ is negative or zero for r ∈ (0, ∞), which never happens: the function r2ψ4(r) must be concave
up and positive everywhere. This means ψ′ > 0 and ψ′′ > 0, hence ∇2ψ > 0. Thus there is no scalar
field supporting a wormhole at a moment of time. Although the scalar field is classical, appeal to the
quantum violation of the energy conditions is impossible: localization of quantum scalar particles can
only be described using the positivity of their energy densities [24,25].

Yet another idea is the final state solution, proposed by Horowitz and Maldacena [26], and recently
developed by Lloyd and Preskill [27]. Here, information propagates with the collapsing matter from
past infinity to the singularity inside the black hole, where it is scrambled and reflected, propagates
backwards in time to the horizon, and then forward in time from the horizon to future infinity.

This picture becomes particularly elegant when presented in terms of teleportation using the
consistency framework for closed time-like loops. Its rules for probability calculations in presence of
the closed time-like curves are based on the conditional probabilities with the prescribed measurement
outcomes (in the usual teleportation procedure) [28]. However, now, the price for information
recovery includes non-linear evolution of the chronology-preserving states (that may be unobservable),
and restrictions on the possible operations that the observer is able to perform beyond the horizon.

This connects with the ER = EPR approach, which also appears to violate the monogamy
of entanglement. Constraining the allowed states and introducing certain identification between
the spaces resolves this problem [29]. However, extending this operation to mixed states results in
disentanglement. This is a grave violation if performed on a time slice. However, it is a natural feature
of time travel, thus supporting the argument of [17].

A different group of arguments is based on the tunneling picture of Hawking radiation and
investigation of higher orders of the expansion in h̄ of quantum corrections and backreaction [30–33].
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In particular, entanglement of the modes across the horizon is found to be necessary for preservation
of both unitary evolution of black holes and the equivalence principle [16]. Aspects of intermode
correlations and entanglement and their role in restoration of unitarity are reviewed in [34].

3. Horizon Unattained

The information loss problem has two key elements: transformation of a low-entropic matter
into a highly entropic Hawking radiation, and presence of horizons that allow for information to leak
out through them and become lost. We now demonstrate that accepting evaporation may lead to the
absence of a horizon.

An event horizon is a classical notion that is used in the quantum arguments (for example,
to prescribe the backward evolution of the modes in derivations of the Hawking radiation, or to justify
a particular tensor structure of model Hilbert spaces that are used to analyze the information problem).
Hence consistency of our investigation of the logic of the information loss requires to treat motion of
the collapsing matter (semi-)classically.

We note first that according to a distant observer (Bob at the space-like infinity) a classical collapse
into a black hole takes an infinite amount of time. Then, accepting the Hawking radiation and Page’s
formula [6,7] that describes the mass loss as

dM
dt

= − γ

15, 360πM2 , (5)

where γ is the number of discrete degrees of freedom of evaporating particles, means that the
evaporation takes only a finite amount of Bob’s time, tE. (This simple expression is a late time
result and does not include the grey-body factor [5–7]. It is not going to be used in the following.)

For the information loss problem to be meaningful, one of the following alternatives must be
realized. One possibility is that the quantum effects are not strong enough to facilitate a finite-time
collapse (i.e., crossing of a suitably defined horizon within a finite time according to Bob). In this
case, if we accept that the Hawking radiation is observed by Bob, evaporation should start when the
collapse brought the matter suitably close to the Schwarzschild radius.

On the other hand, it is possible that quantum effects are responsible for crossing of the
Schwarzschild radius rg = 2M in the finite time. This (tautologically) implies that they are important
in some neighborhood around the “would-be” horizon. Then it is not necessary to assume that any
radiation is emitted before the horizon is crossed. However, this absence of radiation still would imply
that the horizon region of even a big black hole is non-classical (either a test particle that is dropped in
just after the collapsing matter will also cross (the fully formed) horizon, or the “original” collapsing
matter behaves differently from everything else that follows it). Since derivations of the Hawking
radiation do not assume exotic classical background structures [1–7], the study of its consequences
should not assume them either.

The arguments that the collapse according to Bob is never complete and overlaps with the onset of
Hawking radiation that begins when the collapsing matter concentrates near the gravitational radius
were already made in [35]. While the horizon is essential in the most intuitive derivations of the black
hole radiation [1,3,4], numerical analysis of collapsing thick shells [36], and a number of analytical
investigations [37–40], support emission of the pre-Hawking radiation.

Hence we assume an early onset of evaporation and investigate its consequences in a very simple
system—a collapsing thin shell [41]. We consider a spherically symmetric collapse of a uniform thin
shell Σ in 3 + 1 dimensional spacetime, whose trajectory is parameterized by a comoving observer
Alice. In the classical (non-evaporating) setting we can parameterize the shells’ trajectory as

(
t = T(τ),

r = R(τ)
)

in the Schwarzschild coordinates, or as
(
u = U(τ), r = R(τ)

)
in the Eddington-Finkelstein

coordinates, where
u := t− r + C ln

( r
C
− 1
)

, (6)
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where rg = 2M = C. Inside the shell the spacetime is Minkowskian. This model is simple enough to
have an analytic solution τ(R).

Our treatment of the quantum version of this model is based on the following assumptions:

1. The classical spacetime structure is still meaningful and is described by a metric gµν.
2. The classical concepts, such as trajectory, event horizon or singularity can be used.
3. The metric is modified by quantum effects. The resulting curvature satisfies the semiclassical equation

Gµν = 8π〈T̂µν〉, (7)

where Gµν is the Einstein tensor corresponding to the metric gµν and 〈T̂µν〉 is the expectation
value of the stress-energy tensor.

4. The collapse leads to a pre-Hawking radiation.

The first three items are the standard assumptions in the Hawking radiation and the related
problem. Specifically, the diagram of Figure 1 makes sense only if the Assumptions 1 and 2 are valid.
The last assumption summarizes the preceding discussion.

Modifications of a thin shell collapse are then quite straightforward. Moreover, using this
model allows to avoid the complications related to the place of origin [42] of evaporating quanta.
Unlike previous works (e.g., [43,44]) that considered such models by focusing on the right hand side of
Equation (7), we are primarily concerned with the effects on the shell’s trajectory. We assume that the
quantum effects are summarized as an appropriate evaporation law and incorporate this information
into a metric that describes geometry outside the evaporating shell. The expectation of the stress
energy tensor is then calculated via Equation (7).

We model the spacetime outside via the outgoing Vaidya metric [3,45,46], a popular metric to
describe a spacetime of radiating non-rotating center,

ds2 = − f (u, r)du2 − 2dudr + r2dΩ, f (u, r) = 1− C(u)/r. (8)

In the case of evaporating shell the relationship (6) is no longer valid.
This is not the most general spherically-symmetric metric. A different metric that allows to explicitly

incorporate the evaporation law Equation (5) and more general scenarios are considered in [47].
We do not assume any specific form of the evaporation law, even if the linear evaporation

C = a− bu [46] is plausible. As the equations below demonstrate the effect of evaporation becomes
appreciable when R(τ) = C + ε, for some small (ε ∼ 1) distance from the Schwarzschild radius, it is
enough to assume that Cu := dC/du ≤ 0. A natural scale of the problem is set by C and Cu.

The junction conditions [41] on metric and extrinsic curvature lead to the equation of motion of
the collapsing shell parameterized by the proper time τ,

1
8π

(
2R̈ + F′

2
√

F + Ṙ2
− R̈√

1 + Ṙ2
+

√
F + Ṙ2 −

√
1 + Ṙ2

R
− FUU̇

[
Ṙ

2F
√

F + Ṙ2
− 1

2F

])
= 0, (9)

where the last term is the result of evaporation. Here

F = f (u, r)|Σ = 1− C(U)

R
, FU = −1

r
dC
du

∣∣∣∣
Σ

, (10)

and
dU
dτ

=
−Ṙ +

√
F + Ṙ2

F
. (11)

We note that
dC
dτ

=
dC
dU

U̇ ≤ 0, FU ≥ 0. (12)
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The key quantity is the coordinate distance between the shell and its Schwarzschild radius,

x(τ) := R(τ)− C(τ). (13)

Expanding R̈ in the inverse powers of x and C gives

R̈ =
2Ṙ2
√

1 + Ṙ2(
Ṙ +
√

1 + Ṙ2
) C

x2
dC
dU

+O(x−1), (14)

thus describing the ever accelerating collapse as the shell approaches the Schwarzschild radius C.
Hence (when |Ṙ| � 1)

R̈ ≈ 4Ṙ4 C
x2

dC
dU

. (15)

At the same time, since close to the Schwarzschild radius we have

F ≈ x
C

, U̇ ≈ −2Ṙ
F
≈ −2ṘC

x
, (16)

the distance x evolves according to

ẋ = Ṙ
(

1− 2C
x

∣∣∣∣ dC
dU

∣∣∣∣) = |Ṙ|
(

ε∗(τ)

x
− 1
)

, (17)

with

ε∗(τ) = −2C(τ)
dC
du

∣∣∣∣
u=U(τ)

> 0. (18)

As a result for x < ε∗, we are guaranteed ẋ > 0, hence stopping the approach to the shrinking
Schwarzschild radius. From the estimate x ∼ ε∗ we get

R̈ ≈ Ṙ4

CCU
∼∝ −Ṙ4C, (19)

if we assume that Cu ∝ C−2, as in Equation (5). Thus in terms of Alice’s proper time the rate of
collapse and evaporation accelerate, giving the runaway solution. Nevertheless, she never crosses
the Schwarzschild radius. From the moment of time τ∗, x(τ∗) = ε∗(τ∗) it shrinks faster than the shell
collapses. In our model this is true for any non-zero evaporation rate. For Bob, however, the process is
seen as very long lingering at effectively the Schwarzschild radius This behaviour persists in all spatial
dimensions D ≥ 3 and is true for at least some other types of the metric [47].

4. Unitarity Regained

We have seen that some popular approaches to information recovery bring with them undesirable
features, including non-linearity. Typically, non-linear quantum evolution is an effective feature of open
system dynamics, described using only the variables of the (open) system itself. Moreover, requiring
consistency of the information loss setting brings models in which the event horizon never forms.
This suggests that preserving the usual rules of quantum mechanics requires including gravitational
degrees of freedom to obtain a closed system. The lost information may be stored in the matter-gravity
correlations [48,49].

Unitary evolution obtains in quantum theory for the quantized classical hamiltonian systems.
To demonstrate the viability of the hypothesis of matter-gravity correlations we need to establish a
Hamiltonian, and not just a Hamiltonian constraint that are the standard feature of the gravitational
systems. We do it in a simple, but physically rich matter-gravity system: the Einstein-scalar field theory
in spherical symmetry. Fully nonlinear classical studies of this system reveal critical behaviour at the
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onset of gravitational collapse: a black hole forms initially with infinitesimal mass and then grows by
accreting scalar field [50].

The problem can be precisely set up in a Hamiltonian framework. In the Arnowitt-Deser-Misner
(ADM) Hamiltonian formulation for general relativity the phase space of the model is defined by
prescribing a form of the gravitational phase space variables qab and πab, together with fall-off
conditions for these variables, and for the lapse and shift functions N and Na. The bulk ADM
3 + 1 action for general relativity minimally coupled to a massless scalar field is

S =
1

16π

∫
d3xdt

(
πab q̇ab + Pφφ̇− NH − NaHa

)
. (20)

The pair (φ, Pφ) are the scalar field canonical variables, and the Hamiltonian and spatial
diffeomorphism constraints, H and Ha, coupled to the lapse function N and the shift vector Na [41] take
their standard form. This action (together with the boundary terms, see e.g., [41,51]) is well-defined
and determines the fall-off conditions on canonical variables. The reduction to spherical symmetry
utilizes an auxiliary flat Euclidean metric eab and unit radial normal sa = xa/r, where r2 = eabxaxb.
The parametrization is given by two geometric dynamical variables, Λ(r, t) and R(r, t), and their
canonical conjugates. Hence the spatial metric is

dl2 = Λ2(r, t)dr2 + R2(r, t)dΩ2. (21)

It is sufficient to use the partial gauge fixing Λ = 1 to obtain non-singular coordinates at the
horizon, which is the feature of PG coordinates we desire.

The ADM 3 + 1 action with a minimally coupled scalar field leads to the reduced action and the
reduced Hamiltonian and radial diffeomorphism constraints. These constraints are first class with an
algebra that is similar to that of the full theory [51].

The gauge choice Λ = 1, which corresponds to a step toward flat slice coordinates. With this
gauge condition, the Hamiltonian constraint is solved (strongly) for the conjugate momentum PΛ as a
function of the phase space variables. This gives

PΛ = PRR +
√
(PRR)2 − X, (22)

where
X = 16R2(2RR′′ − 1 + R′2) + 16R2Hφ, (23)

and allows to represent the radial diffeomorphism constraint as

Hr = −P′Λ + PRR′ + Pφφ′ ' 0, (24)

with PΛ given by (22) above. We note that using this constraint the square root in the latter equation
can be written as √

(PRR)2 − X =
∫ r

0

(
PRR′ + Pφφ′

)
− PRR (25)

while

Hφ =
P2

φ

2R2 +
R2

2
φ′2. (26)

The evolution equation for Λ [51] and the requirement that the gauge Λ = 1 be preserved
under it leads to fixing of the lapse N as a function of the shift Nr. Finally, the reduced gravitational
Hamiltonian is

HG
R =

∫ ∞

0
(Nr)′

(
RPR +

√
(PRR)2 − X

)
dr +

∫ ∞

0
Nr(PRR′ + Pφφ′) dr, (27)
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where the surface term in the reduced action has been written as bulk term and combined with the
remaining radial diffeomorphism constraint.

The gravity phase space variables are (Λ, PΛ) and the scalar field ones are (φ, Pφ). These are
subject to the Wheeler-DeWitt equation, the quantum analog of the Hamiltonian constraint. The arena
for quantization is a Hilbert spaceHG ⊗Hφ of gravity and the scalar field.

While the actual quantization is very hard (and any practical calculations may be impossible), two
key conceptual features are clear. First, the Wheeler-DeWitt equation for this system is a manifestly
matter-gravity entangling equation: product states biecome entangled when acted upon by the
constraint operator Hr of Equation (24). This is why in describing the information loss problem we
referred to the matter state as “low-entropy” and not “pure”. Second, since the combined matter-gravity
system has a true Hamiltonian (27), and not just the Hamiltonian constraint, the corresponding
quantum evolution must be unitary [52].

5. Discussion

We have seen that some of the popular cures for the loss of unitarity bring with them side
effects that are, arguably, even more severe than the original problem. Entropy generation in a
subsystem is typically a sign of an interaction with the environment, and the efficient formalism of
completely positive (CP) evolution [8,9] exists to deal with such settings. Unitary evolution is just a
particularly convenient example of this more general dynamics. However, perfect cloning of unknown
quantum states is forbidden in this framework. A more benign-looking possibility of a mere increase
of distinguishability (such as may result from disentanglement [13]) indicates that the dynamics is of a
fundamentally different type—a non-CP-evolution [13,53]. If this is the consequence of the proposal to
recover information, then the result is even more serious violation of the quantum formalism.

There are more approaches that depend on existence of the horizon. We have a very simple
but fully consistent model of collapse that is affected by radiation. In this model, for almost entire
evaporation time the shell stays very close to its Schwarzschild radius, but never crosses it. As a result,
there are no trapped surfaces, no horizon and no singularity. The steady-state distance ε∗ is in the
trans-Planckian regime, but no more so than is used in the derivations of the Hawking radiation.
The model neither assumes the thermal character of the Hawking radiation, nor any specific form of
the pre-Hawking [39] radiation, but only its existence and observability in finite time. In addition to
possible problems that the matter-only resolutions of information loss problem entail, those that rely
on the existence of an event horizon become untenable.

A semiclassical analysis of Schwarzschild black holes indicates that quantum fluctuations
effectively destroy the horizon [54]. Black hole radiation is directly linked to quantum fluctuations [3,4].
The model of quantum matter on a classical background spacetime with a sharply defined horizon is a
useful idealization, but it does not correspond to the asymptotic (semi-classical) future of a collapsing
matter. The model of Section 4 demonstrates this explicitly by having ε∗ > 0 at all times. Absence of the
horizon can be seen as demoting the information loss problem from being a paradox to a (still intricate)
calculational problem. Instead of a logical contradiction that follows from combining several standard
physical assumptions and requires abandoning at least one of the basic tenets of modern physics, we
have to understand correlations between ingoing and outgoing states of matter and gravity.

These results are consistent with the astrophysical observations. The effects of black hole radiation
are negligible for the observed astrophysical black holes. Indeed, the classical event horizon is both the
signature of black holes and the asymptotic benchmark against which the data available to the distant
observers is compared [4,55,56]. Change of the asymptotic limit by the amount of the order of ε∗ that
is constant on the cosmological time scales, will not affect the observations.

With a true Hamiltonian such as (27), unitarity of the combined matter-gravity system in a full
quantum theory is immediate. The essential problem is how much entanglement between matter and
gravity is needed to satisfy the constraint (24). The physical Hamiltonian in some time gauge would
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also create entanglement. Among the questions of interest is how the matter entropy, obtained from a
pure gravity-matter density matrix [52,57], evolves at late times.

In particular, it is important to understand how the intermode correlations of [44] behave when
both the shell and the field are dynamical objects. While it is plausible that the constraint (24) does
not impose much matter-gravity entanglement both initially and in the the asymptotically flat late
spacetime, it will be instructive to understand if the gravitational degrees of freedom play a role of
a catalyst (a subsystem whose state is unchanged in the overall evolution, but without which the
transformation ρin → ρout is impossible, [9,12]).

If the fully formed horizon does not exist, it is important to investigate how (if at all) the soft
hair properties of black holes [58,59] are modified, as well whether the shell-radiation entanglement
build-up follows the lines of the late information retrieval model [16].

There might be a lower bound on the lost information that is determined by a fundamental
physics and not just by experimental or budgetary constraints. Indeed, the fundamental discreteness
of space time, as well as quantumness of our measurement devices make an ideal unitary evolution to
appear as non-unitary [60]. In addition, the reasoning of [61] is applicable to black holes as well as to a
quantum cosmological setting: the state may be pure, but still can appear to posses a non-zero entropy.

Nevertheless, seeking information recovery using Figure 1 as an axiom is flawed. The increase
of entropy is not a sign of information loss, but a measure of redistribution of information between
matter and gravitational degrees of freedom.
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