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Abstract: Today’s technological improvements have made ubiquitous healthcare systems that
converge into smart healthcare applications in order to solve patients’ problems, to communicate
effectively with patients, and to improve healthcare service quality. The first step of building a
smart healthcare information system is representing the healthcare data as connected, reachable, and
sharable. In order to achieve this representation, ontologies are used to describe the healthcare data.
Combining ontological healthcare data with the used and obtained data can be maintained by storing
the entire health domain data inside big data stores that support both relational and graph-based
ontological data. There are several big data stores and different types of big data sets in the healthcare
domain. The goal of this paper is to determine the most applicable ontology data store for storing the
big healthcare data. For this purpose, AllegroGraph and Oracle 12c data stores are compared based on
their infrastructural capacity, loading time, and query response times. Hence, healthcare ontologies
(GENE Ontology, Gene Expression Ontology (GEXO), Regulation of Transcription Ontology (RETO),
Regulation of Gene Expression Ontology (REXO)) are used to measure the ontology loading time.
Thereafter, various queries are constructed and executed for GENE ontology in order to measure
the capacity and query response times for the performance comparison between AllegroGraph and
Oracle 12c triple stores.
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1. Introduction

Recent advances in high computing capability have led to improvements in healthcare systems.
With the promise of this advance, healthcare systems are used to improve the quality and effectiveness
of healthcare, and to reduce costs in healthcare services. While patients’ health records are stored in
different hospitals and databases, it is a challenging process to share and reuse these records. Reusing
patients’ health data in any health organization for a health service can accelerate the diagnostic
process while reducing material costs in healthcare. For this purpose, Semantic Web technologies
can be integrated into healthcare services for modeling and reasoning of healthcare information.
In Semantic Web, information is given with a well-defined meaning. It leads to a better collaboration
between computers and humans [1]. Hence, data is represented in a machine-understandable format
to support a greater knowledge representation. Therefore, ontologies are used to share and to reuse
information between different systems.

An ontology is an explicit specification of a conceptualization [2]. It describes the entities in a
specific domain by defining all the relevant concepts and the relationships between these concepts.
Semantic Web technologies use the Resource Description Framework (RDF) [3] and Web Ontology
Language (OWL) [4] as information description languages to describe metadata, to define ontologies,
and to achieve reasoning over the defined ontologies. Storing ontology definitions in specific Uniform
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Resource Identifier (URI) makes ontologies universal, sharable, and reusable. The ontology description
is essential to share the common understanding of the structure of information among people or
software agents, to enable reuse of the domain knowledge, to make domain assumptions explicit,
to separate the domain knowledge from the operational knowledge, and to analyze the domain
knowledge [5].

In an open world assumption, states contain both positive and negative fluents, and if a fluent
does not appear, its value is unknown [6]. Thus, the belief state corresponds exactly to the set of
possible worlds that satisfy this description. Therefore, the information is only meaningful in the
environment where it exists and the reliability of the information changes through the environment.
In a knowledge base with an open world assumption, access to the information and its dependencies
to other sources can affect the meaning and the usage of the information. Ontology developers
define ontologies by working with domain experts. Different domain experts mean different personal
experiences. Naturally, this will lead to different ontology designs for the same domain. Even though
some ontology knowledge bases can connect these different definitions, if the domain definition is not
described with its metadata level knowledge, there would be several discrete ontological definitions for
the same domain. Consequently, connectivity of ontologies is a breakpoint when it comes to selecting
the right ontology for the related domain.

Storing domain information in ontologies eliminates the integration problem of different
information sources. The collaboration and connectivity that are provided by Semantic Web
technologies and ontologies enable access to the information independent from any data structure.
As a result of the unique definition provided by the ontology, the information can be adapted into
different structures according to the domain context and the system where this information will be
used. This adaptation gives data flexibility that can be used in any information system without any
rearrangement of the data. However, access to the information is provided with a common query
language and the response time of these queries change according to the internal structure of the
information storage environment.

Healthcare systems around the world are changing their information systems in order to share
and reuse patient information not only in a department where the information is being created,
but also between the departments of an organization and also among different organizations.
Furthermore, the healthcare domain is one of the rare areas that has a huge amount of domain
knowledge. The increasing availability and growth rate of healthcare information as big data lead to an
improvement in overall quality of patient care that is also beneficial for providing a better personalized
healthcare service. In order to support the interoperability with Semantic Web technologies, defining
and storing healthcare data in ontologies is expected to offer an efficient and effective solution for
healthcare information systems. Infectious Disease Ontology (IDO) [7,8], Saliva Ontology (SALO) [9]
and Blood Ontology (BLO) [10] are example ontologies for the healthcare domain that are described by
formal ontology languages.

The large scale of information in healthcare needs to be managed in order to make decisions
rapidly and to respond to emergency health situations immediately where time is important.
For example, a person who has a traffic accident should be taken to the nearest hospital. The doctor
must access the patient’s critical health information urgently, for example, to see if he or she has
an allergic reaction to any substance or drug. Storing, inserting, retrieving, updating, and querying
the big health ontologies efficiently in terms of accessing the right information are as important as
developing the ontologies. Therefore, the storage method, especially the ontology store, is critical for
the performance of the healthcare information system. Different triple stores store and use ontologies
differently. Loading a new ontology, query decomposition, and query result time may differ with how
the ontology is represented with the inner structure of the related triple store.

In this study, two triple stores, AllegroGraph [11] and Oracle 12c [12], are compared according to
their performance for health domain information. AllegroGraph and Oracle 12c are recommended
by W3C [13] as efficient triple stores that contain more than one billion triples. Thus, we chose these
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two stores, AllegroGraph and Oracle 12c, for performance evaluation of big healthcare data. For this
purpose, the following steps are performed:

• Exploring the ontologies for the health domain and selecting the suitable ontologies;
• Loading the selected ontologies into data stores;
• Inserting, updating, and deleting the triples;
• Choosing the relevant queries for the health domain;
• Performing the selected queries to compare the performance of two data stores based on their

response time.

The paper is organized as follows: Section 2 presents the related work. Section 3 describes the
materials and methods of the evaluation. The evaluation results are given in Section 4. Finally, Section 5
contributes and outlines the direction of the future work.

2. Related Work

Semantic Web is the extension of the current web where information is given in a well-defined
meaning and leads to a better collaboration between computers and humans [14]. The Semantic
Web studies focus on developing domain specific ontologies as well as semantic recommendation
systems. Recently, ontology-based data access technologies (OBDA) became a popular approach to
store semantic data on relational databases. In [15], an open-source system architecture named Ontop
is presented to query relational data sources through the semantical representation of the related
domain. The architecture of Ontop is used as the query transformation component of the Optique
Platform developed in [16]. The Optique Platform provides a visual query interface for end users to
formulate user information needs by unlocking the access to Big Data.

In the literature, there are several RDF data stores to store, query, and manipulate these ontologies.
Various works also compare these RDF data stores [17–21]. In addition to comparing the RDF stores,
RDF loaders are also compared in [22]. Distinct from our work; [17–19] use generated data, [17,18] use
insufficiently low data for the performance evaluation, [17–20,22] do not use medical data, and [19,22]
compare both AllegroGraph and Oracle 12c. These studies use different metrics to query RDF data,
but none of these studies compare the performance of triple stores using CONSTRUCT queries. In this
work, we use real medical data instead of the generated data and execute CONSTRUCT queries.

The data set of The University Ontology Benchmark (UOBM) [23] is used as a benchmark to
compare the RDF data stores; Jena TDB [24], Virtuoso [25], AllegroGraph [11], BigOWLIM [26],
Eclipse RDF4J (Sesame) [27], and Oracle [12]. Fourteen different comparison variables are used
for the benchmarking. RDF data stores are categorized as simple, memory based, or database
based according to their architecture, forward-based, reverse-based, or hybrid chaining inference
methods. Ontology loading time, the query response time, the query languages, the accuracy, and
the completeness of the returned results of the query are also included as the physical benchmarking
variables. Based on query capabilities; the comparison between The Simple Protocol and RDF Query
Language (SPARQL) [28] and the standard RDF query language, and also the scalability of complex
queries is discussed. Furthermore, the benchmarking also contains evaluations that are performed
according to the integration of the inference engine, clustering capabilities, end user interface support,
relational database support, and interoperability of different platforms and operating systems.

RDF triple stores model data using RDF, store RDF triples, and are queried using SPARQL. RDF
triple stores, 4Store [29], BigData [30], OWLIM-SE [31], Mulgara [32], and Virtuoso [33] are evaluated
in [33]. The data sets that are used in [33] are not simulated and they are real world data sets that are
already used in various applications. Data sets from Cell Cycle Ontology [34], Allie Ontology [35],
PDBj (Protein Data Bank Japan) [36], UniProt (Universal Protein Resource) [37], and DDBJ (DNA Data
Bank of Japan) [38] are loaded to the RDF triple stores. Inside these datasets, DDBJ is the biggest data
set with 10 billion triples. The ontology loading time, the memory location, the query response time,
query accuracy, and environmental situations are used as the comparison metrics. According to these
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metrics; Cell Cycle Ontology has the fastest loading time for the 4Store repository, DDBJ ontology has
the fastest loading time for Virtuoso. Based on memory allocation; Cell Cycle Ontology is stored with
the smallest memory allocation in the BigData repository and OWLIM-SE uses the smallest memory
while storing DDBJ ontology. When the query response times are compared, Cell Cycle Ontology
gives the fastest response time through all repositories. However, the fastest response time for nine of
nineteen queries belongs to the OWLIM-SE. This work is helpful in comparing different data sets with
different triple repositories. However, the most used triple repositories, AllegroGraph and Oracle RDF
triple stores, are not included in [33].

In our work, AllegroGraph and Oracle 12c RDF triple repositories are examined to evaluate
their query capabilities and query response time by using GENE Ontology [39] while GENE, Gene
Expression Ontology (GEXO), Regulation of Transcription Ontology (RETO), and Regulation of Gene
Expression Ontology (REXO) are evaluated for loading times. These ontologies are the most known
and used health ontologies in the healthcare domain. GENE Ontology reveals information regarding
the role of an organism’s gene products. GENE Ontology has been cited in over 5000 reviewed
articles and has been used in research studies for informing or validating hypotheses [40]. Researchers
who develop health domain specific ontologies load their ontologies to BioPortal (https://bioportal.
bioontology.org/) which is a well-known repository of biomedical ontologies. BioPortal is an open
access portal. GEXO integrates fragments of GENE Ontology and the Molecular Interaction ontology
(MI). RETO is an ontology for the domain of gene transcription regulation and also integrates fragments
of GENE Ontology and MI ontology. REXO is an ontology for the domain of gene expression regulation.
The ontology integrates fragments of GENE Ontology and MI ontology. GEXO, RETO, and REXO
ontologies are based on GENE Ontology.

AllegroGraph is a high-performance graph-based database that is used as a backend to develop
the Semantic Web applications. It has Java, Python, Lisp, and Prolog interfaces and gives support
for languages such as SPARQL, RDFS++, Prolog, and TwinQL. AllegroGraph provides efficient
memory usage by the help of disk-based storage. AllegroGraph supports OWL 2 reasoning and
Prolog sentences. Moreover, AllegroGraph defines additional features such as social networking
analysis, free-text indexing, named graphs for weights, dynamic and automatic indexing, and efficient
range queries.

Oracle 12c stores ontologies in relational databases with RDF and RDFS support. Starting with
Oracle version 10gR2, RDF statements can be stored in databases with their natural triple structure.
The support for OWL language begins with Oracle version 11g and continues with Oracle version 12c.
Oracle provides full support to store, query, and manipulate the ontology data as triple. Oracle 12c also
supports inferencing by defining rules for ontologies in addition to the Oracle-supplied rule bases such
as RDF and RDFS. As is known, creating indexes improve the performance of certain semantic queries.
For this purpose, Oracle has built-in functions to create semantic indexes. Although it is a relational
database, it also supports SPARQL queries in addition to SQL queries with its semantic subprograms.

3. Materials and Methods

Resource Description Framework (RDF, https://www.w3.org/RDF/) is designed by the World
Wide Web Consortium (W3C, https://www.w3.org/) as a metadata model. RDF is a standard model
that is used for conceptual description and modeling of data in web resources. In RDF, each source is
defined with a triple that consists of a subject, predicate, and an object. Traditional data warehouses
are based on relational databases and are used to work with relational data. However, when storing
RDF data, the triple data structure should be maintained for better representation and knowledge
representation. Various RDF stores were developed to store RDF data for this necessity. In this work,
AllegroGraph and Oracle 12c triple stores are examined.

Web Ontology Language (OWL, https://www.w3.org/OWL/) is also a W3C specification that is
designed to represent knowledge and the relationship between things in a semantically rich manner.
OWL represents the web content that is supported by XML (https://www.w3.org/XML/), RDF, and
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RDF Schema (RDF-S, https://www.w3.org/TR/rdf-schema/) by presenting a formal semantic and
additional description constructs. Furthermore, Semantic Web knowledge is expressed with ontologies.
Thus, the content of knowledge is not only interpreted by humans, but also by machines. Therefore,
applications can process this knowledge as humans do.

Description Logic based tools, such as Fact [41] and Racer [42], are used to inference small-size
ontologies. However, these tools are not successful in querying large amounts of data. Therefore, when
a real world semantic knowledge base is considered, the intended results cannot be achieved. For this
purpose, triple stores such as AllegroGraph, Oracle 12c, Virtuoso, and 4store are used to store, update,
and query ontologies that consist of large amounts of semantic data. Moreover, if the knowledge base
grows with time, the query time will also increase. In addition to the query performance, results of
queries have to be complete and accurate.

In this study, two triple stores are examined to store, to update, and to query large ontologies.
For this purpose, ontologies developed for the healthcare domain are used to measure the performance
of semantic knowledge bases. Furthermore, the required time to access information is also measured
and the accessed information is controlled to check whether the query result is accurate or not.
The information access time depending on the complexity of queries is also measured. Hence, we first
installed the related tools, then updated the healthcare ontologies, and specified criteria for the
comparison. Based on these criteria, we created queries and queried ontologies. Later, we compared
the query results and evaluated them. The performance measurements are obtained in a virtual
machine with specifications of 2.40 GHz Intel(R) CPU, 16 GB of RAM (Intel CPU, Kingston RAM,
Asus Motherboard, assembled in Izmir, Turkey). The following subsections explain AllegroGraph and
Oracle 12c, data sets that are used, and queries that are executed over these data sets, respectively.

3.1. AllegroGraph and Oracle 12c

AllegroGraph [11] is a RDF triple store and stores RDF triples. It is used by various open source,
academic research and commercial projects [43–45]. AllegroGraph supports Java, Python, Ruby, Perl,
C#, Lisp, and Prolog interfaces, and also SPARQL, RDFS++, and Prolog reasoning. AllegroGraph is
used to store several different data sets.

Oracle is a well-known relational database management system. Oracle 10gR2 was released in
2005 and is the first version of the Oracle database that supports RDF and RDF-S, and allows the
storage of triples in the database. It provides functionalities to users such as storing their ontologies in
relational databases and querying these ontologies that are used as information bases for Semantic Web
applications. Oracle 11g (released in 2007) supports the OWL ontology definition language in addition
to RDF and RDF-S support. In this study, Oracle 12c [12], which was released in June 2013, is used.
The semantic properties of the Oracle 12c database and their relations are shown in Figure 1 [46].
As seen in Figure 1, Oracle 12c can contain both semantic and relational data at the same time.

DB-Engines (http://db-engines.com/en/) collects and presents information on database
management systems, and also ranks them in different lists according to the scope of usage such as
RDF store, relational DBMS, key-value store, document store, etc. According to DB-Engines, Oracle is
the most popular system for relational DBMS and in overall database management systems. Oracle is
the first relational database management system that supports RDF storage. Therefore, using Oracle
as a RDF store simplifies the integration of existing traditional data with triples. In the RDF store
ranking of DB-Engines, AllegroGraph is listed in fifth place. AllegroGraph supports SPARQL which
is the standard query language of W3C. AllegroGraph also supports Prolog and languages such as
JavaScript to query triples. Furthermore, it provides mechanisms for reasoning by supporting RDF,
RDFS, and OWL-DL predicates. In order to execute semantic web rules, AllegroGraph is integrated
with Racer, which is a semantic web reasoning system.

https://www.w3.org/TR/rdf-schema/
http://db-engines.com/en/
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The efficient way to load semantic data is bulk loading. In this study, bulk loading is used to
insert semantic data from ontologies into Oracle 12c triple store. However, semantic data can also be
added triple by triple by using the INSERT statement in SPARQL. In Oracle 12c, semantic data can be
queried efficiently. Additionally, relational and semantic data can be queried by means of ontologies in
order to find relations between relational and semantic data. After loading semantic data, the power
of querying semantic data can be improved by using rules and inference engines. Inference provides
logical results with regards to data and rules. However, in this study, the inferred triples are not
evaluated in order to not make the evaluation more complex.

3.2. Data Sets

In this study, we used the following ontologies: Regulation of Gene Expression Ontology
(REXO) [47], Regulation of Transcription Ontology (RETO) [48], Gene Expression Ontology
(GEXO) [49], Cell Cycle Ontology (CCO) [34], and GENE Ontology [39]. The number of classes,
triples, individuals, property, and depths of these ontologies are shown in Table 1.

Table 1. Details of the healthcare ontologies.

Ontology Features REXO RETO GEXO CCO GENE

Triple 2,124,784 1,936,933 2,404,581 11,315,866 1,381,808
Class 158,308 147,807 166,325 277,764 53,234

Individual 0 0 0 0 136,524
Property 13 13 13 13 75

Depth 21 21 21 21 6

As seen in Table 1, most of the healthcare ontologies have approximately 2 million triples. Despite
the number of triples in the ontologies, it is difficult to find a data set with an adequate number of
individuals for evaluation. The existing ontologies in the literature are inadequate in terms of the
number of individuals. Therefore, we used GENE, GEXO, RETO, and REXO ontologies to compare
the loading times of AllegroGraph and Oracle 12c. The CCO ontology could not be loaded in our
evaluation because AllegroGraph’s free version only allows loading up to 5 million triples. As the
GENE ontology has a certain number of individuals while the rest of the ontologies do not have any
individuals, we used GENE ontology to compare query response times while the other ontologies
do not have any individuals. Queries were developed in SPARQL 1.1 language [50] and handled on
GENE ontology. Finally, the query response times were measured for the comparison.
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3.3. Queries

In this subsection, the executed queries are explained. In this study, we created five queries for
the evaluation. These five queries have been chosen at semantically increasing difficulty. In addition,
the structure of these queries were based on the basic structural property of the cases used to test RDF
stores that are presented in [33]. However, in this study, these five queries are constructed specifically
for GENE ontology, while cases presented in [33] are constructed for Cell Cycle Ontology [34].

The first query is a simple composite triple query. This query is used to measure the response
time of triple stores for simple query usages.

Query 1: This is a simple multiple sentenced query as shown in Figure 2. Genes that are
molecular_function, have synonym as “MOO Activity”, and have type as GO_0016701 are queried. Query 1
is a simple “GENE” query. By creating the first query, we aimed to measure the response of triple
stores to simple queries that include multiple inner queries.Entropy 2017, 19, 30  7 of 13 
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Query 2: The second query, shown in Figure 3, is constructed by merging two simple queries
with the “UNION” operand. The “UNION” operator is used to measure the response times to merge
query spaces into a single result set for each RDF store. Query 2 returns the same result with Query 1.
Both queries are used to capture how triple stores will respond to the same queries that are developed
in different formats.
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Query 3: In the third query, the difference between RDF triple data stores is examined. For this
purpose, the usage of the REGEX function is handled inside the “FILTER” option. The REGEX function
is a Boolean string function that returns results according to a given string. In this query, genes that
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are molecular_function, type of GO_0016701, and have an exact synonym starting with the letters “myo” are
being queried. Query 3, shown in Figure 4, is used to measure the capabilities for string functions and
indexing of Oracle 12c and AllegroGraph triple stores.
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Query 4: In the fourth query, shown in Figure 5, the “FILTER” option which was used with
the REGEX function in Query 3 is replaced with a complete individual value. In Query 4, only the
individuals that have the string value matching with the given value are returned as a result set.
In order to make the query more complex, more than one value of the “FILTER” option is added and
connected with the “AND” operation. Thus, the response of each triple data store into more than one
“FILTER” option can be scored.
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Query 5: In the fifth query, “CONSTRUCT” queries are validated instead of “SELECT” queries.
CONSTRUCT queries are used to create a graph response that satisfies the result set restricted with the
WHERE clause. CONSTRUCT queries are hard to defragment inside the layered structure of the triple
stores which may cause infinite loops and return unrelated results. Thus, in Query 5, CONSTRUCT
queries are used to reveal how fast each triple store creates a semantic graph of a given query from its
semantic model. Despite using a simple “CONSTRUCT” query to return a graph result, a complex
query that has more than one “FILTER” option is constructed. Query 5 is shown in Figure 6. In this
query, the differences between AllegroGraph and Oracle 12c while creating a graph with any given
filter option are examined. In Query 5, the genes which have synonyms starting with the letters “malt” are
being queried. The graph that is constructed by the matched genes and their super classes are returned
as a result.
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The difference between the ontologies’ loading time and querying time of the GENE ontology is
compared with the queries. The evaluation results are presented in the next section.

4. Results and Discussion

The queries given in Section 3 are first experimented in the AllegroGraph SPARQL endpoint.
The entire loading and query times are evaluated in the Jena API [51] that is written in the Java
Programming Language. Jena uses description logic to create a connected query space and provides
an interface to use and to manipulate ontologies inside Java. Before bulk loading the semantic data,
the loading ontology must be complete and accurate which means that the ontology should not contain
any conflicting information. Any inconsistency in the ontology causes a loading error and needs to be
corrected before loading the ontology into the triple store. Despite the open world assumption of the
ontology, ontological structures are described with a closed world assumption where the inconsistency
in an ontology can result in the failure of the ontological model. AllegroGraph and Oracle 12c are
both using the open world assumption while representing and saving the ontological structures.
Additionally, they both support Jena. As a result, converting ontological structures into Jena may lead
to the loss of semantics. However, this is a reasonable risk in order to compare the query performances
of these RDF triple stores.

Loading and using ontologies by Jena starts with the matching of ontological structures with Jena
descriptions and ends with saving this Jena description space in a local data store. Before querying
the ontology model, connection with the triple data store server, initialization of the Jena ontology
model, and binding the connection to the model has to be completed. The query response time can be
measured after completing these phases. Then, the query starts with the execution of the queries into
Jena Models. The query time ends with the return of the query results from the triple data store into
the Jena result set.

As AllegroGraph supports Jena API, Jena is used to calculate the differences between loading
times of GENE, GEXO, RETO, and REXO ontologies into triple data stores. The loading times for
AllegroGraph and Oracle 12c are given in Table 2. The entire loading times are converted to seconds.

Table 2. The ontology loading times for AllegroGraph and Oracle 12c.

Ontology AllegroGraph Oracle 12c

GENE 62.3 s 1683.2 s
GEXO 33.8 s 1823.2 s
RETO 37.8 s 1707.5 s
REXO 44.8 s 1694.5 s

After creating the Jena ontology model and loading the ontology into this model, construction of
the queries is done. In Table 3, the query times of each query are given. The entire querying times are
measured in terms of Java world time and converted into milliseconds.
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Table 3. The ontology query times for AllegroGraph and Oracle 12c.

Query AllegroGraph Oracle 12c

1 678.7 ms 51.7 ms
2 220.5 ms 52.2 ms
3 968.4 ms 63.0 ms
4 47.9 ms 54.8 ms
5 13360.4 ms 18486.7 ms

AllegroGraph and Oracle 12c can be used to store similar data, but they have different loading
and querying times of the same data set. In Table 2, it is clear that the two data stores have large
loading time differences. The reason behind this difference is the infrastructure and creation purpose
of these data stores. Oracle 12c stores structural data according to its traditional database structures.
However, AllegroGraph is a pure graph-based RDF triple store. Thus, AllegroGraph has a better
performance in loading ontological structures which are essentially graph-based descriptions. As the
triple number increases, the loading time also increases. However, the number of triples do not affect
Oracle 12c as it affects AllegroGraph. Besides, the accuracy of the query results is the same for both of
the triple stores. Figures 7 and 8 show the graphical representation of the loading and querying times.
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In Figure 8, query times show that Oracle 12c responds to simple queries that are basic and
indexed, such as Query 1–3, more rapidly than AllegroGraph. Oracle 12c responds to the basic and
indexed queries more quickly. However, it responds slower to more complex queries such as Query
4 and Query 5. The AllegroGraph response time does not depend on the complexity of the query.
Consequently, the number of triples in query space do not affect AllegroGraph’s response time.

Consequently, AllegroGraph is a more efficient triple store to load healthcare ontologies as
opposed to Oracle 12c. However, for long-living software system applications, a frequent software
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maintenance is an undesired situation. The ontology for describing the information base of the system
must be loaded to the triple store once, and then the information of the system grows by inserting or
deleting the instances without bulk load. As every individual has a considerable amount of health
records along his or her life, healthcare information is a good example of big data application areas.
Furthermore, as genetic factors are important for diagnosis, the personal health records for a person
could also be queried also after his or her death for the family health portrait. In addition, time
is one of the most important factors in diagnosis and treatment. Therefore, accessing the required
health data in a timely manner is crucial. Considering all of these facts, the query response times
of triple stores are the key factor for choosing the appropriate triple store for the healthcare domain.
As a result, Oracle 12c is faster than AllegroGraph according to the query times. Hence, when query
response time has significance, Oracle 12c as a triple store will be more appropriate for living healthcare
information systems.

5. Conclusions

AllegroGraph and Oracle 12c are RDF triple stores that are used to store big data sets. Both of the
triple stores are widely used to store different types of data. AllegroGraph can store both graph-based
data and RDF ontologies. Oracle 12c, with the help of its Semantic Web extension, is used to store
structured data with regards to RDF and OWL ontologies. In this study, the ontology loading and
querying time differences between AllegroGraph and Oracle 12c RDF triple stores are compared and
the reasons behind these differences are discussed.

AllegroGraph and Oracle 12c both respond accurately to the queries on the same data set.
Oracle 12c’s loading time is slower than AllegroGraph. On the contrary, AllegroGraph is loading
and matching RDF/OWL data faster than Oracle 12c due to its design purpose. Oracle has a
slow loading time on big data sets due to its layered infrastructure. However, Oracle 12c queries
faster than AllegroGraph when the data is already loaded. Despite its fast response time in basic
queries, Oracle 12c becomes slower when it responds to queries that are based on description logic
or graph-based ontological structures. When the query space grows large enough or becomes more
complete, AllegroGraph also becomes slower as expected.

Besides all the comparisons given, AllegroGraph and Oracle 12c store big healthcare data sets
accurately and query them efficiently. As a conclusion, AllegroGraph is the more suitable candidate to
store very fast changing data sets that need to be loaded repeatedly into triple store. Oracle 12c is more
suitable to store big data sets that are static. Also, when query time is more important than the loading
time, Oracle 12c is a more feasible triple store than AllegroGraph.
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