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Abstract: The domain of outer communication of an asymptotically flat spactime must be simply
connected. In five dimensions, this still allows for the possibility of an arbitrary number of 2-cycles
supported by magnetic flux carried by Maxwell fields. As a result, stationary, asymptotically
flat, horizonless solutions—“gravitational solitons”—may exist with non-vanishing mass, charge,
and angular momenta. These gravitational solutions satisfy a Smarr-like relation, as well as a first
law of mechanics. Furthermore, the presence of solitons leads to new terms in the well-known first
law of black hole mechanics for spacetimes containing black hole horizons and non-trivial topology
in the exterior region. I outline the derivation of these results and consider an explicit example in
five-dimensional supergravity.

Keywords: black holes in higher dimensions; supergravity; black hole thermodynamics; gravitational
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1. Introduction

The proof of the black hole uniqueness theorem is a central achievement in general relativity.
This result asserts that the any stationary, asymptotically flat analytic solution of the Einstein-Maxwell
equations describing a black hole spacetime must belong to the three-parameter Kerr-Newman family
of solutions (see the review [1]). There are a number of profound consequences of this theorem.
In particular, it implies that if one starts with a black hole with mass M, angular momentum J and
electric charge Q and considers an infinitesimal variation in the phase space of black holes, one must
arrive at another member of the Kerr-Newman solution with parameters M + δM, J + δJ and Q + δQ.
From the explicit form of he Kerr-Newman solution it is simple to derive the well-known first law of
black hole mechanics

δM =
κδAH

8π
+ ΩHδJ + ΦHδQ (1)

where AH is the area of a spatial cross-section of the event horizon and κ, ΩH and ΦH are the surface
gravity, angular velocity and electric potential of the horizon respectively. The above equation can
be interpreted as an equation for the tangent space at a given point in the phase space; it forms
an important part in the interpretation of a black hole as a thermodynamic system. Note that (1) was
proved independently of the black hole uniqueness results [2]; it follows directly from an analysis of
Einstein’s equations for stationary, axisymmetric linearized perturbations.

The study of black hole solutions in spacetime dimension D > 4 has been an active field of
research the past two decades, chiefly motivated by developments in string theory and the gauge
theory-gravity correspondence [3]. This is also a problem of intrinsic interest in the mathematical
study of Einstein’s equations, helping to illuminate features unique to D = 4 [4]. We will focus here
on asymptotically flat solutions in D = 5 as it is the next simplest case, and arises naturally in the
context of intersecting D-brane systems in string theory. In addition to the Myers-Perry vacuum
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solution [5], the natural generalization of the Kerr solution, which has horizon topology H ' S3,
a striking result was the discovery by Emparan and Reall of a vacuum black hole (‘black ring’) with
H ' S1 × S2 [6]. Both families are characterized by a mass M and two independent angular momenta
(J1, J2). Remarkably, it can be shown that the uniqueness theorems fail: a black hole in not characterized
by its mass and angular momenta. Very recently, the author and Lucietti have constructed a family
of ‘black lens’ solutions (H ' S3/Z2) [7,8]. These three cases exhaust all allowed horizon topologies
within the symmetry class of U(1)2 ≡ U(1)×U(1)—invariant solutions [9].

It is natural to expect that the first law of mechanics in D = 5 should take a more complicated
form than (1) because there are more “directions” in the phase space of solutions. This problem
has only recently been analyzed in generality [10] and the purpose of this article is to discuss and
sharply summarize the salient results and provide some new results. In particular, we derive new
formulae for the charge (27) and angular momenta (25) as well as associated potentials. First, however,
we should discuss another class of solutions to the Einstein-Maxwell equations, which we refer to as
gravitational solitons. These are stationary, asymptotically flat (we do not consider asymptotically
locally Euclidean or asymptotically locally flat spacetimes, e.g., the Eguchi-Hanson or Euclidean
Schwarzschild metrics with an extra timelike direction −dt2 added for which the standard ADM
mass is not defined. For further details on this issue, see [11]) horizonless spacetimes with non-zero
energy. Such spacetimes do not in fact exist in D = 4 — a result that can be succinctly summarized
by the slogan “no solitons without horizons” [12]. This conclusion is closely related to the fact that in
D = 4, the region exterior to a black hole horizon (the domain of outer communication) must be simply
connected [13]. Roughly, this implies a spacetime without a horizon must be topologically trivial
and does not carry any non-zero conserved charges (although if there are non-Abelian Yang-Mills
fields present, topology can be contained within non-trivial gauge field configurations [14]). In D = 5
the restriction of simple connectedness is weaker, and indeed a horizonless spacetime could contain
an arbitrary number of 2-cycles (“bubbles”). More precisely, if Σ is a spatial hypersurface in the domain
of outer communication, then the second homology H2(Σ) can contain non-trivial elements. As we
describe below, these 2-cycles may carry magnetic flux sourced by Maxwell fields and and contribute
towards a non-zero mass, angular momenta, and electric charge of the spacetime.

These solitons (variously known as “smooth geometries” or “fuzzballs” in the literature,
see e.g., [15] and references therein) appear to play an important role in the lack of black hole uniqueness
in D = 5. A study of this assertion has been initiated in [16]. Here we will be concerned with the
problem of proving an analogue of (1) valid for gravitational solitons, which we will refer to as
the first law of soliton mechanics. Further, we will consider the possibility of black hole solutions
containing solitons in their domain of outer communication. This will lead to a modification of (1)
to include the effects of the 2-cycles, producing a fist law of “black hole and soliton mechanics” [10].
The consequences of these new terms of black hole thermodynamics is only starting to be explored.

2. Black Holes and Solitons in Five Dimensions

We begin by outlining the framework for analyzing black hole and soliton solutions (M, g) in
five-dimensional gravity coupled to an arbitrary number of Maxwell fields FI , I = 1 . . . N and neutral
scalar fields χA, A = 1 . . . n. We refer to the reader to the review articles [3,4] for a comprehensive
discussion on known solutions in D ≥ 5 and the statements of the strongest current uniqueness and
rigidity results.

2.1. Stationary, Biaxisymmetric Solutions

We will consider spacetime solutions (M, g, FI , χA) that are stationary and biaxisymmetric.
This means that the spacetime manifold admits an action of Rt ×U(1)2 as isometries. In addition
we require that the isometry group also extend to symmetries of the matter fields. We denote the
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generator of the timelike isometry that coincides the asymptotic generator of time translations by ξ and
the generators of the rotational symmetries mi. The invariance properties above can be expressed as

Lξα
g = Lξα

FI = Lξα
χA = 0 (2)

where ξα = (ξ, mi) and L denotes Lie differentiation. If the spacetime contains a black hole, we will
take ξ to be stationary Killing field which becomes null on the event horizon.

Due to (2) it proves convenient to consider all spacetime fields as functions on the two-dimensional
orbit space B ≡ M/(Rt ×U(1)2). B can be shown to be a simply connected manifold with boundary
∂B and corners [9]. In the interior, on the 1d boundary segments (except the part corresponding to
the event horizon in the spacetime) and at the corners (where these segments intersect), the matrix of
the scalar products of Killing fields g(mi, mj) has rank 2, 1, 0 respectively. For an asymptotically flat
spacetime, the orbit space B is non-compact with one asymptotic end corresponding to spatial infinity.
The boundary ∂B ∼= R is divided into intervals I, or “rods”, all of which are compact except for the two
asymptotic ends. If a black hole is present, the horizon, which we assume to be connected, corresponds
to a compact interval IH ∼= H/U(1)2. The rest of ∂B correspond to 2-surfaces in the spacetime where
some integer linear combination vimi, vi ∈ Z of the Killing fields mi vanish. These 2-surfaces are in fact
topologically spheres, where the endpoints of a finite rod correspond to the “poles” of the S2 where
the same spatial Killing field has fixed points. The two semi-infinite intervals, which we denote by
I+, I−, correspond to the axes of rotation in the spacetime which extend out to spatial infinity.

The specification of the rod data (i.e., length and location of the rods Ia, IH along with
the associated integers vi

a) fully characterize a R × U(1)2-invariant spacetime (M, g) up to
diffeomorphism [9]. Indeed, the appropriate generalization of the 4d uniqueness theorems state that
an asymptotically flat R×U(1)2-invariant black hole solution of the vacuum equations is uniquely
specified by its mass M, angular momenta Ji, and rod data [9]. The latter fixes the horizon topology
H of the black hole, as well as the topology of a spatial hypersurface Σ in the domain of outer
communication. In the following sections, we will exploit this framework in order to reduce various
Komar-type integrals defined on Σ to integrals over ∂B. This will lead to a generalization of the
variational law (1).

2.2. The Theory and Potentials

Our primary interest is in the five-dimensional supergravity theories that govern the low-energy
dynamics on appropriately compactified string theory. For the sake of generality we will consider the
theory with action

S = 1
16π

∫
?R− fAB(χ)dχA ∧ ?dχB − gI J(χ)FI ∧ ?F J − 1

6
CI JKFI ∧ F J ∧ AK (3)

where FI = dAI for a locally defined gauge potential AI , the couplings fAB, gI J are positive definite
and CI JK = C(I JK) are constants. One may also include a scalar potential term V(χ) ? 1 to the action,
which we will not do for simplicity (see [10]). The action (3) includes pure Einstein-Maxwell theory
and minimal supergravity coupled to N vector multiplets, which arises from Type IIB supergravity on
K3 or S1 × T4. Note that it does not include gauged supergravities which are relevant in the context
of the gauge theory-gravity correspondence; our analysis does not apply to asymptotically Anti-de
Sitter spacetimes.

As observed by GIbbons and Warner [17], to include the effects of 2-cycles, it is important not to
assume that the gauge fields are globally defined—indeed it is precisely the existence of non-trivial
elements of H2(Σ) that physically “support” bubbles from collapsing. To avoid this we work dual
Maxwell fields GI ≡ ?FI . The field equations following from (3) are

Rab = gI J

(
2
3

FI
acF Jc

b +
1
6

GI
acdG Jcd

b

)
+ fAB∂aχA∂bχB (4)
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and
∇b(gI J F J

ba) +
1
8

CI JKF JbcGK
abc = 0 . (5)

with an additional set of equations for the scalar fields χA.
We define the mass, angular momenta, and charge contained in the asymptotically flat spacetime

by the integrals over the “boundary” sphere S∞ ≡ limr→0 Sr where Sr is a sphere of radius r in the
Cartesian coordinates defined at spatial infinity:

M = − 3
32π

∫
S∞

?dK , Ji =
1

16π

∫
S∞

?dmi , QI ≡
1

8π

∫
S∞

gI J ? F J (6)

where K is the asymptotic generator of timelike translations (if the spacetime contains a black hole,
K = ξ −Ωimi, and otherwise it coincides with ξ). We will refer to the quantities (6) as conserved charges.

We now show how the symmetries (2) and the field Equations (4) and (5), lead to existence of
potentials globally defined on B. Closure of the FI imply the existence of potentials ΦI defined by

dΦI = iξ FI (7)

and since B is simply connected, ΦI are globally defined. The integration constant is fixed by requiring
that ΦI vanish at spatial infinity. Invariance of ?GI implies the existence of globally defined closed, but
necessarily exact 2-forms

ΘI ≡ gI JiξGJ − 1
2

CI JKFJΦK (8)

Now, applying Stokes’ theorem to the mass integral and applying the Killing field identity
?d ? dξ = −2R(ξ) where R(ξ) is the one-form obtained by contracting the Ricci tensor (4) with ξ,
one finds [10]

M =
3κAH
16π

+
3
2

Ωi Ji +
1

16π

∫
Σ

ΘI ∧ FI +
1

8π

∫
H

ΦIgI J ? FJ (9)

Here Σ is a spatial hypersurface with asymptotic boundary S3
∞ and, if a black hole is present,

an “inner” boundary component −H. In the absence of a horizon, the first two terms in (9) are not
present. The important term is the integral involving ΘI ; this would vanish if ΘI is an exact form,
but if there are 2-cycles present (e.g., for a soliton spacetime) this term will contribute to the mass of
the spacetime.

The rotational symmetries may now be used to derive the existence of closed forms and globally
defined potentials as follows. We have

imi F
I = dΦI

i (10)

which define globally defined “magnetic” potentials. Further the invariance property Lmi ΘI = 0 leads
to globally defined scalar potentials UIi defined by

dUIi = imi ΘI +
1
2

CI JKdΦJ
i ΦK

H (11)

Similarly there are globally defined closed two-forms given by

Υi
I ≡ gI Jimi G

J − 1
2

CI JKFJΦK
i (12)

From Cartan’s formula we obtain globally defined scalar fields µI
ij defined by dµI

ij = imi Υ
I
j . We will

demonstrate below how the potentials (ΦI
i , UIi, µIi) can be used to express the mass, angular momenta,

and charge of the spacetime in terms of contributions from 2-cycles.
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3. 1st Law of Black Hole-Soliton Mechanics

We now consider variations (δg, δFI, δχA) about a given solution (g, FI, χA). We assume the
variations satisfy the linearized equations of motion following from (4), (5) and that are invariant under
the R×U(1)2 symmetry. There are additional assumptions that must be made (e.g., the Killing fields
are the same, so δξ = δmi = 0 and the location of the event horizon H and any 2-cycles is unchanged).
These conditions are standard in the classic proof of the first law of black hole mechanics [2]. Starting
from the ADM mass formula for the perturbation

δM =
3

8π

∫
S∞

?(K ∧ h) (13)

where hab =
1
2(∇bδgba − gcd∇aδgcd), an involved calculation using the linearized equations of motion

and another application of Stokes’ theorem leads to the mass variation formula [10]

δM =
κδAH

8π
+ ΩiδJi +

1
8π

∫
Σ

ΘI ∧ δFI +
1

8π

∫
H

ΦIδ(gI J ? FJ) (14)

Our task it to express δM in terms of variations of the potentials and charges defined above.
We will use the identity ∫

Σ
ω = 2π2

∫
B

ηijimj imi ω (15)

for any 4-form ω where ηij is the antisymmetric symbol with η12 = 1 and mi have 2π-periodic orbits.

3.1. Soliton Spacetimes

First consider the case where spacetime does not contain any horizons, so Σ is complete with
an asymptotically flat end. The orbit space consists of two semi-infinite intervals I± upon which
a certain linear combination of Killing fields vanish (say m1 and m2 respectively) and finite-length
rods Ia upon which the Killing field vi

ami vanishes. The latter correspond to S2-submanifolds.
From their definition it is easy to see that the associated potentials vi

aΦI
i , vi

aUIi, vi
aµI

ji must be constant
on Ia. In particular on I±, the associated potentials vanish, since they are constants that vanish at
spatial infinity.

The Smarr relation for the mass (9) in the soliton case is simply

M =
1

16π

∫
Σ

ΘI ∧ FI =
π

4

∫
B

ηijdUIj ∧ dΦI
i (16)

where we have used (15). The integral can be simplified by using Stokes’ theorem on the
manifold-with-boundary B: ∫

B
ηijdUIj ∧ dΦI

i =
∫

∂B
ηijUIjdΦI

i (17)

where we used vanishing of UIi at spatial infinity to eliminate the integral over the asymptotic end
B∞ corresponding to the asymptotically flat in the spacetime. Furthermore there are no contributions
from I± either (note that either UI+ = Φ+ = 0 on I+ and similarly on I−). We are left with an integral
over the remaining finite rods. Suppose we are on a interval on which vi

ami = 0. By an SL(2,Z)
transformation we can work in a basis in which m̂1 = vi

ami and m̂2 = wimi where wi ∈ Z. Here m̂2

represents the other Killing field which does not vanish in the interior of Ia but does vanish at its
endpoints. Thus this describes a 2-cycle, i.e., a non-trivial element of H2(Σ). The transformation
preserves the periodicity of the orbits of m̂i. Working in this basis, and noting (ÛI1, Φ̂I

1) are constant on
a given rod I, ∫

I
ηijUIjdΦI

i =
∫

I
ηijÛIjdΦ̂I

i = −ÛI1

∫
I

dΦ̂I
2 =

2
π

ΨI[C]qI[C] (18)
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where we have defined the magnetic flux

qI[C] ≡ 1
4π

∫
C

FI (19)

and the potentials ΨI[C] ≡ πviUIi = πÛIi. A similar argument applied to the mass variation
formula (14) without horizon terms gives

1
8π

∫
Σ

ΘI ∧ δFI =
∫
B

ηijdUIj ∧ dδΦI
i = ΨI[C]δqI[C] (20)

Therefore, for spacetimes containing gravitational solitons without horizons we arrive at

M =
1
2 ∑

[C]
ΨI[C]qI[C] , (21)

δM = ∑
[C]

ΨI[C]δqI[C] , (22)

which we refer to as the mass formula and first law of soliton mechanics respectively [10]. Of course
in the absence of a horizon or any ‘temperature’ the possibility of a thermodynamic interpretation
is unclear.

Let us now turn to finding an analogous expression to (21) for Ji = J[mi]. Using Stokes’ theorem,

J[mk] =
1

8π

∫
Σ
?R(mk) =

1
8π

∫
Σ

gI J

(
2
3

imk FI ∧GJ − 1
3

imk GI ∧ FJ
)

(23)

where we have used (4). Using (5) and (15) we find

J[mk] =
1

8π

∫
Σ

(
−1

3
ΥIk ∧ FI +

2
3

d
[
gI J ? FJΦI

k

])
=

π

6

∫
B

ηijdµIik ∧ dΦI
j (24)

where we have eliminated the total derivative term in the first integral by using the fact that ΦI
i vanish

at infinity. We can express this as an integral over ∂B (note that we can choose the integration constants
appropriately to ensure µI1k and µI2k vanish on I+ and I− respectively) and a similar computation that
led to (18) leads to

J[mk] =
π

3 ∑
[C]

µIk[C]qI[C] (25)

where µI
Ik[C] ≡ −vi

aµIik and vi
a are the set of integers characterizing the rod Ia corresponding to the

2-cycle C ∈ H2(Σ). This shows how the source of the angular momenta in a soliton spacetime are the
magnetic fluxes qI[C], weighted by the µIk[C].

Finally, for the electric charge, we have, using (5) and (15)

QI = −
1

32π

∫
Σ

CI JKFJ ∧ FK =
π

8

∫
B

ηijCI JKdΦJ
i ∧ dΦK

j (26)

which leads to
QI = −

π

4 ∑
[C]

CI JKΦJ[C]qK[C] (27)

which expresses the total electric charge as a sum over the magnetic fluxes from each 2-cycle,
weighted by the associated electric potentials ΦI[C].
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3.2. Black Holes Spacetimes Containing Solitons

We now assume the spacetime contains a single connected black hole horizon. We will of course
find the usual horizon terms in the first law, but also additional terms arising from the presence of
2-cycles in the exterior. We will also find terms associated to certain disc-topology surfaces which arise
in black hole spacetimes with finite rods in their orbit space. Note that this possibility can occur even
when there are no 2-cycles in the spacetime (e.g., for black rings and black lenses).

In the orbit space framework, a horizon H is a finite rod IH upon which the Killing field ξ goes null
while the matrix g(mi, mj) has rank 2. On a Killing horizon, Rabξaξb = 0 and by standard arguments
one can show that iξ FI ∝ ξ, imi iξGI ∝ ξ on H. Using this we see the potentials ΦI and UIi are all
constant on this interval. We exploit this fact by ‘integrating by parts’ in the opposite way to rewrite
the expression (17) as ∫

B
ηijdUIj ∧ dΦI

i = −
∫

∂B
ηijΦI

i dUIj (28)

where as before, there are no contributions from ∂B∞ or I±. There is no contribution from IH either as
the UIi are constant there. However, the presence of a horizon still manifests itself as follows. Suppose
there is some finite rod ID upon which m̂1 = vi

Dmi vanishes that lies adjacent to IH (i.e., it shares one
endpoint p ∈ ∂B with IH). Then m̂2 vanishes at the other endpoint of ID but not at p. Hence ID has
the topology of a disc D or ‘cigar’ with a boundary S1 that intersecting the horizon H. There can be at
most two such discs in a spacetime, corresponding to such intervals lying ‘on either side’ of IH.

On such a disc define the flux charge

QI[D] ≡ 1
4

∫
D

(
ΘI +

1
2

CI JKFJΦK
H

)
. (29)

and note that the integrand is a closed 2-form, so that one can use any surface homologous to D
(with the same boundary) to evaluate the integral. We find

π

2

∫
ID

ηijΦI
i dUIj =

π

2
Φ̂I

1

∫
ID

dÛI2 = ΦI[D]QI[D] (30)

and ΦI[D] ≡ vi
DΦI

i . Similarly, starting from the mass variation formula in the presence of a horizon,

1
8π

∫
Σ

ΘI ∧ δFI +
1

8π

∫
H

ΦIδ(gI J ? FJ) = ΦI
HδQI +

π

2

∫
B

ηijdUIj ∧ dδΦI
i . (31)

We express the final integral on the right hand side as∫
B

ηijdUIj ∧ dδΦI
i = −

∫
∂B

ηijδΦI
i dUIj (32)

Once again using the fact UIi is constant on IH, the only contributions will come from disc rods ID
and finite rods Ia corresponding to 2-cycles C ∈ H2(Σ). In particular,∫

ID

ηijδΦI
i dUIj = −

2
π

δΦI[D]QI[D] , (33)

where we have made use of the fact vi
DδΦI

i is constant on the ID. There are analogous terms over the
finite rods, with analogous definitions for ΦI[C] and Q[C]. Collecting these results we arrive at the
following main result [10]:
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Theorem 1. Consider an asymptotically flat R×U(1)2-invariant solution (g, FI, χA) of the theory (3) with
a domain of outer communication R×Σ. Then the mass formula

M =
3κAH
16π

+
3
2

Ωi Ji + ΦI
HQI +

1
2 ∑

[C]
QI[C]ΦI[C] +

1
2 ∑
[D]

QI[D]ΦI[D] (34)

holds, where [C] is a basis for H2[Σ] and [D] are disc topology surfaces ending on the horizon. Furthermore,
consider R×U(1)2-invariant variations (δg, δFI, δχA) satisfying the linearized field equations. Then the
variation of the mass is given by

δM =
κδAH

8π
+ ΩiδJi + ΦI

HδQI +∑
[C]
QI[C]δΦI[C] +∑

[D]

QI[D]δΦI[D] . (35)

Some remarks are in order. Firstly, if there are no horizons, then the usual black hole terms in (34)
and (35) vanish, as well as terms involving discs. We then obtain different, but equivalent, expressions
for the mass and mass variation formulae for solitons given in (21) and (22). Secondly, if there are no
2-cycles (solitons) in the spacetime, then we recover the standard laws of black hole mechanics, with the
additional advantage that we can now take into account non-spherical horizon topologies via the disc
terms. Indeed, additional terms in the Smarr relation and first law for black rings were originally
observed by Emparan [18] and later given a derivation by Copsey and Horowitz [19]. In contrast
here the extra terms arise in a natural way as a consequence of the structure of the orbit space, as has
recently been shown in [20]. Finally, it is interesting that variations of intensive variables (e.g., δΦI

i [D])
appear in the first law, rather than those of extensive quantities. The significance of this remains to
be explored. but at least for black rings and black lenses, the quantities ΦI

i [D] and ΦI
i [C] capture the

notion of the ‘dipole charges’ that characterize these spacetimes [8].
We conclude by noting that additional terms to the standard first law can arise in other settings

than the ones considered here; for example, if we consider non-asymptotically flat spacetimes that
admit translational isometries, such as p-brane supergravity solutions, there are additional ‘tension’
terms associated to variations of the compact directions [21]. In addition, one can have dipole terms
arising if there is a canonical S2 at spatial infinity (see, e.g., [22]) and spacetimes admitting Kaluza-Klein
bubbles [23].

3.3. A Gravitational 1-Soliton SpacetimeM = R4#CP2

Here we will consider an explicit example in the simple five-dimensional minimal supergravity
theory. The solution describes a simple non-supersymmetric asymptotically flat soliton on CP2 with
a point removed [17], and is sufficiently complicated to exhibit the important features discussed above.
The metric and Maxwell field are given by

ds2 = −r2W(r)
4b(r)2 dt2 +

dr2

W(r)
+

r2

4
(σ2

1 + σ2
2 ) + b(r)2(σ3 + f (r)dt)2 (36)

F =

√
3q

2
d
[(

1
r2

)(
j
2

σ3− dt
)]

(37)

where σi are the left-invariant one-forms on SU(2) and ψ ∼ ψ + 4π, φ ∼ φ + 2π, and θ ∈ (0, π) to
ensure asymptotic flatness of g as r→ ∞. The functions appearing above are

W(r) = 1− 2
r2 (p− q) +

q2 + 2pj2

r4 f (r) = − j
2b(r)2

(
2p− q

r2 − q2

r4

)
(38)

b(r)2 =
r2

4

(
1− j2q2

r6 +
2j2p
r4

)
(39)
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where p, q, j ∈ R. The set (g, F) are a solution to minimal supergravity, obtained by setting
N = 1, gI J = 2, and CI JK = 16/

√
3 and all scalars to be constant in (3). If one takes

p =
r4

0(r
2
0 − j2)
2j4

q = −
r4

0
j2

(40)

then it can be shown that the geometry is complete and r ≥ r0. The Killing field ∂ψ degenerates at
r = r0 and the manifold near that point is diffeormorphic to Rt× S2×{pt} provided there is no conical
singularity at r = r0, which requires [20](

1−
r2

0
j2

)(
2+

r2
0

j2

)2

= 1 (41)

which fixes r2
0/j2 ≈ 0.870385, and in particular r2

0 < j2. One can check that gtt, gtt < 0 everywhere,
so the spacetime is stably causal with no ergoregions and the t = t0 surfaces are Cauchy hypersurfaces.
In summary we have a one-parameter family of smooth, horizonless asymptotically flat stationary
soliton spacetimes with R× SU(2)×U(1) symmetry.

The spacetime has a single 2-cycle at r = r0 with associated magnetic flux [20]

q[C] =
1

4π

∫
S2

F =

√
3r2

0
4j

(42)

and the various potential functions can be worked out after some computation (we choose our basis of
the U(1)2 generators with 2π periodic orbits to be ∂ψ̂ ≡ 2∂ψ and ∂φ):

Φξ =

√
3q

2r2 , Φψ̂ = −
√

3qj
2r2 , Φφ = −

√
3qj cos θ

4r2 . (43)

and

Uψ̂ =

√
3jq
r2

( q
r2 − 1

)
, Uφ =

√
3jq cos θ

2r2

( q
r2 − 1

)
. (44)

Finally, we have

µψψ = −
√

3q2j2

4r4 +

√
3q
4

, µφψ =

√
3q cos θ

4

(
1− qj2

r4

)
µφφ = −

√
3q2j2 cos2 θ

4r4 −
√

3q
4

, µψφ = −
√

3q cos θ

4

(
1+

qj2

r4

) (45)

where integration constants are chosen appropriately using the prescription given above. Using the
above formula one finds

Ψ[C]q[C]
2

=
3π

8

(
r0

j

)4
(j2 + r2

0) (46)

which is indeed the ADM mass M of the spacetime in accordance with (21). Furthermore,

Q = − 4π√
3

Φ[C]q[C] = −
√

3πr4
0

2j2
. (47)

and since the 2-cycle is specified by the vanishing of ∂ψ̂, using the formula (25) we find

Jψ =
πr6

0
4j3

, Jφ = 0 (48)
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where in the second equality we observe that χψφ = 0 on C using (40). These expressions agree with
the expressions for Q, Ji obtained using the standard definitions. It is important to note that the first
law for soliton mechanics (22) reads δM = Ψ[C]δq[C] in this example. A calculation reveals [20]

dM−Ψ[C]dq[C] =
3πr5

0
4j5

(jdr0− r0dj) (49)

Thus the relation (22) holds provided the regularity condition (41) holds, i.e., r2
0/j2 is constant

(although the precise value of the constant does not actually appear). This indicates the key role that
regularity of the spacetime plays in the first law. This is in contrast to the Smarr type relation (46) for
the mass, which holds without explicit use of the regularity condition.

4. Discussion

The moduli space of stationary, U(1)2-invariant black hole solutions in five dimensions clearly
has a rich structure that remains to be fully explored. It is natural to interpret (35) as an equation
for the tangent space at a given point in the solution space. The orbit space framework provides
a framework to characterize these solutions, although at present it does not address the issue of
existence, which is typically much more difficult than the corresponding uniqueness problem. In the
usual D = 4 Einstein-Maxwell system, solutions are specified by three conserved charges (M, Q, J);
in D = 5 one must also include the spacetimes’s rod data. These in turn give rise to various fluxes
qI[C],QI[C] through 2-cycles [C] and corresponding quantities through disc topology surfaces [D]

attached to the horizon. There are few examples of solutions that describe an asymptotically flat
spacetime containing a black hole-soliton configuration—for example, see [16]. The construction of this
solution, however, depends crucially on supersymmetry. In this case, one can show that the additional
“interaction” terms in (35) and (34) vanish. This is similar to the fact that the surface gravity κ, angular
velocities Ωi, and electric potentials ΦI

H vanish on the horizon of a supersymmetric black hole.
We emphasize though that in the first law (35) it is the variations of the potentials, δΦI[C], δΦI[D]

that appear, rather than e.g., δqI[C], δqI[D]. In contrast, for pure soliton spacetimes, the mass-variation
formula (22) and Smarr-type formulae (22) and (21) take a standard form, although of course there is
no thermodynamic interpretation in this case. Understanding the role the fluxes and potentials play
will be necessary to understand black hole thermodynamics in five dimensions. In particular, the extra
terms characterize the interaction between the horizon and the presence of solitons in the domain of
outer communication. Such terms may be relevant when considering the possibility that a black hole
can “shed” a soliton. More broadly, it would be interesting to see if there is a connection between this
work and the general dynamical stability problem for black holes.

A natural generalization to pursue would be to consider black hole-solition spacetimes that are
asymptotically globally Anti-de Sitter. The definition of the Komar mass used to derive the Smarr
relation is divergent in this case (there is a divergent term in the volume integral appearing on the
right hand side of (9)). Therefore a different approach (e.g., using counterterms) than the ones used in
this paper would be required, using an appropriately well-defined mass. To derive a general first law
in this setting it may be useful to study explicit examples of gravitational solitons in AdS5 [24] and
their physical properties [25]. Extending beyond the case of globally AdS5 asymptotics, one can also
consider the thermodynamics of black string spacetimes with a negative cosmological constant with
compact spatial directions in the asymptotic region [26].
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