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Abstract:



In the last two decades, the Maximum Entropy Principle (MEP) has been successfully employed to construct macroscopic models able to describe the charge and heat transport in semiconductor devices. These models are obtained, starting from the Boltzmann transport equations, for the charge and the phonon distribution functions, by taking—as macroscopic variables—suitable moments of the distributions and exploiting MEP in order to close the evolution equations for the chosen moments. Important results have also been obtained for the description of charge transport in devices made both of elemental and compound semiconductors, in cases where charge confinement is present and the carrier flow is two- or one-dimensional.
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1. Introduction


In the design of new generation electronic devices, the modern micro- and nanoelectronics industry has an increasing need for mathematical models to simulate devices before they are realized in the laboratory. In particular, the accurate modeling of energy transport in semiconductors is necessary in order to describe high-field phenomena, such as hot electron propagation, impact ionization and heat generation in the bulk material. Semiclassically, the most effective way to describe these phenomena makes use of the semiclassical Boltzmann Transport Equation (BTE) [1]. However, solving the BTE is a daunting computational task, both using an indirect stochastic approach by Monte Carlo methods and direct numerical schemes based on discontinuous Galerkin methods or finite differences [2]. This is the reason why, in many cases, it is desirable to have simpler macroscopical models, known as hydrodynamical-like models, which are highly useful for computer aided design (CAD) purposes. These models are obtained from the infinite set of moment equations of the BTE by a suitable truncation procedure. It is well-known that a closure assumption is required in order to have a closed system of evolution equations. In the past, various closure assumptions have been made for the semiconductor transport moment systems, leading to various classes of hydrodynamical models, see e.g., [3,4,5]. However, these various closure assumptions are, at best, only phenomenological and often a consistent physical and mathematical justification is lacking. Lately, a closure assumption based on the Maximum Entropy Principle of extended thermodynamics [6,7] has been successfully applied, both in the parabolic and non-parabolic band approximation, to various types of semiconductors [8,9,10,11,12,13]. The resulting models, which differ for the choice of the moments to assume as field variables, are, in fact, able to describe charge transport due both to electrons and holes and also heat transport due to phonons. All the main scattering mechanisms between carriers and phonons and among phonons themselves are taken into account. The models also have nice mathematical properties, being symmetric hyperbolic. In particular, this assures the well-posedness of the Cauchy problems and the finite velocity of the propagation of disturbances [14].



Due to the increasing shrinking of modern device dimensions, quantum effects are beginning to play a relevant role in charge transport. In the framework of the moment method and of Maximum Entropy Principle (MEP), a strategy to take into account these effects has been proposed in [15] and consists of using the moment system arising from the Wigner equation. The starting point is to expand the Wigner function and the relative transport equation with respect to the squared reduced Planck constant [image: there is no content]. The zero-order part of the collision operator is supposed to be the same as the semiclassical one, while the first-order contribution is supposed to act only on the [image: there is no content] correction of the Wigner function and is modeled in a relaxation form. Therefore, at zero order, the Wigner function is given by the solution of the semiclassical Boltzmann equation, which is approximated with the standard maximum entropy method, while the [image: there is no content] order correction is obtained with a Chapman–Enskog expansion in the high field scaling.



In the description of charge transport in some devices, such as double gate metal oxide semiconductor field effect transistors (DG-MOSFETs), where quantum effects are relevant only along one direction, called the confinement or transversal direction, another strategy can be used. One can adopt a quasi-static description along the confining direction based on a coupled Schrödinger–Poisson system which leads to a subband decomposition of the electron energy levels, while the transport along the longitudinal directions can be described by a semiclassical Boltzmann equation for each subband [16]. Therefore, a complete description can be done in terms of a coupled Schrödinger–Poisson–Boltzmann system. However, the numerical integration of the transport part, which has been performed by employing Monte Carlo or deterministic methods [16,17], is also in this case very expensive, from a computational point of view, for CAD purposes. Consequently, it can be convenient to substitute the Boltzmann equations with macroscopic models again obtained by using the moment method and closing the moment equations with MEP [18,19,20].



In this paper, we will give a review of all the above-mentioned models according to the following plan. In Section 2, the 3D semiclassical macroscopic models are presented, showing how they are closed by using MEP and in Section 3 their quantum correction is discussed. In Section 4, the case of quantum confinement is described. Eventually in Section 5, some numerical simulations are sketched.




2. The 3D Semiclassical Macroscopic Models


In the semiclassical description, roughly speaking, the charge and heat transport in semiconductors can be described by modeling them as consisting of a mixture of gases of electrons and phonons. As regards electrons, those which mainly contribute to the current flow occupy states near to the lowest minima of the lowest conductions bands and to the highest maxima of the highest valence bands. The latter contribution can be conveniently treated in terms of pseudo-particles called holes (missing electrons), which have electric charge, crystal momentum and energy opposite to those of the missing electrons in the considered valence band [1,21,22]. An electron/hole population for each neighborhood of the lowest/highest minima/maxima of the lowest/highest conduction/valence bands is taken into account. The neighborhoods of the minima/maxima are usually called valleys. The electron/hole state is characterized by the index of the band it occupies, by its wave vector and spin state.



The dependence of the carrier energy on the wave vector in each valley can be analytically approximated by non-parabolic dispersion relations of the following form [1,9]


EA(kA)=ℏ2|kA|22meγA(EA)ψA−1(nA),



(1)




where [image: there is no content] is the carrier energy in the A-th valley measured from the bottom of the valley, the index A running over the considered valleys, [image: there is no content] is the carrier quasi-wave vector, referred, for each valley, to the minimum or maximum of the valley [1], [image: there is no content], [image: there is no content] is the non-parabolicity factor, and [image: there is no content] is the free electron mass.



For electrons, if one uses the ellipsoidal approximation, the dependence of [image: there is no content] on [image: there is no content] is given by


[image: there is no content]








where [image: there is no content][image: there is no content] are the diagonal elements (eigenvalues) of the inverse effective mass tensor of the A-th valley, multiplied by [image: there is no content], referred to an orthonormal basis of the tensor.



Analogously, for holes, one has


[image: there is no content]








in the case of warped bands, with φ and θ the azimuthal and polar angle of the wave vector respectively, and [image: there is no content], [image: there is no content] and [image: there is no content] inverse valence band parameters.



In the analytic approximations, for each valley, the domain of the wave-vector is extended to all [image: there is no content] and the volume element in the [image: there is no content]-space can be written as (henceforth we omit the valley index unless there is a possibility of confusion)


d3k=me2meℏ3Eγ5(E)γ(E)−Eγ′(E)ψ32(φ,θ)dEdΩ,








where the prime denotes a derivative with respect to the argument of the function, and [image: there is no content] is the solid angle element. The charge carrier velocity, given by [image: there is no content], has the following expression in terms of the energy and the angular variables


vi=ℏ2meγ2(E)γ(E)−Eγ′(E)li,li:=∂∂ki(|k|2ψ−1)=g(E)ηi(φ,θ)ni,g:=22meEℏγ(E),ηi:=ψmi*.











Similarly, for phonons that are used to describe the crystal vibrations and strongly influence charge transport, one population for each branch has to be considered [23]. The number of branches is equal to [image: there is no content], ν being the total number of atoms per unit cell of the crystal lattice, and a is the lattice constant. Among the most used analytic approximations for the phonon dispersion relation, we report the one which is isotropic and quadratic in the phonon wave vector [image: there is no content]


ϵp=ϵ0p+ℏvspq+ℏcpq2,q∈0,2πa,



(2)




where [image: there is no content] is the phonon energy, [image: there is no content] and [image: there is no content], [image: there is no content], are suitable constants depending on the material under consideration, and p varies over the [image: there is no content] phonon branches. The Einstein and the Debye approximations are particular cases of (2), respectively obtained for [image: there is no content] and [image: there is no content].



At the kinetic level, the state of the electrons, holes and phonons can be described by their one-particle distribution functions [image: there is no content], [image: there is no content] (electron), h (hole), [image: there is no content] indicating the valleys occupied by β-carriers ([image: there is no content]), and [image: there is no content], with [image: there is no content], whose time evolution is determined by the Boltzmann–Bloch–Peierls (BBP) system (see [24] and references therein)


∂fAβ∂t+vAβ·∇xfAβ+qβℏE·∇kfAβ=Cim(fAβ)+∑Aβ′′,pCpAβAβ′′(fAβ,fAβ′′,gp)+∑Aβ¯′,pIpAβAβ¯′[fAβ,fAβ¯′,gp],



(3A)






∂gp∂t+vp·∇xgp=∑Aβ,Aβ′′CAβ,Aβ′′p(gp,fAβ,fAβ′′)+∑ηCηp(gp)+∑Aβ,Aβ¯′IAβAβ¯′p[gp,fAβ,fAβ¯′],



(3B)






Δ(εsV)=qn(x,t)−p(x,t)+Na(x)−Nd(x),



(3C)




where [image: there is no content] is the charge of the particles, [image: there is no content] with q absolute value of the elementary charge, [image: there is no content] is the complement of β with respect to the set [image: there is no content][image: there is no content] is the phonon group velocity, [image: there is no content] is the material permittivity, V and [image: there is no content] are the electric potential and field, η labels the type of scattering among phonons themselves (see below), [image: there is no content] and [image: there is no content] are the acceptor and donor concentrations, while n is the total electron density


[image: there is no content]



(4)




and p the total hole density


[image: there is no content]



(5)







The Boltzmann Equation (3A) is coupled among them through the Poisson Equation (3C) and some of the collision operators which appear at the right-hand side of (3A) and (3B).



The operator [image: there is no content] [1] takes into account scatterings between carriers and impurities and is elastic and intravalley, which means that the initial and the final state of the carrier lie in the same valley. Its form is


[image: there is no content]








the impurity scattering transition rate being given by


wim(k,k′)=K(im)1|k−k′|2+λD22δ(E(k′)−E(k)),








with [image: there is no content] the inverse Debye length and K(im)=Za/d2Na/dq44πℏϵs2, where Z is the impurity charge number, [image: there is no content] the lattice temperature and [image: there is no content] the Boltzmann constant. According to whether interactions with donors or acceptors are considered, [image: there is no content] or [image: there is no content], and [image: there is no content] or [image: there is no content] have to be taken.



The collision operators CpAA′(fA,fA′,gp) describe interactions between carriers of the same type and phonons. These scatterings can be intravalley (intraband) ([image: there is no content]), or intervalley (intraband or interband) ([image: there is no content]) [1], which means that the initial and final state belong to different valleys. These operators read [24]


CpAA′(fA,fA′,gp)=∫S2πa∫R3[wpAA′+(k,k′,q)κ1AA′(gp,fA,fA′)+wpAβA′−(k,k′,q)κ2AA′(gp,fA,fA′)]dk′dq,








where [image: there is no content] is the sphere of radius [image: there is no content], which approximates the first Brillouin zone [image: there is no content] in the case of isotropic approximations for the phonon dispersion relations, and, for example, the integrands are given by


κ1AeAe′(gp,fAe,fAe′):=gpyp+1fAe′(k′)−gpypfAe(k),κ2AeAe′(gp,fAe,fAe′):=gpypfAe′(k′)−gpyp+1fAe(k),wpAeAe′±(k,k′,q):=spAeAe′(q)δEAe′(k′)−EAe(k)∓ϵpδk′−k∓q+G,








[image: there is no content] being the p-phonon density of states, δ the Dirac delta function, and [image: there is no content] a vector of the Brillouin zone, whose presence is due to the fact that the total wave vector is conserved up to it. The scattering functions spAA′ are characteristic of the type of interaction of carriers, for example with acoustic and non-polar optical phonons for elemental semiconductors such as Si and Ge, and also with polar optical phonons for compound semiconductors, such as GaAs and SiC. The previous expressions of the scattering rates w are valid in the case when only conduction electrons are involved; for all the other cases as well as for the expressions of the scattering functions, we refer the interested reader to [1,8,9].



The generation-recombination collision operators [image: there is no content] include several mechanisms, among which the most important are the Auger and the Schockley–Read–Hall (SRH) processes. In a relaxation time approximation and in the simpler case of a single conduction and a single valence band, the operators read [25]


I[fA,fA¯]=−Γnn+Γhpn˜fA−ni2MA−n˜fA−ni2MAτh(n+ni)+τn(p+ni),



(6)




where [image: there is no content] or p according to whether the A-th valley is populated by electrons or holes, the [image: there is no content]’s are the Maxwellians normalized to unit, [image: there is no content] and [image: there is no content] are the Auger electron and hole constant coefficients, [image: there is no content] and [image: there is no content] are the carrier lifetimes, and [image: there is no content] is the intrinsic concentration [1].



The collision operators which appear in the Boltzmann–Peierls equations for phonons, relative to their interactions with carriers, read [24]


CAβAβ′′p(gp,fAβ,fAβ′′)=∫R3∫R3wpAβAβ′′+(k,k′,q)κ1AβAβ′′(gp,fAβ,fAβ′′)dk′dk.











The other interactions of phonons can be distinguished into intrinsic ones, arising from the anharmonicity of the interatomic forces, and extrinsic ones, due to phonon scatterings at the boundaries of the crystal and at various types of crystal defects and imperfections. In their turn, the anharmonic scatterings can be normal processes (N-processes), in which the phonon total momentum after the interaction is conserved, and umklapp processes (U-processes) for which the total momentum changes by a reciprocal lattice vector multiplied by ℏ after a collision. On the other hand, all extrinsic processes do not conserve the total momentum after a collision and, together with the umklapp ones, are usually called resistive processes. For the expressions of the corresponding collision operators, we refer the interested readers to [23] and references therein.



Macroscopic models can be constructed starting from the BBP system by taking a suitable number of moments of the distribution functions [14]. The most common choice is that of considering the following functions of the carrier and phonon wave vectors [image: there is no content] and [image: there is no content], to which the following macroscopic state variables correspond:


nAβWAβ=∫R31EAβnAβfAβdk,VAβSAβ=1nAβ∫R3vAβEAβvAβfAβdk,



(7)






WpQp=∫S2πaϵpϵpvpgpdq,



(8)




which are the carrier number densities, the average energies, velocities and energy-fluxes per carrier, and the phonon average energies and energy-fluxes, respectively. The above choice involves the minimal number of moments necessary for describing the thermal energy transport, but this number, if required by the physical problem under study, can be easily extended to cover, for example, an arbitrary number of scalar and vector moments both for carriers and phonons, by taking into account, e.g., higher microscopic energy powers in the functions ψ [7,26].



The evolution equations for the state variables (7) and (8) can be obtained directly from the Boltzmann equations by integration:


∂∂tnAβnAβWAβ+∇x·nAβVAβSAβ−nAβqβ0E·VAβ=nAβCnAβCWAβ,



(9)






∂∂tnAβVAβSAβ+∇xnAβFAβ(0)FAβ(1)−nAβqβGAβ(0)GAβ(1)E=nAβCVAβCSAβ



(10)






[image: there is no content]



(11)







In the above equations, the extra-fluxes and production terms relative to charges respectively read


FAβ(0)FAβ(1)=1nAβ∫1EAβvAβ⊗vAβfAβdk,velocity flux,flux of the energy-fluxGAβ(0)GAβ(1)=1ℏnAβ∫∇kvAβ∇kEAβvAβfAβdk,










nAβCMψAβ=∫ψAβ(k)[Cim(fAβ)+∑Aβ′′,pCpAβAβ′′(fAβ,fAβ′′,,gp)+∑Aβ¯′,pIpAβAβ¯′[fAβ,fAβ¯′,gp]]dk,MψAβ-production,








with [image: there is no content], while for the phonons, we have


Tp=∫ϵpvp⊗vpgp(q)dq,flux of the energy-flux,CWpCQp=∫ϵpϵpvp∑Aβ,Aβ′′CAβ,Aβ′′p(gp,fAβ,fAβ′′)+∑ηCηp+∑Aβ,Aβ¯′IAβAβ¯′p[gp,fAβ,fAβ¯′]dq,energy productionenergy-flux production.



(12)







In the evolution equations, the number of the unknowns is greater than that of the equations, therefore constitutive equations are needed for the extra-variables [image: there is no content][image: there is no content], [image: there is no content], [image: there is no content][image: there is no content]. A systematic way to find these relations is founded on a universal physical principle: the maximum entropy principle [6,14,27,28]. It states that, if a certain number of moments is known, then the least biased distribution functions, which can be used for evaluating the unknown moments, are those maximizing the total entropy functional under the constraint that they reproduce the known moments. In the case under consideration, neglecting the mutual interactions among the subsystems and degeneration effects (the degeneracy case can be tackled in the same way; we present the non-degenerate case only for the sake of simplicity), the total entropy is


[image: there is no content]








with [image: there is no content] the charge density of states, while the constraints are given by (7) and (8). Let us introduce the functional spaces


FψAβ=h:R3↦Rs.t.∫R3|h(k)ψj(k)|dk<+∞,∀ψj∈{ψAβ},










Fψp=h:R3↦Rs.t.∫S2πa|h(q)ψj(q)|dq<+∞,∀ψj∈{ψp}.











Given the values of the moments [image: there is no content] and [image: there is no content], MEP amounts to solve the following optimization problem:


[image: there is no content]








under the constraints


∫R3ψAβ(k)fAβdk=MψAβ,∫S2πagpϵpϵpvpdq=WPQp








where time and position are considered fixed and omitted for the sake of simplifying the notation. The solution of this maximization problem is given by [29]


fAβME=exp(−ΛAβ−ΛWAβEAβ−vAβ·(ΛVAβ+EAβΛSAβ)),gpME=ypexp(ϵpΛWp+ϵpvp·ΛQp)−1,








which, linearized with respect to the vector variables (small anisotropy assumption) [8,9,27], becomes


fAβME=exp(−ΛAβ−ΛWAβEAβ)1−vAβ·(ΛVAβ+EAβΛSAβ),gpME=ypexp(ϵpΛWp)−1−ypϵpexp(ϵpΛWp)(exp(ϵpΛWp)−1)2vp·ΛQp,








where the Λ’s are Lagrange multipliers, related to the state variables by means of the constraint relations (7) and (8). Linearization is made in order to simplify the inversion of the constraints, otherwise it has to be done numerically [29]. After inversion, the dependence of the distribution functions on [image: there is no content] will only be through the state variables, and substituting the distributions into the integrals defining the extra-variables, the needed closure relations can be obtained. It can be proven that the balance equations with the closure relations given by MEP form a quasilinear hyperbolic system in the relevant physical region of the field variables.



Following this procedure, mathematical models for the description of charge transport in unipolar and bipolar silicon devices have been constructed, see for example [10,30], while results relative to Si thermal properties can be found in [23,31]. The procedure has also been applied to compound semiconductors such as GaAs, GaN and SiC [8,9].




3. Quantum Corrections to the Semiclassical Models


Based on the previous considerations, a natural way to get a quantum macroscopic model is to use MEP in a quantum framework to close the moment system arising from the Wigner equations. The general guidelines can be found in [32,33]. This approach has been followed in [34] (see also [35] and references therein). However, one has to deal with operatorial equations which are very complex and therefore hard to be solved numerically. Moreover, drastic simplifications of the collision terms are introduced in order to make the problem tractable.



Another strategy can be adopted to close the moment system arising from the Wigner equation. According to this strategy, the Wigner function and the relative transport equation are expanded with respect to [image: there is no content]. The zero-order part of the collision operator is supposed to be the same as the semiclassical one, while the first-order contribution is supposed to act only on the [image: there is no content] correction of the Wigner function and is modeled in a relaxation form. Therefore, at the zero order, the Wigner function is given by the solution of the semiclassical Boltzmann equation, which is approximated with the standard maximum entropy method, while the [image: there is no content] order correction is obtained with a Chapman–Enskog expansion in the high field scaling.



The typical physical situation which can be described in this way is that when the main contribution to the charge transport is semiclassical, the quantum effects enter as small perturbations. For example, this is reasonable for devices such as MOSFETs of characteristic length of about ten nanometers subjected to strong electric fields.



The main assumption is that there is a balance between the [image: there is no content] drift and collision terms. This can be motivated by the fact that the collision frequency of the semiclassical scatterings tends to increase as the energy rises. Therefore, quantum effects are expected to be relevant at high fields; in such conditions, there should be high energies with consequently high collision frequencies.



The starting point for our derivation of the quantum corrections to the semiclassical model is the single particle Wigner–Poisson system, which represents the quantum analogue of the semiclassical Boltzmann–Poisson system (for the sake of simplicity, only the case of a single valley in the conduction band is considered),


[image: there is no content]



(13)






[image: there is no content]



(14)




where [image: there is no content] is the electron effective mass, the potential V usually is the sum of a self-consistent part [image: there is no content], solution of the Poisson equation, and an additional part which models the potential barriers in heterostructures. The unknown function [image: there is no content], depending on the position [image: there is no content], crystal momentum [image: there is no content] and time t, is the Wigner quasi-distribution, defined as


w(x,p,t)=F−1[ρ(x+ℏ2m*η,x−ℏ2m*η,t)](p)=1(2π)3∫R3ρ(x+ℏ2m*η,x−ℏ2m*η,t)eip·ηdη.



(15)







Here, [image: there is no content] is the density matrix, which is related to the wave function [image: there is no content] by


ρ(x,y,t)=ψ(x,t)¯ψ(y,t).



(16)







The operator [image: there is no content] denotes the Fourier transform, given for a function [image: there is no content] by


F[g(p)](η)=∫Rp3g(p)e−ip·ηdp,








with i the imaginary unit, and [image: there is no content] denotes the inverse Fourier transform


F−1[h(η)]=1(2π)3∫Rη3h(η)eip·ηdη.











The terms [image: there is no content] and [image: there is no content] represent the pseudo-differential operators


S[E]w(x,p,t)=iℏ(2π)3∫Rx′3×Rν3Ep+ℏ2ν,t−Ep+ℏ2ν,tw(x′,p,t)e−i(x′−x)·νdx′dνΘ[V]w(x,p,t)=im*ℏ(2π)3∫Rp′3×Rη3Vx+ℏ2m*η,t−Vx−ℏ2m*η,tw(x,p′,t)e−i(p′−p)·ηdp′dη.











As is well known, [image: there is no content] is not in general positive definite. However, it is possible to calculate the macroscopic quantities of interest as expectation values (moments) of [image: there is no content] in the same way as in the semiclassical case, e.g.,


n(x,t)=∫R3w(x,p,t)dp(density),



(17)






V(x,t)=1n(x,t)∫R3vw(x,p,t)dp(velocity),



(18)






W(x,t)=1n(x,t)∫R3E(p)w(x,p,t)dp(energy),



(19)






S(x,t)=1n(x,t)∫R3E(p)vw(x,p,t)dp(energy-flux).



(20)







The operator [image: there is no content] represents the quantum collision term. Its formulation is itself an open problem. Some attempts can be found in [36,37], but a derivation suitable for applications in electron devices is still lacking. In [15], an expression has been proposed which is a perturbation of the semiclassical collision term, useful for the formulation of macroscopic models.



As a general guideline, [image: there is no content] should drive the system towards the equilibrium. Let us consider the electrons in a thermal bath at the lattice temperature [image: there is no content]. The equilibrium Wigner function [image: there is no content] for an arbitrary energy band, up to [image: there is no content] terms, reads [38,39]


[image: there is no content]








where


A0(β,m*)=∫R3e−βEdp,Aij(β,m*)=∫R3e−βE∂2E∂pi∂pjdp,Bij(β,m*)=∫R3e−βEvivjdp.











We suppose that the expansion


w=w(0)+ℏ2w(1)+O(ℏ4)



(21)




holds. By proceeding in a formal way, as [image: there is no content] the Wigner equation gives the semiclassical Boltzmann equation


∂w(0)∂t+v·∇xw(0)+qm*∇xV·∇vw(0)=C(0)[w(0)]



(22)







While, at the first order in [image: there is no content], we have (Einstein’s convention is used: summation with respect to repeated dummy indices is understood.)


∂w(1)∂t+v·∇xw(1)−124∂3E∂pi∂pj∂pk∂3w(1)∂xi∂xj∂xk+qm*∇xV·∇vw(1)−q24m*3∂3V∂xi∂xj∂xk∂3w(0)∂vi∂vj∂vk=C(1)



(23)




with [image: there is no content] to be modeled. We make the following



Assumption 1.



C[w]=C(0)[w(0)]+ℏ2C(1)[w(1)]=CC[w(0)]−ℏ2νw(1)−weq(1)+O(ℏ4),withCC[w(0)]the semiclassical collision operatorandν>0quantum collision frequency



(24)









Remark 1.

At variance with other approaches, only the [image: there is no content] correction to the collision term has a relaxation form. This assures that as [image: there is no content] one gets the semiclassical scattering of electrons with phonons and impurities. We note that [image: there is no content] and therefore the semiclassical expression of the collision term makes sense.





The value of the quantum collision frequency ν is a fitting parameter that can be determined by comparing the results with the experimental data.



We require that [image: there is no content] conserves the electron density, that is we make the following



Basic Assumption 2.



∫R3C[w]dp=0.



(25)









Proposition 1.

The collision operator [image: there is no content] of the form (24) satisfies up to terms [image: there is no content], the following properties:

	1. 

	
KerC[w] is given by the quantum Maxwellian


[image: there is no content]








with [image: there is no content] the classical Maxwellian.




	2. 

	


−kB∫R3C(0)[w(0)]lnw(0)exp(−βm*|v|22)dp=−kB∫R3lnw(0)+βm*|v|22C(0)dp≥0,












	3. 

	


−12C(1)[w(1)]w(1)−weq(1)≥0








Moreover, the equality holds if and only if w is the quantum Maxwellian, defined above.











Properties 1 and 3 are straightforward. Property 2 is based on the proof in [40,41,42] valid in the classical case.



3.1. Quantum Corrections in the High Field Approximation


In the case of high electric fields and effective mass approximation for the dispersion relation


E=|p|22m*,v=pm*,








it is possible to find an approximation for [image: there is no content] by a suitable Chapman–Enskog expansion. Let us introduce the dimensionless variables


x˜=|x|l0,t˜=tt0,v˜=|v|v0,








with [image: there is no content], [image: there is no content] and [image: there is no content] the typical length, time and velocity. Let [image: there is no content] be the characteristic length of the electrical potential and [image: there is no content] the characteristic collision frequency. After scaling the collision frequency according to ν˜=tCν, Equation (23) can be rewritten as


1t0∂w(1)∂t+v0l0v·∇xw(1)+v0lVqm*∇xV·∇vw(1)−q24m*3∂3V∂xi∂xj∂xk∂3w(0)∂vi∂vj∂vk=−1tCνw(1)−weq(1).











We will continue to denote the scaled variables as the unscaled ones in order to simplify the notation.



Let us introduce the characteristic length associated with the quantum correction of the collision term (a kind of mean free path in a semiclassical context)


lC=v0tC.











Let us assume that the quantum effects occur in the high field and collision dominated regime, where drift and collision mechanisms have the same characteristic length. Therefore, we set formally


[image: there is no content]








and observe that, in the high frequency regime, the Knudsen number


[image: there is no content]








is a small parameter. Substituting it in the previous equation, we get


α∂w(1)∂t+αv·∇xw(1)+qm*∇xV·∇vw(1)−q24m*3∂3V∂xi∂xj∂xk∂3w(0)∂vi∂vj∂vk=−νw(1)−weq(1).



(26)







The zero order in α gives


qm*∇xV·∇vw(1)−q24m*3∂3V∂xi∂xj∂xk∂3w(0)∂vi∂vj∂vk=−νw(1)−weq(1),



(27)




and by Fourier transforming, one has


w(1)(x,v,t)=F−11ν+iqm*η·∇xV−iq24m*3∂3V∂xi∂xj∂xkηiηjηkFw(0)(η)+νFweq(1)(η)]}(x,v,t).



(28)







Approximating [image: there is no content] with MEP distribution function, we obtain


[image: there is no content]



(29)







For example, in the 8-moment case, using the [image: there is no content] found in [10], the following explicit approximation for the Wigner function is obtained


w(x,v,t)≈nexp(−3m*|v|24W)43πm*W3/21−−21m*4W+E9m*4W2V(0)+9m*4W2−E27m*20W3S(0)·v+ℏ2F−11ν+iqm*η·∇xV−iq24m*3∂3V∂xi∂xj∂xkηiηjηkFw(0)(η)+νFweq(1)(η)(x,v,t)



(30)




which can be used for evaluating the unknown quantities in the moment system, associated with the Wigner equation. The vectors [image: there is no content] and [image: there is no content] represent the velocity and the energy-flux at zero order in [image: there is no content].




3.2. The Quantum Moment Equations


In analogy with the semiclassical case, multiplying (13) by suitable weight functions ψ, depending, in the physically relevant cases, on the velocity [image: there is no content], and integrating over the velocity space, one has the balance equations for the macroscopic quantities of interest


∂∂t∫R3w(x,v,t)ψ(v)dv+∇x·∫R3ψ(v)vwdv+qm*∫R3ψ(v)Θ[V]wdv=∫R3ψ(v)C[w]dv.



(31)







In the 8-moment model, the basic variables are the macroscopic density, velocity, energy and energy-flux, that are the moments relative to the weight functions 1, [image: there is no content], 12m*|v|2, 12m*|v|2v.



By evaluating (31) for [image: there is no content], under the assumption that the necessary moments of [image: there is no content] and ∂3w(0)∂vivjvk with respect to [image: there is no content] exist, one has


qm*∫R3Θ[V]wdv=qm*∇x·∫R3∇vw(0)dv+ℏ2qm*∇xV·∫R3∇vw(1)dv−q24m3∂3V∂xi∂xj∂xk∫R3∂3w(0)∂vi∂vj∂vkdv=0,








obtaining the continuity equation


[image: there is no content]



(32)







In order to get the other moment equations, we observe that from (27) it follows that


qm*∇xV·∫R3ψ(v)∇vw(1)dv−q24m3∂3V∂xi∂xj∂xk∫R3ψ(v)∂3w(0)∂vi∂vj∂vkdv+ν∫R3ψ(v)w(1)−weq(1)dv=0,



(33)




for any weight function [image: there is no content] such that the integrals exist.



By taking into account (33), multiplying Equation (13) by the weight functions [image: there is no content], 12m*|v|2, 12m*|v|2v, and after integration, one finds the balance equations for velocity, energy and energy-flux


∂∂t(nVi)+∂(nUij)∂xj+nqEi=nCViW(0),Vi(0),Si(0),



(34)






[image: there is no content]



(35)






[image: there is no content]



(36)







Here, [image: there is no content], [image: there is no content] and [image: there is no content] are the zero-order components of the average velocity, energy and energy-flux. The components of the flux of the velocity and the flux of the energy-flux are defined as


Uij=1n(x,t)∫R3vivjw(x,v,t)dv,



(37)






Fij=1n(x,t)∫R312m*vivj|v|2w(x,v,t)dv.



(38)







The production terms are defined as


nCVi=∫R3viC[w]dv,



(39)






nCW=∫R312m*v2C[w]dv,



(40)






nCSi=∫R312m*|v|2viC[w]dv.



(41)







Remark 2.

The quantum corrections affect only the free streaming part, while the drift and production terms appear only at the zero order.





Therefore, [image: there is no content], [image: there is no content] and [image: there is no content] are the same as in the semiclassical case.



In the system (32), (34)–(36) are not closed for the presence of the unknown quantities [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. We solve the closure problem with the approximation (29), assuming a collision dominated high field regime for the quantum effects.



In order to evaluate the unknown quantities present in the moment equations, the following formal lemmas are useful



Lemma 1.



∫R3vi1⋯vikw(1)dv=ik∂∂ηi1⋯∂∂ηikFw(1)(η)η=0.



(42)









Lemma 2.



[image: there is no content]



(43)






∂∂ηi∂∂ηjFweq(1)(0)=n(x,t)ℏ2βq12m*2∂2V∂xi∂xj



(44)






∂∂ηi∂∂ηjΔηFweq(1)(0)=−n(x,t)ℏ2q12m*3ΔVδij+5∂2V∂xi∂xj.



(45)









The proof follows by a simple computation. With the aid of these lemmas, we get the following closure relations:



Proposition 2.



Ji=nVi=nVi(0)+O(ℏ4),



(46)






W=W(0)−ℏ2βq24m*ΔV+O(ℏ4),



(47)






Uij=23W(0)m*δij−ℏ2βq12(m*)2∂2V∂xi∂xj+O(ℏ4),



(48)






Si=Si(0)−ℏ2β2q224m*2ν2∂2V∂xi∂xr∂V∂xr+∂V∂xiΔV−ℏ2q8m*2ν∂∂xiΔV+O(ℏ4),



(49)






Fij=109m*(W(0))2−ℏ2βq33m*3ν2∂V∂x(i∂2V∂xj)∂xr∂V∂xr−ℏ2q24m*3ν2∂3V∂xi∂xj∂xr∂V∂xr−ℏ2βq312m*3ν2∂V∂xi∂V∂xjΔV+|∇V|2∂2V∂xi∂xj−ℏ2q24m*3ν2∂ΔV∂x(i∂V∂xj)−ℏ2q24m*2ΔVδij+5∂2V∂xi∂xj−ℏ2q4m*2ν∂ΔV∂x(iVj)+∂3V∂x(i∂xj∂xk)Vk+O(ℏ4).



(50)









In the previous relationships, parentheses indicate symmetrization, e.g.,


[image: there is no content]











For the proof, see [15].



Remark 3.

The zero order in [image: there is no content] is the same as that obtained in [10,30].





Remark 4.

Since


∫R3w(1)dv=∫R3weq(1)dv=0,








we have


∫R3C[w]dv=0,








that is the assumption (25) is fulfilled.





Remark 5.

In the limit of high frequency [image: there is no content] one has the simplified model


Ji=nVi=nVi(0)+O(ℏ4),



(51)






W=W(0)−ℏ2βq24m*ΔV+O(ℏ4)



(52)






Uij=23W(0)m*δij−ℏ2βq12(m*)2∂2V∂xi∂xj+O(ℏ4)



(53)






[image: there is no content]



(54)






Fij=109m*(W(0))2−ℏ2q24m*2ΔVδij+5∂2V∂xi∂xj



(55)









From Equation (28), one sees that in the limit [image: there is no content], [image: there is no content] reduces to the quantum correction of the equilibrium Wigner function [image: there is no content]. The resulting quantum corrections to the tensor [image: there is no content] are the same as those obtained in [43] by using a shifted Wigner function, but with the semiclassical contribution which also contains a heat flux, not added ad hoc.



Remark 6.

Under the assumption (see [43]) that the equilibrium relation


∇V=(qβ)−1∇lnn+O(ℏ2)



(56)




is valid, one can recover a formulation of the quantum corrections of density gradient type.





The density gradient version is more familiar because the quantum corrections take a form similar to the Bohm potential arising in the Madelung model of quantum fluids in the zero temperature limit. Moreover, some numerical experiments [43] lead to it being considered more robust than the original formulation in terms of the derivatives of the electric potential. In the limit [image: there is no content], the closure relations in the density gradient form explicitly read as


Ji=nVi=nVi(0)+O(ℏ4),



(57)






W=W(0)−ℏ224m*Δlnn+O(ℏ4),



(58)






Uij=23W(0)m*δij−ℏ212(m*)2∂2lnn∂xi∂xj+O(ℏ4),



(59)






[image: there is no content]



(60)






Fij=109m*n(W(0))2−ℏ224m*2βΔlnnδij+5∂2lnn∂xi∂xj.



(61)









4. Two-Dimensional Electron Gases: The Case of Quantum Confinement


In this section, we consider the case of an ensemble of electrons (the treatment of holes would be analogous) confined along one dimension, called quasi 2Delectron gas (2DEG) [16,18,19,20,44]. This situation arises when the length scale in one (the confined) space direction of the semiconductor device under study is of the order of de Broglie wavelength of electrons, while the nonconfined directions have a much bigger length scale. In other words, electrons are in a quantum regime in the confined direction and exhibit a classical behaviour in the nonconfined ones [16] as shown in Figure 1.


Figure 1. Schematic representation of electron confinement in one dimension due to a potential barrier.



[image: Entropy 19 00036 g001]






Let us suppose that electrons are quantized along one direction, which we choose as the z direction, and free to move in the orthogonal x-y plane. Let [image: there is no content] be the spatial domain. Here, [image: there is no content], [image: there is no content], [image: there is no content] are fixed. More general cases with a variable confining direction can be easily incorporated.



Let us introduce the parameter σ defined as the ratio between the transversal (perpendicular to the x-y plane) typical length scale [image: there is no content] and the longitudinal typical length scale [image: there is no content]


[image: there is no content]








and assume that [image: there is no content]. Moreover, as is customary, let us assume the following ansatz about the electron wave function


ψ(k,r)=ψ(kx,ky,kz,x,y,z)=1Aφ(σr||,z)eik||·σr||inΩ,



(62)




with [image: there is no content] and [image: there is no content] denoting the longitudinal components of the wave-vector [image: there is no content] and the position vector [image: there is no content], respectively, and [image: there is no content] being the area of the x-y cross-section. The previous wave function is inserted into the stationary Schrödinger equation in the effective mass approximation


−ℏ22m*Δ+EC(r)ψ=Eψ,



(63)




where [image: there is no content] is the electron effective mass, [image: there is no content] is the conduction band minimum, [image: there is no content], with [image: there is no content] the confining potential and [image: there is no content] the self-consistent electrostatic potential.



Under the assumption that the confining potential is so high that it gives rise to a barrier which can be considered infinite, it enters into the equations only through the boundary conditions


ψ(r||,z)=0atz=0andz=Lz,








and EC=−qV is taken.



Therefore, introducing the slowly varying variable [image: there is no content] and inserting (62) into (63), one has


−ℏ22m*σ2Δr||φ(r˜||,z)+2ik||·∇r||φ(r˜||,z)−k||2φ(r˜||,z)−ℏ22m*∂∂z2φ(r˜||,z)−qV(r˜||,z)φ(r˜||,z)=Eφ(r˜||,z).











In the limit [image: there is no content], one formally gets that the envelope function φ must solve the reduced Schrödinger equation


−ℏ22m*d2dz2−qV(r||,z)φ(σr||,z)=εφ(σr||,z),0≤z≤Lz,



(64)




with boundary conditions


φ=0atz=0andz=Lz.



(65)







The solution of (64) and (65) depends only parametrically on [image: there is no content] (and in a slow way), and more in general also on time t if a non-steady-state solution is considered. In fact, electrons as waves achieve equilibrium along the confined direction in a time which is much shorter than the typical transport time, so that one can adopt a quasi-static description along the z-direction. The couple (64) and (65) constitutes a one dimensional Sturm–Liouville problem, which admits a countable set of eigen-pairs (subbands) [image: there is no content], whose eigenvalues are simple and do not cross. The potential V is obtained from the Poisson equation


∇·(ϵs∇V)=−q(Nd(r)−n),



(66)




where the electron density n is given by


[image: there is no content]








with [image: there is no content] the (areal) density of electrons of the νth subband and for simplicity an n–doped material has been considered. Of course, the Schrödinger and Poisson equations are coupled and must be solved simultaneously.



For devices with longitudinal characteristic length of a few tens of nanometers, the transport of electrons in the longitudinal direction is semi-classical within a good approximation. Therefore, electrons in each subband can be considered as different populations, the state of each of them being described by a semiclassical distribution function fν(x,y,kx,ky,t), and electron transport along the longitudinal direction being determined by adding to the Schrödinger–Poisson system the following system of coupled Boltzmann equations


∂fν∂t+1ℏ∇k||Eν·∇r||fν−qℏEνeff·∇k||fν=∑μ=1∞Cν,μ[fν,fμ],ν=1,2,⋯



(67)




where [image: there is no content], and the electron energy in each subband [image: there is no content] is the sum of a transversal contribution [image: there is no content] and a longitudinal one


[image: there is no content]








where α is the non-parabolicity parameter. Consequently, the longitudinal electron velocity is


[image: there is no content]



(68)







A formal justification of Equation (67) can be found in [45]. Regarding the collision operator, in the non-degenerate approximation, each contribution has the general form [18,19,20]


Cν,μ[fν,fμ]=1(2π)2∫B2wμν(k||′,k||)fμ′−wνμ(k||,k||′)fνd2k||′,








where [image: there is no content] is the two-dimensional Brillouin zone. When [image: there is no content], the scattering is intra-subband; when [image: there is no content], it is the inter-subband. We recall that inter-subband transitions may also happen in the absence of phonons, by quantum mechanical tunneling induced by the presence of a static field as has been shown for example in [46]. The term [image: there is no content] is the transition rate from the longitudinal state with wave-vector [image: there is no content], belonging to the μth subband, to the longitudinal state with wave-vector [image: there is no content], belonging to the νth subband, and [image: there is no content]. In Si, the relevant 2D scattering mechanisms are the acoustic phonon scattering, and the non-polar optical phonon scattering. Their expressions are the 2D version of those shown in Section 2 and can be found in [18,19,20,47]. Attempts to directly solve the Schrödinger–Poisson–Boltzmann system can be found, for example, in [16,17,48] where numerical schemes based on finite differences have been employed. However, the direct numerical approach is a daunting computational task and requires very long computing times. This has again prompted the development of simpler macroscopic models for CAD purposes. These models can be obtained as moment equations of the Boltzmann transport equations under suitable closure relations [18,19,20]. The moment of the ν-th subband distribution with respect to a weight function [image: there is no content] reads


[image: there is no content]











In particular, analogously to the previous cases, we take as basic moments


the areal densityρν=∫B2fν(r||,k||,t)d2k||,



(69)






the longitudinal mean velocityVν=1ρν∫B2v||fν(r||,k||,t)d2k||,



(70)






the longitudinal mean energyWν=1ρν∫B2ε||fν(r||,k||,t)d2k||,



(71)






the longitudinal mean energy-fluxSν=1ρν∫B2ε||v||fν(r||,k||,t)d2k||.



(72)







The corresponding moment system reads


[image: there is no content]



(73)






∂(ρνVν)∂t+∇r||·(ρνFν(0))+ρνGν(0)∇r||εν=ρν∑μCV,νμ,



(74)






[image: there is no content]



(75)






∂(ρνSν)∂t+∇r||·(ρνFν(1))+ρνGν(1)∇r||εν=ρν∑μCS,νμ,



(76)




where


Fν(0)Fν(1)=1ρν∫B21ε||v||⊗v||fν(r||,k||,t)d2k||,



(77)






Gν(0)Gν(1)=1ρν∫B21ℏ∇k||v||1ℏ∇k||ε||v||fν(r||,k||,t)d2k||,



(78)






Cρ,νμCW,νμ=1ρν∫B21ε||wμν(k||′,k||)fμ′−wνμ(k||,k||′)fνd2k||′d2k||,



(79)






CV,νμCS,ν,μ=1ρν∫B2v||ε||v||wμν(k||′,k||)fμ′−wνμ(k||,k||′)fνd2k||′d2k||.



(80)







Also in this case, the above written fluxes and production terms are extra-variables for which closure relations are needed. In order to employ MEP, a suitable expression of the entropy for the system under consideration has to be found. Neglecting the mutual interaction of electrons in different subbands, considering the phonon gas as a thermal bath and assuming the electron gas is sufficiently dilute, in each subband the expression of the entropy is the semiclassical limit of that arising from the Fermi statistics. Eventually, for obtaining the total entropy, one has to consider that electrons have a quantum behaviour along the z-direction, therefore we define the entropy density of the system as


S[f1,f2,⋯]=−kB∑ν=1+∞|φν(r||,z,t)|2︸quantum effect∫B2fνlog(2π2fν)−fνd2k||︸semiclassical contribution.



(81)







Remark 7.

The proposed expression of the entropy has been introduced for the first time in [20,47]. It combines quantum effects and semiclassical transport along the longitudinal direction, weighting the contribution of each subband with the square modulus of the [image: there is no content]’s arising from the Schrödinger–Poisson block.





According to MEP, the [image: there is no content]’s are estimated by means of the distributions [image: there is no content]’s that [image: there is no content], [image: there is no content] solve the problem:


maxf1(r||,·,t)∈F2Df2(r||,·,t)∈F2D⋯S[f1,f2,⋯]under the constraintsMaA,ν=∫B2aA(k||)fν(r||,k||,t)d2k||,








where the [image: there is no content]’s are the basic moments (69)–(72) and [image: there is no content] is the space of the summable function with respect to [image: there is no content] such that the moments appearing in the system (73)–(76) exist.



With the above choice of the functions [image: there is no content], the resulting maximum entropy distribution functions read (the factor [image: there is no content] has been included into the multipliers)


[image: there is no content]











In order to complete the procedure, similarly to the previous case, one has to insert the [image: there is no content]’s into the constraints (69)–(72) and express the Lagrange multipliers as functions of the basic moments [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. In general, in the case considered in this section as well as in that considered in Section 2, it is not possible to assure that such a procedure can be accomplished. The solvability of the MEP problem depends on the band structure and on the choice of the moments, as well known already in gas-dynamics [14,49]. For example, if the parabolic case (where the energy is a quadratic function of the wave vector) is considered, the same drawbacks of classical gas-dynamics arise regarding the lack of integrability of the MEP distribution function. In the case of the Kane dispersion relation, the solvability of the MEP problem is guaranteed by the following property, proven in [49].



Proposition 3.

When the Kane model for the energy band is employed, the corresponding maximum entropy models are symmetric hyperbolic systems with convex domains of definition and the equilibria are interior points, guaranteeing the validity of expansions around equilibrium states.





The proof has been given for a 3D electron gas, but it can be extended to a 2DEG in a straightforward way.



For the 2DEG case, the final expressions of the extra-fluxes and production terms, obtained by using linearized MEP distribution functions, can be found in [18,47] for the parabolic approximation and in [19,20] for the non-parabolic one. The resulting moment system has been used to simulate double-gate MOSFETs in [18,19].




5. Some Numerical Simulations


In this last section, we present some of the numerical results obtained by implementing the models sketched in the previous sections. The information concerning the numerical schemes will be skipped. The interested readers are referred to the indicated papers. For optimization of electron devices using the models presented above, see [50] and references therein.



5.1. p-n Junction


The full model for holes and electrons, presented in Section 2, has been used for the numerical simulation of a Si p-n junction diode with a doping profile given by [22]


Nd(x)−Na(x)=−c0if0<x<L0c0ifL0<x<L,








with an abrupt junction at [image: there is no content]. The physical parameters of the device are reported in Table 1. The numerical solution has been obtained by resorting to an extension [51] of the traditional central differencing scheme for one-dimensional balance laws with (possibly stiff) source terms, which has been developed on the basis of the Nessyhau and Tadmor scheme [52] for homogeneous hyperbolic systems.



Table 1. Physical parameters of the p-n junction.







	
Parameter

	
Physical Meaning

	
Numerical Value






	
L

	
device length

	
10−3cm




	
[image: there is no content]

	
length of p-region

	
0.7 × 10−3cm




	
[image: there is no content]

	
doping concentration

	
1015[image: there is no content]




	
[image: there is no content]

	
intrinsic concentration

	
1.075 × 1010[image: there is no content]










The bias voltage at the contacts is the superposition of the thermal equilibrium boundary potential (the built in potential [image: there is no content]) and the applied potential [image: there is no content]. In Figure 2 and Figure 3, the stationary carrier densities and the electrostatic potential are shown for the following applied voltages: Va=−0.2,0,0.75,1 V, the sign + referring to direct polarization.


Figure 2. (a,c) Densities and electric potential for [image: there is no content] V, electrons (continuous line), total holes (dashed line) and heavy holes (dashed–dotted line); (b,d) Densities and electric potential for [image: there is no content], electrons (continuous line), total holes (dashed line) and heavy holes (dashed–dotted line).



[image: Entropy 19 00036 g002]





Figure 3. (a,c) Densities and electric potential for [image: there is no content] V, electrons (continuous line), total holes (dashed line) and heavy holes (dashed–dotted line); (b,d) Densities and electric potential for [image: there is no content] V, electrons (continuous line), total holes (dashed line) and heavy holes (dashed–dotted line).



[image: Entropy 19 00036 g003]







5.2. Simulation of a MESFET


In this subsection, we show the simulation of a bi-dimensional Metal Semiconductor Field Effect Transistor (MESFET) made with the MEP model. The numerical method is based on the discretization proposed in [53].



The shape of the device is pictured in Figure 4. The device has a 0.4 [image: there is no content]m channel. The source and drain lengths are 0.1 [image: there is no content]m and the contact at the gate is 0.2 [image: there is no content]m long. The distance between the gate and the other two contacts is 0.1 [image: there is no content]m. The lateral subdiffusion of the source and the drain region is about 0.05 [image: there is no content]m. The same doping concentration [image: there is no content] as in [53] is considered


C(x)=n+=3×1017cm−3in then+regionn−=1017cm−3in thenregion








with abrupt junctions. We take a reference frame with axes parallel to the edges of the device. The numerical domain representing the MESFET is


[image: there is no content]








where the unit length is the micron.


Figure 4. Schematic representation of a bidimensional MESFET.
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The regions of high doping [image: there is no content] are the subset


[image: there is no content]











[image: there is no content] represents the source, gate and drain


ΓD=(x,y):y=0.2,0≤x≤0.1,0.2≤x≤0.4,0.5≤x≤0.6.











The remaining part of [image: there is no content] is [image: there is no content]. The boundary conditions are assigned as follows. We have ohmic contacts at the source and drain:


n=n+,W=32kBTL,V=Φbat drain0at source.



(82)







At the gate we have a Schottky contact


n=ng,W=32kBTL,V=Φg.



(83)







Indeed, the potential at the contacts should include the built-in potential and the density at the gate should be related to the potential. Here, we do not enter into the details of the modeling of the Schottky contacts and, by using the invariance of the electric field with respect to changes of the potential for additive constants, we choose as in [54]


ng=3.9×105cm−3,Φg=−0.8V











In the remaining part [image: there is no content] of the boundary, we have


ν·∇n=0,ν·∇W=0,ν·∇V=0.



(84)







Here, ∇ is the bi-dimensional gradient operator while ν is the unit outward normal vector to [image: there is no content] in the considered points.



A uniform mesh has been used with 33 × 97 grid points. The stationary solution is reached after about 5 picoseconds. The numerical results are shown in Figure 5, Figure 6, Figure 7 and Figure 8. The typical depletion region close to the gate with the presence of steep gradients is numerically well described.


Figure 5. Stationary charge density in the MESFET in the case [image: there is no content] V.



[image: Entropy 19 00036 g005]





Figure 6. Stationary energy per charge carrier in the MESFET in the case [image: there is no content] V.
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Figure 7. Stationary velocity of the carriers in the MESFET in the case [image: there is no content] V.
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Figure 8. Stationary electric potential in the MESFET in the case [image: there is no content] V.



[image: Entropy 19 00036 g008]







5.3. Simulation of a MOSFET


The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is a largely used device in modern electronics. The same mathematical model and numerical scheme as for the MESFET is adopted; the shape of the device is pictured in Figure 9. The device has a 0.2 [image: there is no content]m channel. The source and drain lengths are 0.1 [image: there is no content]m and the contact at the gate is 0.15 [image: there is no content]m long. The distance between the gate and the other two contacts is 0.025 [image: there is no content]m. The lateral subdiffusion of the source and the drain region is about 0.05 [image: there is no content]m. The gate oxide is 0.15 [image: there is no content]m long and 20 nm thick. Of course, smaller devices can be considered without any substantial modification to the used approach.


Figure 9. Schematic representation of a bidimensional MOSFET.
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The doping concentration is


C(x)=n+=1017cm−3inthen+regionsp−=1014cm−3inthepregion








with abrupt junctions.



At variance with MESFET, there are different built-in potentials which we explicitly take into account by using the simple model


[image: there is no content]








at drain and source,


[image: there is no content]








at bulk contact. Here, [image: there is no content] is the intrinsic electron concentration ([image: there is no content][image: there is no content]). The reference axes are chosen parallel to the edges of the device. The silicon part of the MOSFET is represented by the numerical domain


[image: there is no content]








and at the top of the silicon part the silicon oxide domain is


[image: there is no content]








where the unit length is the micron.



The regions of high-doping [image: there is no content] are the subset


[image: there is no content]











A uniform mesh of 64 × 64 grid points has been used in the silicon part. The Poisson equation is solved on the entire (silicon and oxide) domain. Of course, in the oxide, the Poisson equation becomes the Laplace one.



We have assumed ohmic contacts at the source, drain, gate and bulk contacts, to be homogeneous Neumann conditions on the remaining part of the boundary. The surface charge at the oxide interface is neglected and the continuity of the electric potential and electric field is imposed. The values of density and energy at the interface are obtained by the interior grid points with a linear interpolation in the direction orthogonal to the boundary.



In order to reach the desired bias, we have needed to resort to a continuation method on applied potential. First, we iterate with respect to the difference of the built-in potential between drain and bulk contacts, keeping at zero [image: there is no content]. Then, we iterate with respect to the drain–gate potential and finally we increase the drain–source potential.



All the main features of the electron dynamics are well described, in particular the charge accumulation beside the oxide, and the pronounced depletion at the drain contact due to the strong electric field.



Again, the density current presents a singularity at the first edge of the drain and therefore we evaluated the current by considering, as for MESFET, the regularization from the interior.



As for the MESFET device, current gain and miniaturization are crucial tasks to take into account when designing this kind of device. However, miniaturization plays a crucial role for MOSFETs for various reasons; first, a shorter MOSFET helps the current flow, since a small device decreases the resistance. Second, a small MOSFET helps in reducing gate capacity and, in general, to have a faster switch on/off operation. The numerical results are presented in Figure 10, Figure 11 and Figure 12.


Figure 10. Stationary electron density in the MOSFET in the case [image: there is no content] V and [image: there is no content] V.



[image: Entropy 19 00036 g010]





Figure 11. Stationary energy per charge carrier in the MOSFET in the case [image: there is no content] V and [image: there is no content] V.
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Figure 12. Stationary electric potential in the MOSFET in the case [image: there is no content] V and [image: there is no content] V.
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5.4. Simulation of a DG-MOSFET


The 2DEG model, illustrated in Section 4, has been employed to simulate the nanoscale silicon DG-MOSFET represented in Figure 13, including the non-parabolicity effects [18,19]. The length of the diode is [image: there is no content] = 40 nm, the width of the silicon layer is [image: there is no content] nm and the thickness of each oxide layer is [image: there is no content] = 1 nm. The highly doped [image: there is no content] regions are 10 nm long. The gate contacts have the same length as the n region and are above it. The device is supposed to be infinite in the y direction.


Figure 13. Simulated double gate MOSFET. Along the y axis, the device is considered as infinite.
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The doping in the [image: there is no content] regions is [image: there is no content] = [image: there is no content] = [image: there is no content][image: there is no content] and in the n region is [image: there is no content] = [image: there is no content] = [image: there is no content][image: there is no content], with a regularization at the two junctions by a hyperbolic tangent profile


[image: there is no content]








where [image: there is no content] nm, [image: there is no content], [image: there is no content] nm and [image: there is no content] nm.



Due to the symmetries and dimensions of the device, the transport is, within a good approximation, one dimensional and along the longitudinal direction with respect to the two oxide layers, while the electrons are quantized in the transversal direction. The oxide gives rise, with a good approximation, to an infinitely deep potential barrier; in fact, realistic values of the potential barrier are more than 3 eV high and it is very unlikely to find electrons with such an energy in the device under consideration. Six equivalent valleys are considered with a single effective mass [image: there is no content]. For details about the appropriate boundary and initial conditions, as well as the numerical method, the interested reader is referred to [18,19]. The numerical experiments indicate that it is sufficient to take into account only the first three subbands.



As the first case, a symmetric situation with [image: there is no content] V and [image: there is no content] V is considered, where [image: there is no content] is the voltage applied at the drain with respect to that at the source, and [image: there is no content] and [image: there is no content] are the voltages applied at the lower and the upper gate, respectively. In Figure 14 and Figure 15, the steady state density and the potential are plotted. The solution does not present any spurious oscillation or boundary layer and reflects the symmetry of the problem.


Figure 14. Stationary density in the case [image: there is no content] V and [image: there is no content] V.
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Figure 15. Stationary electrostatic potential energy in the case [image: there is no content] V and [image: there is no content] V.
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As the second case, [image: there is no content] V, [image: there is no content] V and [image: there is no content] V are taken. In Figure 16 and Figure 17, the density and the potential are respectively plotted, while in Figure 18b the first three subband bottoms are shown. One can note the depletion region beneath the upper gate.


Figure 16. Stationary density in the case [image: there is no content] V and [image: there is no content] V, [image: there is no content] V.
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Figure 17. Stationary electrostatic potential energy in the case [image: there is no content] V and [image: there is no content] V, [image: there is no content] V.
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Figure 18. First three subbands at the steady state in the case [image: there is no content] V and [image: there is no content] V (a); [image: there is no content] V and [image: there is no content] V, [image: there is no content] V (b).
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In Figure 18, the first three subband bottoms are shown. There is a good qualitative agreement with the other numerical simulations known in the literature [17].



From Figure 19, a very accurate current conservation is evident, proving the robustness of the numerical method. In the second case, the current is reduced by one half, due to the gate voltage in agreement with the behaviour of the density. The areal density, the average velocity and the energy measured from the subband bottom, and the current in the first three subbands are shown in Figure 20, Figure 21 and Figure 22. The areal density is not symmetrical between the source and drain within each subband but the total areal density is so.


Figure 19. Average areal current in the first three subbands and global areal current in the case [image: there is no content] V and [image: there is no content] V (a); [image: there is no content] V and [image: there is no content] V, [image: there is no content] V (b).
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Figure 20. Areal density in the first three subbands in the case [image: there is no content] V and [image: there is no content] V (a); [image: there is no content] V and [image: there is no content] V, [image: there is no content] V (b).
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Figure 21. Average velocity in the first three subbands and global mean velocity in the case [image: there is no content] V and [image: there is no content] V (a); [image: there is no content] V and [image: there is no content] V, [image: there is no content] V (b).
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Figure 22. Average total energy measured from the bottom of the first subband [image: there is no content] in the first three subbands and global mean energy in the case [image: there is no content] V and [image: there is no content] V (a); [image: there is no content] V and [image: there is no content] V, [image: there is no content] V (b).
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The drift (mean) velocity has been evaluated according to the formula


[image: there is no content]











Similarly, the global longitudinal mean energy has been evaluated taking as reference value the bottom of the first subband according to the formula


[image: there is no content]











The maximum drift velocity in the channel is one and half times the saturation velocity when [image: there is no content] V, while it is about two times the saturation velocity when [image: there is no content] V and [image: there is no content] V. Moreover, in the first case, the velocity in the first subband is lower than that in the first subband in the second case. Instead, the velocity in the second and the third subbands is higher in the first case, but with a resulting total longitudinal current which is lower. The energy has an evidently different value between the source and drain as happens in the semiclassical case.



Eventually, the characteristic curves are shown in Figure 23 by fixing [image: there is no content] V and varying [image: there is no content] from −3 V to 3 V. With increasing [image: there is no content], the average longitudinal current increases as a consequence of the controlling effect of the gate voltage on the electric characteristics of the device.


Figure 23. Longitudinal mean current (A/cm) versus the source–drain voltage [image: there is no content] witht [image: there is no content] V and [image: there is no content] ranging from −3 V to +3 V according to the arrow.
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6. Conclusions


A review on the exploitation of the Maximum Entropy Principle in the formulation of macroscopic models able to describe the charge and heat transport in semiconductor devices has been presented. The models are obtained starting from the Boltzmann transport equations for the charge and the phonon distribution functions, by taking—as macroscopic variables—suitable moments of the distributions and resorting to MEP in order to close the evolution equations for the chosen moments. Firstly, semiclassical models have been reviewed and eventually an approach to also take into account quantum effects has been shown. The latter consists of using the moment system arising from the Wigner equation.



In the cases where quantum effects are relevant only along one direction, another strategy has been introduced. A quasi-static description has been adopted, based on a coupled Schrödinger–Poisson system, along the confining direction, leading to a subband decomposition of the electron energy levels, while the transport along the longitudinal directions is described by a semiclassical Boltzmann equation for each subband.



Several physical situations, which have been investigated in the last two decades, have been reported in the paper. For the sake of conciseness, some further applications have been omitted. A MEP based model for 2D–3D electron gases, of particular interest in the simulation of nanoscale MOSFET, can be found in [55]. A hydrodynamical model for charge transport in graphene has been formulated in [56,57].



Apparently, MEP is revealed to be a sound method for devising, in a systematic way, macroscopic models, e.g., energy–transport and hydrodynamical ones, which are less complex to tackle numerically but still retain a good accuracy with respect to the results based on the direct solutions of the transport equations.
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