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Abstract: In physics, several attempts have been made to apply the concepts and tools of physics to
the life sciences. In this context, a thermostatistic framework for active Nambu systems is proposed.
The so-called free energy Fokker–Planck equation approach is used to describe stochastic aspects
of active Nambu systems. Different thermostatistic settings are considered that are characterized
by appropriately-defined entropy measures, such as the Boltzmann–Gibbs–Shannon entropy and
the Tsallis entropy. In general, the free energy Fokker–Planck equations associated with these
generalized entropy measures correspond to nonlinear partial differential equations. Irrespective
of the entropy-related nonlinearities occurring in these nonlinear partial differential equations, it is
shown that semi-analytical solutions for the stationary probability densities of the active Nambu
systems can be obtained provided that the pumping mechanisms of the active systems assume the
so-called canonical-dissipative form and depend explicitly only on Nambu invariants. Applications
are presented both for purely-dissipative and for active systems illustrating that the proposed
framework includes as a special case stochastic equilibrium systems.

Keywords: Nambu mechanics; generalized entropy; Tsallis entropy; nonlinear Fokker–Planck
equation; linear non-equilibrium thermodynamics; active systems; canonical-dissipative approach

1. Introduction

In a seminal work, Nambu generalized classical Hamiltonian mechanics to what is nowadays
known as Nambu mechanics [1]. Nambu mechanics describes n-dimensional dynamical systems that
exhibit n− 1 invariants (i.e., integrals of motion). Applications of Nambu mechanics can be found
in various fields of physics (classical mechanics, astrophysics, electrodynamics, solid state physics,
hydrodynamics, nonlinear physics) and even in disciplines beyond physics.

As far as classical mechanics is concerned, a rigid body (e.g., a spinning top) rotating round
and round can be considered as a system satisfying Nambu mechanics [1–7]. A variety of oscillatory
systems [8–14] have been studied within the framework of Nambu mechanics. Particles moving on
curved surfaces correspond under appropriate conditions to system that live in n-dimensional spaces
and satisfy n− 1 invariants, such that Nambu mechanics applies [15–19]. Interestingly, in astrophysics,
the Kepler problem can be addressed as a special case of Nambu mechanics due to the existence of the
so-called Lenz–Pauli vector, which represents a vector-valued invariant [13].

In electrodynamics, Nambu mechanics has found several applications [5,11,12,20,21]. In particular,
the motion of a charged particle in a constant magnetic field can be studied from the perspective of
Nambu mechanics [22]. In solid state physics, the Calogero–Moser system has been studied from the
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perspective of Nambu mechanics [23,24]. Moreover, Nambu mechanics has been used to calculate
energy levels by means of a particular perturbation theoretical method [5]. Nambu mechanics has
been used to address certain hydrodynamic problems [25,26]. In nonlinear physics, the Lorenz system
has turned out to be an interesting model for applications of Nambu mechanics. Typically, a modified
version of the Lorenz system that is known to be integrable is studied rather than the original chaotic
system [11,27–29]. Furthermore, it has been shown that Nambu mechanics provides a theoretical
framework to examine the dynamics of chiral models [16].

Beyond physics, it has been suggested that Nambu mechanics may be used to describe biochemical
reaction equations [30,31].

Only recently, Nambu mechanics has been used to address active systems, such as limit cycle
oscillators [19,28,29,32–34]. The notion of an active system is closely related to pumping and negative
friction [35,36]. Pumping and negative friction are dissipative components. Systems exhibiting
such dissipative components are likely to be affected by fluctuating forces [37]. Therefore, at issue
is to discuss active Nambu systems in the context of stochastic processes. A first step in this
direction has been conducted within the framework of Boltzmann–Gibbs–Shannon thermostatistics
and Fokker–Planck equations that are linear with respect to their probability densities [7].

In the following sections, a more comprehensive picture of stochastic, active Nambu systems
will be developed. First, general entropy measures will be considered rather than the special
case of the Boltzmann–Gibbs–Shannon entropy. This will lead to Fokker–Planck equations that
are nonlinear with respect to their probability densities. From a mathematical perspective,
these nonlinear Fokker–Planck equations correspond to nonlinear partial differential equations.
Second, non-equilibrium thermodynamic state variables will be defined that are consistent with
the aforementioned generalized entropy measures. The thermodynamic state variables can be used to
characterize the stochastic, active Nambu systems. Furthermore, it is pointed out that the proposed
framework includes purely dissipative equilibrium systems as special cases. In Section 2, the general
theoretical framework will be developed. In Section 3, examples of purely dissipative and active
Nambu systems will be presented.

2. Stochastic Nambu Systems in General Thermostatistic Settings

2.1. Nambu Dynamics: Deterministic Case

We consider an n-dimensional state space described by the state vector r = (x1, . . . , xn) involving
n components xk. The state vector is assumed to evolve in time t. Our focus is on Nambu systems [1].
Therefore, our departure point is the deterministic evolution of r as defined in Nambu mechanics.
Accordingly, in the deterministic case, there are n− 1 functions H1, . . . , Hn−1 of r, and r(t) satisfies

d
dt

r = I , (1)

where I = (I1, . . . , In) denotes a so-called conservative force vector given by:

Ik = ∑
i2,...,in

εk,i2,...,in
∂H1

∂xi2
· · · ∂Hn−1

∂xin
. (2)

In Equation (2), the symbol εj1,...,jn denotes the n-dimensional Levi–Civita tensor, which equals one
for ε1,2,3,4,...,n and changes the sign when two indices are switched. For any other cases (i.e., if two or
more than two indices assume the same integer values), the tensor equals zero. Note that ∇I holds,
where ∇ = (∂/∂x1, · · · , ∂/∂xn) is the nabla operator. That is, I is divergence free. Importantly, we
have ∑k Ik∂Hj/∂rk = 0 for any j, which implies that dHj/dt = 0 holds for all j = 1, . . . , n− 1. That is,
the functions Hj are invariants of the Nambu dynamics defined by Equation (1). In the context of
active, stochastic Nambu systems, we will refer to the functions Hj as pseudo-invariants because in
the active, stochastic case, they can vary as functions of time.
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2.2. Nambu Dynamics: Stochastic Case

In earlier work, a stochastic version of Nambu mechanics has been proposed that is suitable
to address both active and purely dissipative systems [7,19,32,33]. These studies focused on the
Boltzmann–Gibbs–Shannon thermostatistics. In order to address this stochastic approach in general
thermostatistic settings, in what follows, the free energy Fokker–Planck equation approach is used that
has been proposed in the literature [38].

Accordingly, the time-dependent probability density P(r, t) = 〈δ(r− r(t))〉 of the state r is
considered. Here and in what follows, 〈·〉 denotes ensemble averaging, and δ(·) is the Dirac delta
function. Following the free energy Fokker–Planck equation approach, three thermodynamic state
variables are defined: the thermostatistic entropy S, the non-equilibrium internal energy UNL and
the non-equilibrium free energy FNL. The free energy Fokker–Planck equation approach applies to a
non-equilibrium active system that operates close to thermal equilibrium, where linear non-equilibrium
thermodynamics holds. The approach also includes purely dissipative equilibrium systems as a special
case. In this special case, the thermodynamic functions UNL and FNL become equilibrium functions.
In order to derive explicit solutions, it is useful to define S by means of the outer function B(y) and
the entropy kernel s(P) like [38]:

S[P] = B
(∫

s(P) dnx
)

(3)

with dnx = ∏n
k=1 d xk, y =

∫
s(P)dnx and concave entropy kernels:

d2s
dP2 < 0 . (4)

In the special case B(y) = y and s(P) = −P ln P, we have the Boltzmann–Gibbs–Shannon entropy:

SBGS = −
∫

P ln P dnx . (5)

Let us put B(y) = y again. For s(P) = (Pq − P)/(1− q) with q 6= 1, q > 0 and s(P) = −P ln P
with q = 1, we have the Tsallis entropy of non-extensive thermostatistics [39–41] that reads explicitly:

ST =
1

1− q

∫
(Pq − P) dnx (6)

for q 6= 1 and ST = SBGS for q = 1. Obviously, the Tsallis entropy involves a parameter q and includes
the Boltzmann–Gibbs–Shannon entropy as a special case for q = 1. Other entropy measures, such as
the Renyi entropy or the Sharma–Mittal entropy, can be obtained as special cases of Equation (3) for
appropriate choices of B and s [38].

As such, the internal energy functional UNL can depend in various ways on r and P. In order
to arrive at analytical solutions, it has been suggested to follow the so-called canonical-dissipative
approach [36,42–44]. Accordingly, UNL satisfies two features: it is linear in P, and it depends explicitly
only on the functions Hj. That is, there is only an implicit dependency on the state r. In summary,
we have:

UNL[P] =
∫

g(H1, . . . , Hn−1) P dnx . (7)

For example, in the special case of a Brownian particle evolving in a potential (purely dissipative
case) with n = 2, H1 = H and g(H) = H, we find that UNL reduces to the equilibrium internal energy
given by U = 〈H〉 =

∫
HPd2x, where H is the ordinary Hamiltonian function of the particle (for more

details, see below).
Finally, the non-equilibrium free energy FNL is defined in analogy to the equilibrium free

energy like:
FNL[P] = UNL[P]− θS[P] , (8)
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where θ ≥ 0 is a weight parameter that is considered as the counterpart to the temperature T in
equilibrium systems.

With the definitions made above, we can propose a model for stochastic Nambu systems in general
thermostatistic settings. As we will show below, the model applies both to active and purely-dissipative
systems. The model is defined by the free energy Fokker–Planck equation [38]:

∂

∂t
P = −∇IP +∇D MP∇D

δFNL

δP
. (9)

In Equation (9), we have introduced the incomplete nabla operator∇D = (a1∂/∂x1, · · · , an∂/∂xn)

with aj = 0 or aj = 1. If aj = 1 for all j, then ∇D = ∇. The incomplete nabla operator plays a crucial
role for the dissipative part of the dynamics. For this reason, it is denoted by a subindex “D”.

In Equation (9), the symbol M stands for a semi-positive definite n × n matrix, the so-called
mobility matrix [38]. Semi-positive definite means that for any vector Z = (Z1, . . . , Zn), we have
ZMZ ≥ 0. For example, a diagonal matrix with semi-positive diagonal elements is a semi-positive
matrix. Finally, in Equation (9), the expression δFNL/δP denotes the variational derivative of the
functional FNL[P] with respect to P.

For the special case of the Boltzmann–Gibbs–Shannon entropy (5), by substituting Equations (5),
(7) and (8) into Equation (9), we obtain an ordinary Fokker–Planck equation of the form:

∂

∂t
P = −∇IP +∇D {MP∇Dg(H1, . . . , Hn−1)}+∇D {(Mθ)∇DP} , (10)

which is a partial differential equation that is linear with respect to P. However, for entropy measures
different from SBGS, Equation (9) yields partial differential equations that are nonlinear with respect
to P. For example, for stochastic Nambu systems in a non-extensive thermostatistic setting related to
the Tsallis entropy (6), by substituting Equations (6)–(8) into Equation (9), we obtain:

∂

∂t
P = −∇IP +∇D {MP∇Dg(H1, . . . , Hn−1)}+∇D {(Mθ)∇DPq} (11)

with q > 0. The diffusion term, i.e., the third expression on the right-hand side of the equal sign in
Equation (11), is nonlinear with respect to P. This type of nonlinear diffusion coefficient has been
introduced by Plastino and Plastino in the context of Fokker–Planck equations associated with the
non-extensive Tsallis entropy [45] and is a benchmark nonlinearity of nonlinear diffusion equations in
material physics [46–48].

Due to the fact that in general, the model (9) is nonlinear with respect to P (e.g., see Equation (11))
and in view of the fact that the structure of the model (9) is similar to a Fokker–Planck equation, it has
been suggested to refer to Equation (9) as the nonlinear Fokker–Planck equation. That is, from a
mathematical point of view, the proposed model (9) can be regarded as a nonlinear partial differential
equation or a nonlinear Fokker–Planck equation. Taking a thermodynamics point of view with a focus
on thermodynamic state variables, S, UNL, FNL and, in particular, the role of FNL for the approach to
stationarity (see below), Equation (9) is regarded as a free energy Fokker–Planck equation.

2.3. Approach to Stationarity and Stationary Solutions

Solutions of the ordinary Fokker–Planck equation (i.e., the Fokker–Planck equation that is
linear with respect to P) are known to approach under certain conditions stationary solutions [49].
Several studies have generalized this result for Fokker–Planck equations that are nonlinear with
respect to P and associated with generalized statistical entropy measures different from the
Boltzmann–Gibbs–Shannon measure [38,50–54]. In the context of the stochastic Nambu equation
model described by the free energy Fokker–Planck Equation (9), the approach to stationarity can
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be shown conveniently using concepts from the theory of linear non-equilibrium thermodynamics.
To this end, following [38], let us introduce the thermodynamic force Xth defined by:

Xth(P) = −∇D
δFNL

δP
. (12)

Note that for generalized entropy measures S, the force Xth can depend on P as indicted. Having
introduced Xth, Equation (9) becomes:

∂

∂t
P = −∇IP−∇D {MXthP} . (13)

Differentiating the free energy FNL with respect to time, from Equations (8) and (13), we obtain:

d
dt

FNL = −
∫

Xth MXthPdnx ≤ 0 . (14)

The proof of Equation (14) can be found in [38] and is reviewed in Appendix A. As indicated in
Equation (14), due to the fact that M is semi-positive definite, it follows that the free energy decays as
a function of time or is constant. The decay of the free energy is related to the increase of the statistical
entropy due to irreversible processes. The latter will be denoted by diS. It can be shown (see [38] and
Appendix A) that:

diS = −dFNL

θ
≥ 0 . (15)

If FNL is bounded from below [38,55], then Equation (14) yields a so-called H-theorem that states
that any transient solution in terms of P(r, t) of the stochastic Nambu mechanics system eventually
converges to a stationary one. More precisely, from FNL[P] > C for any P and dFNL/dt ≤ 0, we obtain:

lim
t→∞

d
dt

FNL = 0 . (16)

From Equation (14), it then follows that Xth(P) = 0. From Equation (13), we conclude that:

∂

∂t
P = −∇IP (17)

holds for t→ ∞. This implies we have either ∂P/∂t = 0 and ∇IP = 0 or there is a time-dependent
probability density P(r, t) that satisfies Equation (17). However, Equation (17) only allows for the
so-called weak solution of the form:

P(r, t) = 〈δ(r− u(t))〉 ,
d
dt

u = I . (18)

These weak solutions are composed of deterministic trajectories. This leads to a contradiction
because for θ > 0, the model (9) exhibits a diffusion term. That is, trajectories of the model (9) exhibit a
random component even in the stationary case. Therefore, we conclude that the transient probabilities
P(r, t) become stationary in the long-term limit.

Let us derive analytical expressions for the stationary probability densities P of stochastic Nambu
models defined by Equation (9). From our previous discussion, it follows that stationary solutions
satisfy the conditions Xth = 0 and ∇IP = 0. The latter condition implies that:

I∇P = 0 (19)
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because the conservative force I has zero divergence. We will return to Equation (19) below. Let us
dwell on the condition Xth = 0, which reads:

∇D
δFNL

δP
= 0 ⇒ δFNL

δP
= µ . (20)

Here, µ is an integration constant. From Equations (8) and (20), it follows that:

µ =
δUNL

δP
− θ

δS
δP

. (21)

Substituting the definitions (3) and (7) into Equation (21) and rearranging terms, we obtain:

g(H1, . . . , Hn−1)− µ = θ
dB
dy

f (P) (22)

where f denotes the slope of the entropy kernel,

f (P) =
ds
dP

, (23)

and we have:
dB
dy

=
dB
dy

∣∣∣∣
y =

∫
s(P)dnx

. (24)

Since the entropy kernel is assumed to be concave (see Equation (4)), the function f is
monotonically decaying, and the inverse f−1 of f exists. To obtain a more concise formulation
involving a smaller number of symbols, let us denote this inverse f−1 alternatively by [ds/dP]−1.
Then, Equation (22) reads:

g− µ

θ
dB
dy

=
ds
dP

(25)

and taking the inverse yields:

P(r) =
[

ds
dP

]−1

 g(H1(r), . . . , Hn−1(r))− µ

θ
dB
dy

 . (26)

Equation (26) is an implicit definition for the stationary probability density because in general,
the expression dB/dy depends on P, as well; see Equation (24). However, if the entropy measure
does not exhibit an outer function, that is if B(y) = y holds, then Equation (26) becomes an explicit
definition for the stationary probability density and reads:

P(r) =
[

ds
dP

]−1 ( g(H1(r), . . . , Hn−1(r))− µ

θ

)
. (27)

Let us illustrate applications of Equation (27) for the Boltzmann–Gibbs–Shannon entropy (5)
and the Tsallis entropy (6). For SBGS, we have s(P) = −P ln P, ds/dP = −1 − ln P and
[ds/dP]−1(ξ) = exp{−1− ξ}. Consequently, Equation (27) reduces to:

P(r) = e−1 exp
{
− g− µ

θ

}
=

1
Z

exp
{
− g(H1(r), . . . , Hn−1(r))

θ

}
(28)

with Z = exp{1− (µ/θ)}. The stationary probability density has the form of a generalized Boltzmann
distribution and includes the ordinary Boltzmann distribution P(x1, x2) = Z−1 exp{−H(x1, x2)/T}
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for the special case n = 2, H1 = H, g(H) = H and θ = T. For ST, we have s(P) = (Pq − P)/(1− q),
ds/dP = (qP(q−1) − 1)/(1 − q) and [ds/dP]−1(ξ) = {q/[(1 − q)ξ + 1]}1/(1−q) for q ∈ (0, 1) and
[ds/dP]−1(ξ) = {q−1[−ξ(q− 1) + 1]+}1/(q−1) for q > 1. Consequently, Equation (27) becomes:

P(r) =
(

q
(1− q)θ−1(g(H1(r), . . . , Hn−1(r))− µ) + 1

)1/(1−q)
(29)

for q ∈ (0, 1) and:

P(r) =
(
[(q− 1)θ−1(µ− g(H1(r), . . . , Hn−1(r))) + 1]+

q

)1/(q−1)

(30)

for q > 1. In the expressions above, we have used the operator [·]+, which is defined by [z]+ = max(z, 0),
where z is a real number. The operator makes sure that probability densities are semi-positive definite.
For q > 1, stationary probability densities of non-extensive systems described by Tsallis entropy
frequently correspond to cutoff distributions, that is they decay to zero at certain boundaries and equal
zero outside these boundaries.

Finally, let us return to the condition (19). By definition of the canonical-dissipative approach,
Equation (19) is satisfied for any canonical-dissipative distribution. That is, the canonical-dissipative
approach involves kernels g of internal energy functionals that do not depend explicitly on the state
vector r, but only implicitly via the invariants Hj, see Equation (7). As a consequence of this choice,
the stationary distributions only depend on the invariants Hj (see Equation (26)) and do not explicitly
depend on the state vector r. Therefore, the product I∇P vanishes as required by Equation (19), which
might be shown as follows:

I∇P = ∑
k=1

∂P
∂Hk

I∇Hk︸ ︷︷ ︸
= 0

= 0 . (31)

2.4. Active Nambu Systems Exhibit Attractors Defined by Classical Nambu Systems

In the “zero temperature” case θ = 0, Equation (9) with UNL given by Equation (7) reads:

∂

∂t
P = −∇IP +∇D {MP∇Dg(H1, . . . , Hn−1)} (32)

and exhibits a “weak solution” P(u, t) = 〈δ(u− r(t))〉, where r(t) are trajectories satisfying a
canonical-dissipative Nambu dynamics without noise [19]:

d
dt

r = I−M∇Dg(H1, . . . , Hn−1) . (33)

Let us show next that the kernel function g of the internal energy UNL can act as a Lyapunov
function. Differentiating g with respect to time, we obtain:

d
dt

g = ∇g
d
dt

r = ∇gI−∇gM∇Dg . (34)

The first term on the right-hand side of the equal sign vanishes because we have:

∇gI =
n−1

∑
k=1

∂g
∂Hk

(∇HkI) (35)

and∇HkI = 0 for any k as mentioned in Section 2.1. Consequently, Equation (34) becomes:

d
dt

g = −∇gM∇Dg . (36)
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Let us focus on semi-positive definite mobility matrices that assume a diagonal form: Mij = mjδij
with mj ≥ 0, where δij is the Kronecker symbol. Then, ∇gM∇Dg = ∇DgM∇Dg holds, which
implies that the expression ∇gM∇Dg is of the form ZMZ with Z = ∇Dg, and therefore, we have
∇gM∇Dg = ZMZ ≥ 0. In summary, Equation (36) leads to the inequality:

d
dt

g ≤ 0 . (37)

Next, we assume that g is bounded from below. For example, the quadratic function:

g =
1
2

n−1

∑
k=1

Ak(Hk − Bk)
2 (38)

with parameters Ak ≥ 0 and Bk is bounded from below with ∀ r : g ≥ C ≥ 0, where C is a constant.
From dg/dt ≤ 0 and g ≥ C, it follows that g becomes stationary in the long time limit:

lim
t→∞

d
dt

g = 0 . (39)

Assuming again that Mij = mjδij and that∇D “matches” the mobility matrix (as in all examples
of Section 3), such that mj = 0⇔ aj = 0 and mj > 0⇔ aj = 1, then Equation (39) implies that∇Dg = 0;
see Equation (36). Substituting this result into Equation (33), we see that r satisfies the original Nambu
dynamics (1). That is, any active Nambu system converges to a trajectory that is described by a classical
Nambu system (1). This trajectory acts as an attractor.

The question arises whether or not the values of the pseudo-invariants Hj are fixed by the impact
of the function g. If g assumes the quadratic form (38) for a single pseudo-invariant j,

g =
1
2

Aj(Hj − Bj)
2 (40)

with Aj > 0, then this question can be answered affirmatively under particular circumstances.
Following the argument in a recent study [34], we see that from Equation (40) and ∇Dg = 0, it
follows that:

t→ ∞ : ∇Dg = Aj∇DHj(Hj − Bj) = 0⇒∇DHj = (0, . . . , 0) ∨ Hj = Bj . (41)

Typically, classical Nambu systems (1) feature the following two properties: (i) if
dr/dt = I 6= (0, . . . , 0), then∇DHj = (0, . . . , 0) only for a countable set of time points t1, t2, . . . ; (ii) if
dr/dt = I = (0, . . . , 0) at t0, then∇DHj = (0, . . . , 0) holds for any time t ≥ t0.

For example, for the special case of the harmonic oscillator (as a Nambu system) with mass m = 1,
we have H = (v2 +ω2x2)/2, where ω > 0 is the angular oscillator frequency, and x(t) = K cos(ωt + ϕ),
v(t) = Kω sin(ωt + ϕ). Here, ϕ is an arbitrary angle, and K ≥ 0 is the oscillator amplitude.
The canonical-dissipative limit cycle oscillator based on the harmonic oscillator involves the incomplete
nabla operator∇D = (0, ∂/∂v); see [56–58]. Consequently, we have∇DH = (0, v) for t ≥ t0. Moreover,
for dr/dt = I 6= (0, 0) ⇒ K > 0, we have ∇DH = (0, 0) only for time points tk = kTperiod + toffset
with k = 1, 2, . . . , where toffset is related to ϕ, and Tperiod = 2π/ω is the oscillator period. In contrast,
if dr/dt = I = (0, 0)⇒ K = 0 at t ≥ t0, then∇DH = (0, 0) for t ≥ t0.

Let us assume that Hj is bounded from below and exhibits a minimum value C for a point r or
a trajectory r(t), such that Hj ≥ C ∧ ∃r : Hj(r) = C. Let us assume that Properties (i) and (ii) hold.
Then, from Equation (41), it follows that if Bj ≥ C, then:

t→ ∞⇒ d
dt

r = I 6= (0, . . . , 0) ∧ Hj = Bj . (42)
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That is, if at an initial time point t0 we have Hj 6= Bj, then Hj converges to Bj in the long time
limit. In contrast, if Bj < C, then by definition, Hj cannot converge to Bj. However, in the long time
limit, g becomes stationary, and we have ∇Dg = 0. Therefore, from Equation (41), it follows that if
Bj < C, then:

t→ ∞⇒ d
dt

r = I = (0, . . . , 0) ∧ Hj = Hj(r = (0, . . . , 0)) . (43)

Typically, Bj = C denotes a bifurcation point that separates two qualitatively different dynamical
domains. If so, from a physics point of view, the parameter Bj would be considered as a
pumping parameter, whereas from a dynamical systems perspective, Bj would be regarded as a
bifurcation parameter.

3. Examples of Active and Purely-Dissipative Systems

In what follows, we will illustrate the general theoretical framework by means of three examples.
The first two examples are about purely dissipate systems satisfying Boltzmann–Gibbs–Shannon
thermostatistics. The third example describes an active stochastic Nambu system. The system
is discussed from the perspectives of classical Boltzmann–Gibbs–Shannon thermostatistics and
non-extensive thermostatistics.

3.1. Brownian Motion in a Potential Field

Nambu mechanics reduces to Hamiltonian mechanics for n = 2. Therefore, the Brownian motion
of a particle of mass m moving in one direction x with velocity v and momentum p = mv is a special
case of Nambu mechanics. We put:

H =
p2

2m
+V(x) , (44)

where V(x) is a globally-attractive potential with min{V} = C′ and V → ∞ for x→ ±∞. In terms of
Nambu mechanical systems, we have n = 2, r = (x, p), ∇ = (∂/∂x, ∂/∂p) and H1 = H. The particle
not affected by friction and fluctuating forces satisfies Equation (1) with the conservative force:

Ix =
∂H
∂p

=
p
m

, Ip = −∂H
∂x

= −dV
dx

. (45)

From Equations (1) and (45), we obtain the Hamiltonian equations:

d
dt

x =
p
m

,
d
dt

p = −dV
dx

(46)

of a classical particle moving in a potential V(x). The classical particle is assumed to move through a
medium. Due to the interaction with the medium, the particle is subjected to friction, on the one hand,
and a fluctuating force, on the other hand [49]. To account for these two effects, we add dissipative
forces in the evolution equation for the moment. Accordingly, the model (9) is used with:

M =

(
0 0
0 γ

)
, (47)

where γ ≥ 0 denotes the friction coefficient. Likewise, we use ∇D = (0, ∂/∂p). As far as the
thermodynamic state variables are concerned, we put:

S = SBGS ,

g(H) = H ⇒ UNE =
∫

HP dpdx = 〈H〉 , (48)

FNE = UNE− θSBGS .
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Since we use SBGS, Equation (10) applies. Substituting Equations (47) and (48) into Equation (10) yields:

∂

∂t
P = −∇IP +

∂

∂p
γ

p
m

P +
∂2

∂p2 DP , (49)

where D denotes the diffusion coefficient defined by D = γθ. The Fokker–Planck Equation (49) is also
known as Kramers equation. Trajectories of the Brownian particle can be computed from the Langevin
equation associated with the Fokker–Planck Equation (49). The Langevin equation reads [49]:

d
dt

x =
p
m

,
d
dt

p = −dV
dx
− γ

p
m

+
√

DΓ(t) , (50)

where Γ(t) is a fluctuating force defined in terms of a Langevin force normalized with respect to
the Dirac delta function like 〈Γ(t)Γ(t′)〉 = 2δ(t− t′) [49]. The Langevin equation for the Brownian
particle (50) includes Equation (46) as special case for γ = 0 (⇒ D = 0). Substituting Equation (48) into
Equation (28), we obtain the stationary probability density in form of the Boltzmann distribution:

P(p, x) =
1
Z

exp
{
−H

T

}
=

1
Z

exp

−
(

p2

2m
+V(x)

)
T

 (51)

for θ = T and Z =
∫

exp{−H(x, p)/T}dxdp.

3.2. Charged Particle in a Magnetic Field

As pointed out by Pletnev [22] (p. 291/292), a charged particle in a magnetic field is an example
of a Nambu system. To this end, the particle is described only in the velocity state space with
n = 3. For the sake of simplicity, let us put the particle mass equal to unity. The state vector
is given by the three-dimensional velocity vector: r = v = (v1, v2, v3). Accordingly, we have
∇ = (∂/∂v1, ∂/∂v2, ∂/∂v3). The invariants are:

H1 =
v2

2
, H2 = qvB . (52)

Here, H1 is the kinetic energy. The parameter q denotes the charge of the particle and should not
be confused with the parameter q introduced above in the context of the Tsallis entropy. The vector
B denotes the magnetic field vector in three dimensions and is assumed to be constant. The second
invariant is the scalar product (dot product) of the particle velocity and the magnetic field vector.
This invariant is a consequence of the Lorentz force (produced by the magnetic field), which only acts
perpendicular to the particle velocity. Therefore, the Lorentz force cannot change the scalar product
vB. In three dimensions, for arbitrary invariants H1 and H2, the conservative force (2) can be expressed
in terms of the following cross product [1]:

I = ∇H1×∇H2 . (53)

Substituting Equations (52) and (53) into Equation (1), we obtain:

d
dt

r = I = ∇H1×∇H2 = q (v×B) . (54)

Since r = v, we re-obtain the classical result from electromagnetodynamics:

d
dt

v = FL = q (v×B) , (55)
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where FL is the aforementioned Lorentz force.
Following our previous example (see Section 3.1), we consider next the motion of a charged

particle subject to a magnetic field in a medium (that does not affect the magnetic field). That is, we
add two dissipative components to the model (55): friction and a fluctuating force. We consider again
classical Boltzmann–Gibbs–Shannon statistics. Accordingly, we put∇D = ∇ and:

M = γE , (56)

where E is the diagonal matrix and γ ≥ 0 is the friction coefficient. Furthermore, we put:

S = SBGS ,

g(H1, H2) = H1 ⇒ UNE =
∫

H1P d3v = 〈H1〉 , (57)

FNE = UNE− θSBGS .

Substituting Equations (56) and (57) into Equation (10) yields:

∂

∂t
P = −∇{qv×BP}+∇γvP + ∆DP , (58)

where ∆ = ∇2 denotes the three-dimensional Laplace operator and D = γθ again. The Fokker–Planck
Equation (58) defines the evolution of the probability density P(v, t). Stochastic trajectories v(t) can be
computed from the corresponding Langevin equation [49] that reads:

d
dt

v = q (v×B)− γv +
√

DΓ(t) , (59)

where Γ(t) = (Γ1(t), Γ2(t), Γ3(t)) denotes a three-dimensional Langevin force with〈
Γj(t), Γk(t′)

〉
= 2δjkδ(t− t′). Here, δjk denotes the Kronecker symbol. Finally, the stationary

probability density can be obtained by substituting Equation (57) into Equation (28) and corresponds
to a Maxwell distribution:

P(v) =
1
Z

exp
{
−H1

T

}
=

1
(2T2)3/2 exp

{
− v2

2T

}
(60)

for θ = T.

3.3. Active Spinning Top Featuring Non-Extensive Statistics: An Approach Involving Thermodynamic
State Variables

So far, we have discussed purely-dissipative systems and stochastic systems within the framework
of the classical Boltzmann–Gibbs–Shannon thermostatistics. Let us turn next to an example of an active
stochastic Nambu system. Nambu mentioned in his seminal study on Nambu mechanics that the Euler
equations of the spinning top can be cast into the form of Equation (1). The freely rotating spinning top
can be considered as a Nambu system. In two previous studies, a stochastic, active version of a spinning
top has been introduced exploiting the Nambu mechanics approach [7,19]. This proposed stochastic
active spinning top has been discussed from the perspective of classical Boltzmann–Gibbs–Shannon
thermostatistics. In what follows, we will introduce a non-extensive variant based on the Tsallis
entropy of the stochastic active spinning top proposed in the aforementioned earlier studies [7,19].
Moreover, in this context, the thermodynamic state variables FNL, UNL and S will be introduced, and
the corresponding thermodynamic perspective will be taken as a departure point.
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The dynamics of a spinning top can conveniently be described by means of the three-dimensional
angular momentum vector L = (L1, L2, L3). Let I1, I2 and I3 denote the principle inertia moments of
the top. Then, the evolution equation for L is given by the Euler equation:

d
dt

L = L×

 L1/I1

L2/I2

L3/I3

 = L× RL , (61)

where we have introduced the diagonal matrix:

R =

 1/I1 0 0
0 1/I2 0
0 0 1/I3

 (62)

of “inverse” inertia coefficients. Let us put n = 3 and r = L. Moreover, we introduce H1 defined by half
of the squared amount of the angular momentum and H2 given by the kinetic energy as invariants:

H1 =
L2

2
, H2 =

1
2

(
L2

1
I1

+
L2

2
I2

+
L2

3
I3

)
=

1
2

LRL . (63)

Then, substituting Equation (63) together with Equation (53) into the Nambu Equation (1), we
re-obtain the Euler Equation (61). In doing so, it can be shown that the spinning top is a Nambu system.

We consider next an active stochastic variant of the spinning tops dynamics (61) featuring
non-extensive thermostatistics. To this end, we put∇D = ∇ = (∂/∂L1, ∂/∂L2, ∂/∂L3) and M = γE as
in Equation (56). Furthermore, we put:

S = ST ,

g(H1, H2) =
A1

2
(H1− B1)

2 +
A2

2
(H2− B2)

2 ⇒ UNE =
∫

gP d3L , (64)

FNE = UNE− θST

with A1, A2 ≥ 0. Substituting Equation (64) together with ∇D = ∇ and M = γE into
Equation (11) yields:

∂

∂t
P = −∇{[L× RL− γ1L(H1− B1)− γ2RL(H2− B2)]P}+ ∆DPq (65)

with ∆ = ∇2 and D = γθ again. Moreover, we have defined γ1 = γA1 and γ2 = γA2.
The Fokker–Planck Equation (65) defines the evolution of the probability density P(L, t). For q = 1,
the model reduces to the stochastic version proposed earlier in the literature [7] describing a linear
partial differential equation, that is, an ordinary Fokker–Planck equation. In contrast, for q 6= 1,
the model is described by a nonlinear partial differential equation.

In order to highlight the active nature of the model (65), we would like to point out that in the
“zero temperature limit” given by θ = 0, we have an H-theorem for g; see Section 2.4. In particular,
for A2 = 0, this implies that in the limiting case t→ ∞, the angular momentum L approaches in the
amount the value

√
2B1, such that H1 = B1. Likewise, for A1 = 0, it follows that the kinetic energy

approaches in the long time limit the parameter value B2. In this sense, the model features a pumping
mechanisms (i.e., negative damping) that leads to an increase of angular momentum (A1 > 0, A2 = 0)
or kinetic energy (A1 = 0, A2 > 0).

Stochastic trajectories L(t) can be computed by means of [38]:

d
dt

L = L× RL− γ1L(H1− B1)− γ2RL(H2− B2) +
√

D P(q−1)/2(u, t)
∣∣∣
u=L(t)

Γ(t) , (66)
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where Γ(t) denotes the three-dimensional Langevin force mentioned in the previous example of
Section 3.2. The stochastic evolution Equation (66) can be interpreted in two alternative ways. First, we
may consider Equation (66) as part of a two-tiered (or two-layered [38]) description of the stochastic
trajectories L(t). Accordingly, first, the Fokker–Planck Equation (65) is solved in the time-interval [t1, t2]

of interest (tier one). In doing so, P(L, t) is obtained. Subsequently, the solution P(L, t) is substituted
into Equation (66). In this case, Equation (66) corresponds to a non-autonomous, multiplicative noise
Langevin equation (tier two) interpreted according to Ito calculus. Alternative to this two-tiered
interpretation, Equation (66) can be regarded as a self-consistent Langevin equation [38]. In line with
this alternative interpretation, the probability density P(L, t) is computed from trajectories L(t) like
P(u, t) = 〈δ(u− L(t))〉. However, the evolution of the trajectories L(t) in turn depends on P(L, t).

Depending on the parameter q, the stationary probability density assumes one of the forms
defined by Equations (28), (29) and (30) with g given by Equation (64). For q ∈ (0, 1), we obtain:

P(L) =
(

q
(1− q)(2θ)−1(A1(H1(L)− B1)2 + A2(H2(L)− B2)2 − 2µ) + 1

)1/(1−q)
. (67)

For q = 1, we get:

P(L) =
1
Z

exp
{
−A1(H1(L)− B1)

2 + A2(H2(L)− B2)
2

2θ

}
(68)

with Z = exp{1− (µ/θ)} as in Equation (28).
For q > 1, we obtain:

P(L) =

(
[(q− 1)(2θ)−1(2µ− A1(H1(L)− B1)

2 + A2(H2(L)− B2)
2) + 1]+

q

)1/(q−1)

. (69)

In order to arrive at a more precise interpretation of the stationary distributions, we may discuss
the stationary distribution in appropriately-defined one-dimensional spaces related to the invariants
H1 and H2, rather than in the original state space [57–59]. That is, we define the distributions:

Pj(ξ) =
〈
δ(ξ − Hj(L))

〉
=
∫

δ(ξ − Hj(L))P(L)d3L (70)

for j = 1, 2. In order to reduce the number of symbols, we may consider Hj both as a coordinate and
a random variable, depending on its context. Accordingly, we replace ξ by Hj in Equation (70) and
define the distributions of the invariants like:

Pj(Hj) =
〈
δ(Hj − Hj(L))

〉
=
∫

δ(Hj − Hj(L))P(L)d3L . (71)

For illustration purposes, let us focus on an active system that features a pumping mechanism that
makes the angular moment become asymptotically stable at the amount

√
2B1 (in the deterministic

case θ = 0). That is, we put A2 = 0. From Equation (71) and Equations (67)–(69), we obtain the
distributions:

P1(H1) =

√
H1

Z′

(
q

(1− q)(2θ)−1(A1(H1 − B1)2 − 2µ) + 1

)1/(1−q)
(72)

for q ∈ (0, 1),

P1(H1) =

√
H1

Z′Z
exp

{
−A1(H1 − B1)

2

2θ

}
=

√
H1

Z′Z
exp

{
−γ1(H1 − B1)

2

2D

}
(73)

for q = 1 with Z =
∫

exp{−A1(H1 − B1)
2/(2θ)}d3L and:

P1(H1) =

√
H1

Z′

(
[(q− 1)(2θ)−1(2µ− A1(H1 − B1)

2) + 1]+
q

)1/(q−1)

(74)

for q > 1. In Equations (72)–(74), the pre-factor
√

H1/Z′ is a re-normalization factor that occurs due
to the fact that we transform distributions from a three-dimensional state space to a one-dimensional
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one. Roughly speaking, we put P1(H1)dH1 = P(L)d3L and express the three-dimensional state space
element d3L like d3L = 2(

√
2)−1|L|2d|L|/Z′ = (

√
2)−1|L|dH1/Z′ =

√
H1dH1/Z′.

The distributions (72)–(74) can be characterized as follows. For q ∈ (0, 1), the energy distribution
is a power law distribution. The probability density of the pseudo-invariant H1 decays like
√

H1H2/(1−q)
1 = H1/(1−q)

1 for sufficiently large values. Since we have |L|2 = 2H1, the probability
density of the squared angular moment |L| behaves qualitatively in the same way. For q = 1,
the distribution would be a truncated normal distribution (truncated at H1 = 0) with a maximum at
H1 = B1 if we ignore the pre-factor

√
H1/Z′. This truncated normal distribution has been studied in

detail (both in theoretical and experimental works) in the context of the standard canonical-dissipative
limit-cycle oscillator [36,44,57,58,60,61]. Taking the pre-factor

√
H1/Z′ into account, the truncated

normal distribution becomes distorted. For q > 1, the distribution is a cutoff distribution. It is useful
to introduce the parameter µeff = µ + θ/(q− 1), such that Equation (74) reduces to:

P1(H1) =

√
H1

Z′

(
(q− 1)(2θ)−1[2µeff − A1(H1 − B1)

2]+
q

)1/(q−1)

. (75)

From Equation (75), it is clear that the shape of the distribution follows an inverted U with a
maximum at H1 = B1. The distribution exhibits two cutoff points at H1± = B1 ±

√
2µeff/A2 provided

that B1 −
√

2µeff/A1 ≥ 0 holds. If B1 −
√

2µeff/A1 < 0 holds, then the cutoff points are located at
H1+ = B1 +

√
2µeff/A1 and H1− = 0. The distribution assumes finite values in the interval (H1−, H1+)

(which is the so-called “support” of the distribution) and is zero otherwise.

3.4. Numerics

In order to illustrate the active nature of the canonical-dissipative spinning top model (65),
we solved numerically the corresponding Langevin Equation (66). We focused on the
Boltzmann-Gibbs-Shannon case q = 1 and a pumping mechanism that stabilized the amount of angular
moment (A1 > 0, A2 = 0). Figures 1 and 2 show one component of L, as well as the pseudo-invariant
H1 as functions of time for two different parameters γ1 in the deterministic case (zero temperature limit
θ = 0 ⇒ D = 0). As expected from our general considerations in Section 2.4, the pseudo-invariant
H1 converged to the stationary value B1. The relaxation time towards stationarity became shorter
when γ1 was increased. That is, γ1 determined the characteristic time scale of the transient period.
This interpretation of γ1 can also be seen from Equation (36). Substituting g = A1δH2

1 /2 with
δH1 = H1 − B1 into Equation (36) (together with ∇D = ∇), we obtain:

d
dt

δH1 = −γA1(∇H1)
2(δH1)

2 = −γ1(∇H1)
2(δH1)

2 . (76)

Accordingly, the difference δH1 between H1 and its fixed point value B1 decays faster when γ1 is
larger, which is what we found in the numerical simulations.

The stationary probability density (73) is shown in Figures 3 and 4 for two different diffusion
constants. For a relatively small diffusion constant, the pre-factor

√
H1 has relatively little impact, and

the distribution resembles a normal distribution; see Figure 3. In contrast, if the diffusion constant
is sufficiently larger, the distorting impact of the pre-factor

√
H1 becomes dominant, and the shape

of the distribution qualitatively differs from a normal distribution; see Figure 4. Irrespective of D,
the distribution of the pseudo-invariant H1 corresponding to the squared angular moment is unimodal
and exhibits its maximum at a value H1 > 0. This peak at a value different from the “ground state
value” H1 = 0 indicates that the system is an active system rather than a purely dissipative one [62].



Entropy 2017, 19, 8 15 of 21

0 200 400 600

L
1
 [
a
.u

.]

-2

0

2

Time [a.u.]

0 200 400 600

H
1
 [
a
.u

.]

0

2

4

Figure 1. Trajectories of L1 (top) and H1 (bottom) of the active spinning top model without noise.
Equation (66) for D = 0 was solved numerically using a Euler forward scheme with a single time step
of 0.01 time units. Model parameters: I1 = 1.1, I2 = 1.3, I3 = 1.5, γ1 = 3/1000, γ2 = 0, B1 = 3. Initial
values: L1(0) = 0.1, L2(0) = 0.2, L3(0) = 0.3.
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Figure 2. As in Figure 1, but for a larger parameter γ1: γ1 = 3/100. Other parameters as in Figure 1:
I1 = 1.1, I2 = 1.3, I3 = 1.5, γ2 = 0, B1 = 3.
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Figure 3. Stationary probability density of the stochastic active spinning top model. Analytical (solid
line) and numerical results (symbols) are shown. The diffusion constant D was relatively small. The full
stochastic model defined by Equation (66) was solved numerically using a stochastic Euler forward
scheme with a single time step of 0.005 time units in the time interval [0, 1000]. From L(t) thus obtained,
the invariant H1(t) was calculated. The numerical results show the probability density estimated from
H1(t) in [500, 1000] (neglecting the transient period) using kernel density estimation with positive
support. The analytical results were drawn from Equation (73). The effective integration factor Z′Z
was determined numerically. Model parameters: γ1 = 0.3, D = 0.1. Other parameters as in Figure 2:
I1 = 1.1, I2 = 1.3, I3 = 1.5, γ2 = 0, B1 = 3.
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Figure 4. As in Figure 3, but for a relatively large diffusion constant D: D = 1.0. Other parameters as
in Figure 3: I1 = 1.1, I2 = 1.3, I3 = 1.5, γ1 = 0.3, γ2 = 0, B1 = 3.

4. Discussion

4.1. Invariants of Nambu Dynamics as Pseudo-Invariants

We proposed a stochastic framework to discuss active Nambu systems that allows one to address
thermodynamic state variables, on the one hand, and generalized entropic measures, on the other
hand. The approach is based on classical Nambu mechanics. Consequently, for an n-dimensional
system, there are n− 1 functions H1, . . . , Hn−1 that act as invariants in the classical Nambu system.
However, in the stochastic, active variant of that system, the functions H1, . . . , Hn−1 vary over time.
There are two reasons.

First, in line with the so-called canonical-dissipative modeling effort for active systems,
the systems feature a pumping mechanism that makes sure that at least one of the functions
H1, . . . , Hn−1 approaches a fixed point value. That is, while in classical Nambu mechanics, the
function values H1, . . . , Hn−1 are determined by the initial conditions (i.e., initial values of the state
vector (r1, . . . , rn)); for active Nambu systems, at least one function Hj converges to a fixed point
value Bj and in doing so assumes in the long time limit a value that does not depend on the initial
conditions. Figures 1 and 2 illustrate this transient dynamics. After the transient period, we have
|Hj − Bj| < C, where C > 0 can be made arbitrarily small. In this case, variation in time of Hj may
be considered as being negligibly small, and we may refer to this domain as the stationary domain.
We may say that in the stationary domain, the system has approached an attractor defined by the
original Nambu system that does not feature the pumping mechanism. In this context, note that the
phrase “pumping mechanisms” actually refers to a pumping and damping mechanism. For example,
if the initial conditions are such that Hj > Bj, then Hj decays towards Bj.

Second, taking fluctuating forces into account associated with the entropic form S, due to the
impact of these fluctuating forces, the functions H1, . . . , Hn−1 vary over time in an erratic fashion.
This holds both in the transient and stationary domain. In the stationary domain, the fluctuations
can be illustrated by means of the stationary probability density Pj(Hj). We demonstrated the erratic
variations of the functions H1, . . . , Hn−1 for a stochastic, active spinning top model involving the
functions H1 and H2, where H1 corresponds to half of the squared amount of the angular momentum.
The probability density P1(H1) is shown in Figures 3 and 4 for two systems that differ with respect to
the “strength” of the impact of the fluctuating force (as quantified by the diffusion coefficient).

In view of these consideration, it might be useful to refer to the functions H1, . . . , Hn−1 occurring
in stochastic, active Nambu systems described by Equation (9) as pseudo-invariants rather than
invariants. The functions H1, . . . , Hn−1 of Equation (9) are pseudo-invariants in the sense that in the
limit t → ∞ and in the “zero temperature limit” θ → 0, the variants over time of these functions
become negligibly small.
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4.2. Active, Stochastic Systems and Generalized, Non-Extensive Entropic Measures

Let us motivate the utilization of generalized entropy measures of the form (3) and in particular
the Tsallis entropy (6) for active systems. To this end, we would like to focus on active systems
that describe human and animal behavior and in particular the motor control system of humans
and animals.

The Boltzmann–Gibbs–Shannon entropy is an extensive measure. That is, when applied to many
body systems, it does not account for long-range interactions between individual subsystems of many
body systems. While for many applications (for example in the statistical mechanics description of
ideal gases), such long-range interaction can be neglected, human and animal behavior may results
from a plenitude of interacting components that feature long-range interactions. For example, on the
neuronal level, neurons in the motor cortex may need to synchronize their activity in order to produce
a descending signal that controls limb movement. The axonal connections between these neurons
may be considered as representing long-range connections rather than local connections. The Tsallis
entropy (6) has been proposed with this goal in mind to account for non-extensivity effect as a result of
long-range interactions between components [39].

Second, the control of human and animal motor behavior involves several subsystems, such as
the neural systems, the muscular system and the human and animal body as such (i.e., the system of
the limbs). These subsystem feature again subsystems. For example, within the neural system, we
may distinguish between processes at the synapses, the membrane and in the axons. The point that we
would like to make here is that the human and animal motor control system from a mechanistic
(microscopic, bottom-up) perspective involves various components that are likely to evolve on
different characteristic time scales. To model explicitly all of these components is a challenging
task. Alternatively, one may think of using stochastic models that are able to capture processes that
take place at different levels of consideration at the same time. Scale independent models as described
for example by the Levy distribution are models that exhibit this feature. This kind of model is known
to exhibit power law distributions rather than normal distributions or Boltzmann distributions. As we
have shown in Section 3, when taking general entropic forms into account, the shape of the stationary
distributions is determined by the entropic form. In particular, using a non-extensive thermostatistic
approach based on the Tsallis entropy (6), for non-extensivity parameters q < 1, the power law
distribution can be modeled; see Section 3.2. In other words, using a generalized thermostatistic
approach that leads to a stationary power law distribution allows us to capture in a crude way that
active biological systems and in particular human and animal motor control systems involve various
subcomponents that are likely to act on different characteristic time scales.

Let us reiterate that in view of the considerations made above, the proposed stochastic Nambu
mechanics models are promising models to capture on appropriately-defined descriptive, macroscopic
levels characteristic properties of biological systems (e.g., that their observables satisfy power law
distributions). In fact, for the migration (cell motion) of certain bacteria, experimental evidence has
been found that the bacteria velocity scores are distributed in a certain range according to a power
law [63]. It has further been suggested that the absolute velocity scores satisfy a Tsallis distribution
similar to the power law distribution (29). In short, while a stochastic model of the form (9) may
not be able to provide a mechanistic account of the many interacting components of a biological
system under consideration, the model might be used as a phenomenological model to address
certain macroscopic aspects of the system. If so, the benefit of the approach outlined above is that
thermodynamic variables can be introduced in a well-defined manner such that the performance of
the system under consideration can be studied from a thermodynamical perspective.

Having argued that the case q < 1 in non-extensive thermostatistics can help us to build more
realistic models of active systems, one can also argue that the alternative case q > 1 has relevance for
our understanding of active systems [64]. Active systems as frequently been found in biology are in
general limited in their performance measures. For example, humans and animals can run just so fast,
and translational and rotational limb movement can be performed only up to certain maximal values
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of speed and angular velocity. Cutoff distributions can take these limitations into account. Modeling
human and animal behavior by means of cutoff distributions implies that we acknowledge that human
behavior is subjected to limits. Accordingly, the observable related to the behavior of interest will not
assume values beyond certain limits. The probability to find observable values beyond these limits
equals zero.

The cases q < 1 and q > 1 are conflicting alternatives. When modeling a certain phenomenon
of interest, one may give priority to either one of the two aforementioned aspects motivating the
utilization of non-extensive thermostatistics with q < 1 or q > 1. Future efforts may be directed to
combine both aspects in a single model.

5. Conclusions

Stochastic Nambu mechanics models provide a relatively novel theoretical framework to address
systems in the life sciences from a physics perspective. This perspective includes both dynamic and
thermodynamic aspects. Interestingly, the approach does not aim to establish a new physics of the
animate world that is separated from the physics concerned with the inanimate world. Rather, as has
been demonstrated above, the stochastic Nambu mechanics perspective is sufficiently broad to address
both active systems as typically observed in the life sciences and equilibrium or close to equilibrium
systems as frequently studied in classical physics. From a mathematical point of view, the stochastic
models under consideration can be described by nonlinear partial differential equations for probability
densities. Although in general, it is difficult to determine the properties of equations of this kind,
the underlying thermodynamic aspects of the theory turns out to provide tools to analyze solutions.
For example, we were able to determine certain properties of transient and stationary probability
densities of the stochastic Nambu mechanics models. Importantly, we illustrated that the type of
the nonlinearity of a partial differential equation under consideration corresponds to a certain type
of an entropy measure. It is this link between the type of the entropy measure and the type of the
nonlinearity that endows the proposed theoretical framework with powerful tools that can be used in
applications to experimental data and theory-building.
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Appendix A. Derivation of Equations (14) and (15)

Differentiating the functional FNL with respect to time yields dFNL/dt =
∫

δFNL/δP∂P/∂t dnx.
Substituting Equation (13) in this result and using partial integration, we obtain

d
dt

FNL =
∫
(∇ δFNL

δP
)IP dnx +

∫
(∇D

δFNL

δP
)MXthP dnx . (A1)

Let us denote the first term on the right hand side of the equals sign by T1. We show next that
T1 = 0. To this end, we decompose FNL into its two contributions, see Equation (8), like

T1 =
∫
(∇ δUNL

δP
)IP dnx− θ

∫
(∇ δS

δP
)IP dnx . (A2)

Next, using Equation (7) and exploiting the fundamental property of Nambu systems mentioned
in Section 2.1, we note that

∇ δUNL

δP
I = ∇g(H1, . . . , Hn−1)I =

n−1

∑
k=1

∂g
∂Hk
∇HkI︸ ︷︷ ︸
= 0

= 0 . (A3)
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Using partial integration, exploiting the fact that I has zero divergence, and taking the entropic
form (3) into account, we find∫

(∇ δS
δP

)IP dnx = −
∫

δS
δP

(∇IP)dnx = −
∫

δS
δP

I∇P dnx = −dB
dy

∫ ds
dP

I∇P dnx

= −dB
dy

∫
(∇s) I dnx =

dB
dy

∫
s ∇I︸︷︷︸
= 0

dnx = 0 . (A4)

In summary, both expressions in T1 equal zero, which implies that T1 = 0. Equation (A1) becomes

d
dt

FNL =
∫
(∇D

δFNL

δP
)MXthP dnx . (A5)

Using the definition (12) for the thermodynamic force Xth and substituting accordingly
∇DδFNL/δP = −Xth into Equation (A5), we obtain Equation (14) from the main text. In closing
this proof note that the argument given in Equation (A4) resembles the argument give in Ref. [12] that
shows that entropy measures are invariant for dynamical systems with divergenceless flows.

Equation (15) can be derived as follows [38]. From Equation (8) it follows that

dFNL = dUNL − θdS . (A6)

Following the principles of linear non-equilibrium thermodynamics, the entropic changes are
decomposed into changes due to irreversible processes (also called irreversible changes) diS and
changes due to reversible processes drS such that

dS = diS + drS . (A7)

For stochastic systems described by free energy Fokker–Planck equations of the form (9), reversible
changes are assumed to result in changes of the internal energy like dUNL = θdrS [38] such that

dS = diS +
dUNL

θ
. (A8)

Substituting Equation (A8) into Equation (A6), we obtain dFNL = −θdiS. Solving for diS, we get
Equation (15) from the main text.

References

1. Nambu, Y. Generalized Hamiltonian dynamics. Phys. Rev. D 1973, 7, 2405–2412.
2. Pandit, S.A.; Gangal, A.D. On generalized Nambu mechanics. J. Phys. A 1998, 31, 2899–2912.
3. Plastino, A.R.; Plastino, A.; da Silva, L.R.; Casas, M. Dynamic thermostatting, divergenceless phase-space

flows, and KBB systems. Physica A 1999, 271, 343–356.
4. Roston, G.B.; Plastino, A.R.; Casas, M.; Plastino, A.; da Silva, L.R. Dynamic thermostatting and statistical

ensemble. Eur. Phys. J. B 2005, 48, 87–93.
5. Steeb, W.H.; Euler, N. A note on Nambu mechanics. Il Nuovo Cim. B 1991, 106, 263–272.
6. Tegmen, A. Momentum map and action-angle variables for Nambu mechanics. Czechoslov. J. Phys. 2004,

54, 749–757.
7. Frank, T.D. A Fokker-Planck approach to canonical-dissipative Nambu systems: With an application to

human motor control during dynamic haptic perception. Phys. Lett. A 2010, 374, 3136–3142.
8. Yamaleev, R.M. Generalized Newtonian equations of motion. Ann. Phys. 1999, 277, 1–18.
9. Yamaleev, R.M. Relativistic equations of motion within Nambu’s formalism of dynamics. Ann. Phys. 2000,

285, 141–160.
10. Molgado, A.; Rodriguez, A. Mapping between the dynamic and mechanical properties of the relativistic

oscillator and Euler free rigid body. J. Nonlinear Math. Phys. 2007, 14, 534–547.
11. Codriansky, S.; Bernardo, C.A.G.; Aglaee, A.; Carrillo, F.; Castellanos, J.; Pereira, G.; Perez, J. Developments

in Nambu mechanics. J. Phys. A 1994, 27, 2565–2578.



Entropy 2017, 19, 8 20 of 21

12. Plastino, A.R.; Plastino, A. Statistical treatment of autonomous systems with divergenceless flow. Physica A
1996, 232, 458–476.

13. Chatterjee, R. Dynamical symmetries and Nambu mechanics. Lett. Math. Phys. 1996, 36, 117–126.
14. Nutku, Y. Quantization with maximally degenerate Poisson brackets: The harmonic oscillator. J. Phys. A

2003, 36, 7559–7567.
15. Baleanu, D. Angular momentum and Killing-Yano tensors. Proc. Inst. Math. NSA Ukraine 2004, 50, 611–616.
16. Curtright, T.L.; Zachos, C. Deformation quantization of superintegrable systems and Nambu mechanics.

New J. Phys. 2002, 4, doi:10.1088/1367-2630/4/1/383.
17. Curtright, T.L.; Zachos, C. Classic and quantum Nambu mechanics. Phys. Rev. D 2002, 68, 085001.
18. Zachos, C. Membranes and consistent quantization of Nambu dynamics. Phys. Lett. B 2003, 570, 82–88.
19. Frank, T.D. Active systems with Nambu dynamics: With applications to rod wielding for haptic length

perception and self-propagating systems on two-spheres. Eur. Phys. J. B 2010, 74, 195–203.
20. Hirayama, M. Realization of Nambu mechanics: A particle interacting with an SU(2) monopole. Phys. Rev. D

1977, 16, 530.
21. Yamaleev, R.M. Generalized Lorentz-force equations. Ann. Phys. 2001, 292, 157–178.
22. Pletnev, N.G. Fillipov-Nambu n-algebras relevant to physics. Sib. Electron. Math. Rep. 2009, 6, 272–311.
23. Gonera, C.; Nuktu, Y. Super-integrable Calogero-type systems admit maximal number of Poisson structures.

Phys. Lett. A 2001, 285, 301–306.
24. Tegmen, A.; Vercin, A. Superintegrable systems, multi-Hamiltonian structures and Nambu mechanics in an

arbitrary dimension. Int. J. Mod. Phys. B 2004, 19, 393–409.
25. Guha, P. Application of Nambu mechanics to systems of hydrodynamical type II. J. Nonlinear Math. Phys.

2004, 11, 223–232.
26. Müller, R.; Nevir, P. A geometric application of Nambu mechanics: The motion of three point vortices in the

plane. J. Phys. A 2014, 47, 105201.
27. Roupas, Z. Phase space geometry and chaotic attractors in dissipative Nambu mechanics. J. Phys. A 2012,

45, 195101.
28. Mathis, W.; Stahl, D.; Mathis, R. Oscillator synthesis based on Nambu mechanics and canonical dissipative

damping. In Proceedings of the 21st European Conference on Circuit Theory and Design (ECCTD 2013),
Dresden, Germany, 8–12 September 2013.

29. Mathis, W.; Mathis, R. Dissipative Nambu systems and oscillator circuit design. Nonlinear Theory Appl. IEICE
2014, 5, 259–271.

30. Frank, T.D. Unifying mass-action kinetics and Newtonian mechanics by means of Nambu brackts.
J. Biol. Phys. 2011, 37, 375–385.

31. Frank, T.D. Nambu brackt formulation of nonlinear biochemical reactions beyond elementary mass action
kinetics. J. Nonlinear Math. Phys. 2012, 19, 81–97.

32. Mongkolsakulvong, S.; Chaikhan, P.; Frank, T.D. Oscillatory nonequilibrium Nambu systems:
The canonical-dissipative Yamaleev oscillator. Eur. Phys. J. B 2012, 85, doi:10.1140/epjb/e2012-20720-4.

33. Chaikhan, P.; Frank, T.D.; Mongkolsakulvong, S. In-phase and anti-phase synchronization in an active
Nambu mechanics system. Acta Mech. 2016, 10, 2703–2717.

34. Gordon, J.M.; Kim, S.; Frank, T.D. Linear non-equilibrium thermodynamics of human voluntary behavior:
A canonical-dissipative Fokker-Planck equation approach involving potentials beyond the harmonic case.
Condens. Matter Phys. 2016, 19, 1–6, doi:10.5488/CMP.19.34001.

35. Schweitzer, F. Brownian Agents and Active Particles; Springer: Berlin/Heidelberg, Germany, 2003.
36. Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L. Active Brownian particles: From

individual to collective stochastic dynamics. Eur. Phys. J. Spec. Top. 2012, 202, 1–162.
37. Haken, H. Synergetics: An Introduction; Springer: Berlin/Heidelberg, Germany, 1977.
38. Frank, T.D. Nonlinear Fokker-Planck Equations: Fundamentals and Applications; Springer: Berlin/Heidelberg,

Germany, 2005.
39. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487.
40. Tsallis, C. Non-extensive thermostatistics: Brief review and comment. Physica A 1995, 221, 227–290.
41. Abe, S.; Okamoto, Y. Nonextensive Statistical Mechanics and Its Applications; Springer: Berlin/Heidelberg,

Germany, 2001.



Entropy 2017, 19, 8 21 of 21

42. Haken, H. Distribution function for classical and quantum systems far from thermal equilibrium. Z. Phys.
1973, 263, 267–282.

43. Graham, R. Statistical Theory of Instabilities in Stationary Nonequilibrium Systems with Applications
to Lasers and Nonlinear Optics. In Springer Tracts in Modern Physics; Höhler, G., Ed.; Springer:
Berlin/Heidelberg, Germany, 1973; Volume 66, pp. 1–97.

44. Ebeling, W.; Sokolov, I.M. Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems;
World Scientific: Singapore, 2004.

45. Plastino, A.R.; Plastino, A. Non-extensive statistical mechanics and generalized Fokker-Planck equation.
Physica A 1995, 222, 347–354.

46. Crank, J. The Mathematics of Diffusion; Clarendon Press: Oxford, UK, 1975.
47. Peletier, L.A. The Porous Media Equation; Applications of Nonlinear Analysis in the Physical Science;

Amann, H., Bazley, N., Kirchgässner, K., Eds.; Pitman Advanced Publishing Program: Boston, MA, USA,
1981; pp. 229–241.

48. Barenblatt, G.I.; Entov, V.M.; Ryzhik, V.M. Theory of Fluid Flows through Natural Rocks; Kluwer Academic
Publisher: Dordrecht, The Netherlands, 1990.

49. Risken, H. The Fokker-Planck Equation. Methods of Solution and Applications; Springer: Berlin/Heidelberg,
Germany, 1989.

50. Kaniadakis, G. H-theorem and generalized entropies within the framework of nonlinear kinetics. Phys. Lett. A
2001, 288, 283–291.

51. Shiino, M. Free energies based on generalized entropies and H-theorems for nonlinear Fokker-Planck
equations. J. Math. Phys. 2001, 42, 2540–2553.

52. Frank, T.D.; Daffertshofer, A. H-theorem for nonlinear Fokker-Planck equations related to generalized
thermostatistics. Physica A 2001, 295, 455–474.

53. Chavanis, P.H. Generalized Fokker-Planck equations and effective thermodynamics. Physica A 2004,
340, 57–65.

54. Schwämmle, V.; Nobre, F.D.; Curado, E. Consequences of the H-theorem for nonlinear Fokker-Planck
equations. Phys. Rev. E 2007, 76, 041123.

55. Frank, T.D. On the boundedness of free energy functionals. Nonlinear Phenom. Complex Syst. 2003, 6, 696–704.
56. Dotov, D.G.; Frank, T.D. From the W-method to the canonical-dissipative method for studying uni-manual

rhythmic behavior. Motor Control 2011, 15, 550–567.
57. Dotov, D.G.; Kim, S.; Frank, T.D. Non-equilibrium thermodynamical description of rhythmic motion patterns

of active systems: A canonical-dissipative approach. BioSystems 2015, 128, 26–36.
58. Kim, S.; Gordon, J.M.; Frank, T.D. Nonequilibrium thermodynamic state variables of human

self-paced rhythmic motions: Canonical-dissipative approach, augmented Langevin equation, and entropy
maximization. Open Syst. Inf. Dyn. 2015, 22, doi:10.1142/S1230161215500079.

59. Mongkolsakulvong, S.; Frank, T.D. Canonical-dissipative limit cycle oscillators with a short-range interaction
in phase space. Condens. Matter Phys. 2010, 13, 13001.

60. Frank, T.D. On a moment-based data analysis method for canonical-dissipative oscillator systems.
Fluct. Noise Lett. 2010, 9, 69–87.

61. Frank, T.D.; Kim, S.; Dotov, D.G. Canonical-dissipative nonequilibrium energy distributions: Parameter
estimation via implicit moment method, implementation and application. Int. J. Mod. Phys. B 2013, 27,
doi:10.1142/S0217979213501567.

62. Frank, T.D. Virial theorem and non-equilibrium canonical-dissipative distributions characterizing Parkinson
tremor. Int. J. Mod. Phys. B 2011, 25, 1465–1469.

63. Bödeker, H.U.; Beta, C.; Frank, T.D.; Bodenschatz, E. Quantitative analysis of random ameboid motion.
Europhys. Lett. 2010, 90, 28005.

64. Frank, T.D. Nonextensive cutoff distributions of postural sway for the old and the young. Physica A 2009,
388, 2503–2510.

c© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Stochastic Nambu Systems in General Thermostatistic Settings
	Nambu Dynamics: Deterministic Case
	Nambu Dynamics: Stochastic Case
	Approach to Stationarity and Stationary Solutions
	Active Nambu Systems Exhibit Attractors Defined by Classical Nambu Systems

	Examples of Active and Purely-Dissipative Systems
	Brownian Motion in a Potential Field
	Charged Particle in a Magnetic Field
	Active Spinning Top Featuring Non-Extensive Statistics: An Approach Involving Thermodynamic State Variables
	Numerics

	Discussion
	Invariants of Nambu Dynamics as Pseudo-Invariants
	Active, Stochastic Systems and Generalized, Non-Extensive Entropic Measures

	Conclusions
	Derivation of Equations (14) and (15)

