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Abstract: Given a probability measure, we consider the diffusion flows of probability measures
associated with the partial differential equation (PDE) of Fokker–Planck. Our flows of the probability
measures are defined as the solution of the Fokker–Planck equation for the same strictly convex
potential, which means that the flows have the same equilibrium. Then, we shall investigate the time
derivative for the relative entropy in the case where the object and the reference measures are moving
according to the above diffusion flows, from which we can obtain a certain dissipation formula and
also an integral representation of the relative entropy.
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1. Introduction

We shall begin with the definitions and fix some notations. Several results in the literature that
we will use later are also gathered in this section. Probability measures on Rn in this paper are always
assumed to be absolutely continuous with respect to the Lebesgue measure. Thus, we say that a
probability measure µ has the continuous density f , which means dµ(x) = f (x) dx, and the measure
µ is sometimes identified with its density f . Throughout this paper, if we simply write an integral
symbol

∫
without specifying any domain, which means

∫
Rn

is the integral over the whole space on Rn.

Definition 1. For a probability measure µ on Rn with the density f , the entropy of µ (or f ) is defined by

H(µ)
(
= H( f )

)
= −

∫
f log f dx, (1)

and, if the density f is smooth, then we define the Fisher information of µ (or f ) as

I(µ)
(
= I( f )

)
=
∫ ‖∇ f‖2

f
dx =

∫
‖∇ log f‖2

f dx. (2)

For an Rn-valued random variable X, if X is distributed according to the probability measure µ, then we define
the entropy H(X) and the Fisher information I(X) of X by H(X) = H(µ) and I(X) = I(µ), respectively.

In a one-dimensional case, the gradient ∇ log f in (2) is usually called the score function of X (or µ)
and denoted by ρX (or ρµ). For a differentiable function ξ with bounded derivative, the score function
behaves that ∫ ∞

−∞
ξ(x)ρµ(x) dµ(x) = −

∫ ∞

−∞
ξ ′(x) dµ(x), (3)

which is known as Stein’s identity.
Let X be an Rn-valued random variable distributed according to the probability measure µ, and

Z be an n-dimensional standard (with mean vector 0 and identity covariance matrix In) Gaussian
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random variable independent of X. Then, for τ > 0, the independent sum X +
√

τZ is called the
Gaussian perturbation of X.

We denote by µτ the probability measure corresponding to the Gaussian perturbation X +
√

τZ,
and fτ stands for the density of µτ . It is fundamental that the density function fτ satisfies the
heat equation:

∂

∂τ
fτ =

1
2

∆ fτ , (4)

where ∆ = ∇·∇ is the Laplacian operator.
The remarkable relationship between the entropy and the Fisher information can be established

by the Gaussian perturbation as follows (see, for instance, [1] or [2]), which is known as the de
Bruijn identity.

Lemma 1. Let X be an Rn-valued random variable distributed according to the probability measure µ. Then,
for the Gaussian perturbation, it holds that

d
dτ

H(X +
√

τZ) =
1
2

I(X +
√

τZ) for τ > 0. (5)

Namely, using the density fτ of the Gaussian perturbed measure µτ , we can write

d
dτ

H( fτ) =
1
2

I( fτ) for τ > 0. (6)

Definition 2. Let µ and ν be probability measures on Rn with µ� ν (µ is absolutely continuous with respect
to ν). We denote the probability density functions of µ and ν by f and g, respectively. Then, as the ways of
indicating the difference between two measures, we shall introduce the following quantities: the relative entropy
H(µ | ν) of µ with respect to ν, H( f | g) of f with respect to g, is defined by

H(µ | ν)
(
= H( f | g)

)
=
∫ (

log f
g

)
f dx. (7)

Although it does not appear to have received widespread attention, it is natural to define the relative Fisher
information I(µ | ν) of µ with respect to ν, I( f | g) of f with respect to g as (see, for instance, [3])

I(µ | ν)
(
= I( f | g)

)
=
∫ ∣∣∣∣∣∣∇( log f

g

)∣∣∣∣∣∣2 f dx = 4
∫ ∣∣∣∣∣∣∣∣∇√ f

g

∣∣∣∣∣∣∣∣2 g dx, (8)

where the relative density f /g is assumed to be sufficiently smooth such that the above expressions make sense.
The relative entropy H( f | g) and the relative Fisher information I( f | g) take non-negative values and 0 if

and only if f (x) = g(x) for almost all x ∈ Rn. Similar to Definition 1, for random variables X and Y with the
distributions µ and ν, the relative entropy and the relative Fisher information of X with respect to Y are defined
as H(X |Y) = H(µ | ν) and I(X |Y) = I(µ | ν), respectively.

In view of the de Bruijn identity, one might expect that there is a similar connection between the
relative entropy and the relative Fisher information. Indeed, Vérdu in [4] investigated the derivative in
τ of H(X +

√
τZ |Y +

√
τZ) for two Gaussian perturbations, and derived the following identity of

the de Bruijn type via minimum mean-square error (MMSE) in estimation theory.

Lemma 2. Let X and Y be Rn-valued random variables distributed according to the probability measure µ and
ν, respectively. Then, for the Gaussian perturbations, it holds that

d
dτ

H
(
X +
√

τZ |Y +
√

τZ
)
= − 1

2
I
(
X +
√

τZ |Y +
√

τZ
)

for τ > 0, (9)
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that is,
d

dτ
H
(
µτ | ντ

)
= − 1

2
I
(
µτ | ντ

)
for τ > 0, (10)

where µτ and ντ are the corresponding measures of the Gaussian perturbations.

An alternative proof of this identity by direct calculation with integrations by part has been given
in [5]. It should be noted here that the reference measure does move by the same heat equation in the
formula of Lemma 1.

Other derivative formulas of the relative entropy have been investigated in [6–8], which are
closely related to the theory of optimal transport and functional inequalities of informations. It is
common in these fields that the reference measure is unchanged with the equilibrium measure. Here,
we shall recall such a derivative formula and will list some useful related results.

Let V be a C1 map on Rn and consider the probability measure κ by

dκ(x) =
1
Z e−V(x) dx, (11)

whereZ =
∫

e−V(x)dx, the normalization constant. Such a probability measure κ is called the equilibrium
(or Gibbs) measure for the potential function V.

Given a probability measure µ0, we consider the diffusion flow of probability measures
(
µt
)

t≥0
associated with the gradient ∇V, that is, the density ft of the measure µt (t > 0) is defined as the
solution to the partial differential equation:

∂

∂t
ft = ∇ · (∇ ft + ft∇V), (12)

which is called the Fokker–Planck equation. It is easily found that the long-time asymptotically stationary
measure for Fokker–Planck Equation (12) is given by the above equilibrium (Gibbs) measure.

Setting the equilibrium measure as the reference, we can understand the relationship between the
relative entropy and the relative Fisher information via the Fokker–Planck equation as follows (see, for
instance, [8]):

Proposition 1. Let
(
µt
)

t≥0 be a diffusion flow of the probability measure associated with the gradient∇V, and
let κ be the equilibrium measure for the potential function V. Then, it holds the differential formula:

d
dt

H
(
µt | κ

)
= −I

(
µt | κ

)
. (13)

Definition 3. A C2 function V on Rn is called strictly K-convex if there exists a positive constant K > 0 such
that Hess(V) ≥ K In.

In the case where the potential function V has the above convexity, we can obtain the inequality
between the relative entropy and the relative Fisher information with respect to the equilibrium measure
for the potential V, which is known as the logarithmic Sobolev inequality (see, for instance, [7,9,10]).

Theorem 1. Let κ be the equilibrium measure for the potential function V. If the potential function V is strictly
K-convex, then it follows that, for any probability measure µ(� κ),

H
(
µ | κ

)
≤ 1

2K
I
(
µ | κ

)
. (14)

Combining Proposition 1 and Theorem 1, we can obtain the following convergence of the diffusion
flow to the equilibrium:
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Proposition 2. Let
(
µt
)

t≥0 be the diffusion flow of probability measures by the Fokker–Planck equation
associated with the strictly K-convex potential V, and κ be the equilibrium for the potential V. Then, it
follows that

d
dt

H
(
µt | κ

)
≤ −2K H

(
µt | κ

)
, (15)

which implies that µt converges exponentially fast, as t→ ∞, to the equilibrium κ in the relative entropy. Namely,

H(µt | κ) ≤ e−2K tH(µ0 | κ) for t > 0. (16)

The diffusion flow by the quadratic potential V(x) = ‖ x ‖2

2
is called the Ornstein–Uhlenbeck flow,

and the corresponding Fockker–Planck equation is reduced to

∂

∂t
ft = ∇ · (∇ ft + ftx) for t > 0. (17)

In this case, we can obtain the explicit solution ft, and it follows that the equilibrium measure becomes
the standard Gaussian.

Furthermore, it is known that the solution to Equation (17) can be represented in terms of random
variables as follows: let X be a random variable on Rn having the initial density f0, and Z be an
n-dimensional standard Gaussian random variable independent of X. Then, the density function of
the independent sum

Xt =
√

e−2t X +
√

1− e−2t Z for t > 0 (18)

gives the solution ft to partial differential Equation (17). Since the Ornstein–Uhlenbeck flow has
Gaussian equilibrium, it has been widely used as the technical tool for the proof of Gross’s logarithmic
Sobolev inequality [9] and Talagrand inequality [11].

Here, we shall mention one more useful result concerned with the convergence of the relative
entropy, which is called the Csiszár–Kullback–Pinsker inequality (see, for instance, [12] or [13]).

Lemma 3. The convergence in the relative entropy is stronger than in L1-norm, that is, it holds for probability
densities that

1
2

(∫ ∣∣ f (x)− g(x)
∣∣ dx
)2
≤ H( f | g). (19)

The problem of finding the time derivative of the relative entropy between two densities under the
same continuity equation has been investigated in [14,15]. In this paper, we will treat the Focker–Planck
equation with strictly convex potential as our continuity equation, which is because the first natural
extension of the heat equation and the similar dissipation formula in Lemma 2 of Vérdu can be derived
by the fundamental method, the integration by parts like in [5].

The time integration of our formula will give an integral representation of the relative entropy.
Applying this representation to the Ornstein–Uhlenbeck flows, we can give an extension of the formula
for entropy gap.

2. Dissipation of the Relative Entropy

We will calculate the time derivative of the relative entropy for the case where the objective and
the reference measures are evolved by the Fokker–Planck equation with the same strictly convex
potential. We shall begin with describing our situation of calculation precisely.

• Situation A:

Let µ0 and ν0 be Lebesgue absolutely continuous probability measures on Rn with µ0 � ν0, and let
µt and νt (t ≥ 0) be the diffusion flows by the Fokker–Planck equation with the strictly K-convex
potential function V starting from µ0 and ν0, respectively. Here, the growth rate of the potential
function V is assumed to be at most polynomial.
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We assume that, for t ≥ 0, the measures µt and νt have finite Fisher information I(µt) < ∞ and
I(νt) < ∞, and are absolutely continuous with respect to the Lebesgue measure, the densities ft and
gt of which are sufficiently smooth and rapidly decreasing at infinity. Furthermore, it is naturally
required that µt � νt.

Here, we shall impose the following assumption on the relative densities, which does not cause
any loss of generality but for simplicity of the proof.

• Assumption on the relative densities D:

Let dκ(x) = e−V(x) dx be the equilibrium measure of the potential function V, where the potential
function V is normalized (shifted) so that Z = 1. The Fokker–Planck equation will not be made of any
effect by this normalization (shift) because it depends only on the gradient ∇V.

We may assume that the relative densities
ft(x)

e−V(x)
and

gt(x)
e−V(x)

are bounded away from zero

and infinity for sufficiently large t. Namely, there exist uniform constants 0 < m1 ≤ M1 < ∞ and
0 < m2 ≤ M2 < ∞ for sufficiently large t such that

m1 ≤
ft(x)

e−V(x)
≤ M1 for x ∈ Rn (20)

and

m2 ≤
gt(x)

e−V(x)
≤ M2 for x ∈ Rn. (21)

Hence, the relative density ft

gt
is also bounded away from zero and infinity for sufficiently large t, that

is, there exist uniform constants 0 < m0 ≤ M0 < ∞ such that

m0 ≤
ft(x)
gt(x)

≤ M0 for x ∈ Rn, (22)

for sufficiently large t.

Remark 1. The above technical assumptions on the relative densities are due to the non-linear approximation
argument given by Otto and Villani in [8] and the following fact: in our situation, it follows that the density ft

of the diffusion flow of probability measure by the Fokker–Planck equation converges to the equilibrium e−V in
L1-norm as t→ ∞ by combining Proposition 2 with Lemma 3—so does gt.

Proposition 3. Let µt and νt (t ≥ 0) be the flows of the probability measures on Rn by the Fokker–Planck
equation as in Situation A with the assumptions on the relative densities D. Then, it holds that, for t > 0,

d
dt

H(µt | νt) = −I(µt | νt). (23)

Proof. We expand the derivative of the relative entropy as

d
dt

H( ft | gt) =
d
dt

∫
(log ft) ft dx− d

dt

∫
(log gt) ft dx. (24)

Since we know that ft and gt converge to the equilibrium e−V in L1, and that the time derivatives ∂t ft

and ∂tgt are converging to 0 as t→ ∞, and the densities ft, gt and |∂t ft|, |∂tgt| are uniformly bounded
for t. Furthermore, by our assumptions on the relative density, ft

gt
is bounded away from zero and

infinity. Hence, we are allowed to exchange integration and t-differentiation, which is justified by a
routine argument with the bounded convergence theorem (see, for instance, [2] and also [8]).

Then, the first term on the right-hand side of (24) is calculated with the Fokker–Planck equation
as follows:
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d
dt

∫
(log ft) ft dx =

∫
∂t ft

ft
ft dx +

∫
(log ft) (∂t ft) dx

=
∫

∂t ft dx +
∫
(log ft)

(
∆ ft +∇ ·

(
ft∇V

))
dx

= ∂t

∫
ft dx︸ ︷︷ ︸

( I )

+
∫
(log ft)∆ ft dx︸ ︷︷ ︸

(II)

+
∫
(log ft)∇ ·

(
ft∇V

)
dx︸ ︷︷ ︸

(III)

.

(25)

The integral (I) in (25) is clearly 0. By applying integration by parts, the integral (II) can be written by

(II) = −
∫
∇ log ft ·∇ ft dx = −

∫ ∣∣∣∣∣∣∣∣∇ ft

ft

∣∣∣∣∣∣∣∣2 ft dx. (26)

Here, it should be noted that (log ft)∇ ft will vanish at infinity by the following observation: if we
factorize it as

(log ft)∇ ft = 2 (
√

ft log
√

ft)
∇ ft√

ft
, (27)

then, as µt has finite Fisher information I(µt) < ∞, ∇ ft√
ft

has finite L2-norm in L2(Rn, dx
)

and

must be bounded at infinity. Furthermore,
√

ft log
√

ft will vanish at infinity by the limit formula,
lim

ξ→+0
ξ log ξ = 0.

The integral (III) in (25) becomes

(III) = −
∫
∇ ft ·∇V dx, (28)

by the following observations: since ft is rapidly decreasing at infinity and the growth rate of the
potential function V is at most polynomial by our assumption, we have lim

|x|→∞

√
ft∇V = 0. The limit

lim
|x|→∞

√
ft log

√
ft = 0 is the same as above. Thus,

(log ft) ft∇V = 2
(√

ft log
√

ft
) (√

ft∇V
)

(29)

will vanish at infinity.
Substituting (26) and (28) into (25), we can obtain

d
dt

∫
(log ft) ft dx = −

∫ ∣∣∣∣∣∣∣∣∇ ft

ft

∣∣∣∣∣∣∣∣2 ft dx−
∫
∇ ft ·∇V dx . (30)

Next, we shall see the second term on the right-hand side of (24), which can be reformulated by
the Fokker–Planck equation as follows:

− d
dt

∫
(log gt) ft dx = −

∫
∂tgt

gt
ft dx−

∫
(log gt) (∂t ft) dx

= −
∫ ∆gt +∇ · (gt∇V)

gt
ft dx−

∫
(log gt)

(
∆ ft +∇ · ( ft∇V)

)
dx

= −
∫ (

∆gt
) ft

gt
dx︸ ︷︷ ︸

(IV)

−
∫
∇ · (gt∇V

) ft

gt
dx︸ ︷︷ ︸

(V)

−
∫
(log gt)∆ ft dx︸ ︷︷ ︸

(VI)

−
∫
(log gt)∇ · ( ft∇V) dx︸ ︷︷ ︸

(VII)

.

(31)
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The integral (IV) in (31) can be reformulated by applying integration by parts as follows:

(IV) =
∫
∇gt ·∇

(
ft

gt

)
dx =

∫
∇gt · gt (∇ ft)− ft (∇gt)

g2
t

dx

=
∫ ∇gt

gt
· ∇ ft

ft
ft dx−

∫ ∣∣∣∣∣∣∣∣∇gt

gt

∣∣∣∣∣∣∣∣2 ft dx,

(32)

where we can see that
(
∇gt

) ft

gt
vanishes at infinity by the following observation: factorize it as

(
∇gt

) ft

gt
=
∇gt√

gt

√
ft

gt

√
ft, (33)

and then the boundedness of
√

ft

gt
is by our assumptions on the relative density and that of ∇gt√

gt
comes

from the finiteness of Fisher information I(νt) < ∞.
Applying integration by parts again, the integral (V) in (31) becomes

(V) =
∫

gt∇V ·∇
(

ft

gt

)
dx =

∫
gt∇V · gt (∇ ft)− ft (∇gt)

g2
t

dx

=
∫
∇V ·∇ ft dx−

∫
∇V · ∇gt

gt
ft dx.

(34)

Because the growth rate of the function V is at most polynomial and ft is rapidly decreasing at infinity,
thus gt∇V ft

gt
= ft∇V will vanish at infinity.

The integral (VI) in (31) can be reformulated as

(VI) =
∫ (
∇ log gt

) ·∇ ft =
∫ ∇gt

gt
· ∇ ft

ft
ft dx, (35)

where we can find that (log gt)∇ ft vanishes at infinity by factorizing

(log gt)∇ ft = 2 (
√

gt log
√

gt)
∇ ft√

ft

√
ft

gt
, (36)

with the assumption of I(µt) < ∞ and the boundedness of ft

gt
.

The last integral (VII) in (31) becomes

(VII) =
∫ (
∇ log gt

) · ( ft∇V) dx =
∫ ∇gt

gt
·∇V ft dx, (37)

where (log gt) ft∇V will vanish with the following factorization by the same reasons as above:

(log gt) ft∇V = 2 (
√

gt log
√

gt)

√
ft

gt
(
√

ft∇V). (38)

In reformulation of the integrals (VI) and (VII), we have, of course, used integration by parts.
Substituting the equations from (32) to (37) into (31), we can have

− d
dt

∫
(log gt) ft dx = −

∫ ∣∣∣∣∣∣∣∣∇gt

gt

∣∣∣∣∣∣∣∣2 ft dx + 2
∫ ∇ ft

ft
· ∇gt

gt
ft dx +

∫
∇V ·∇ ft dx. (39)
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Finally, combining (30) and (39), we obtain that

d
dt

H( ft | gt) = −
∫ ∣∣∣∣∣∣∣∣∇ ft

ft

∣∣∣∣∣∣∣∣2 ftdx + 2
∫ ∇ ft

ft
· ∇gt

gt
ft dx−

∫ ∣∣∣∣∣∣∣∣∇gt

gt

∣∣∣∣∣∣∣∣2 ft dx

= −
∫ ∣∣∣∣∇ log ft −∇ log gt

∣∣∣∣2 ft dx = −I( ft | gt).

(40)

Remark 2. The assumption of dropping surface terms on integrations by parts, that is, vanishing at infinity in
the proof of Proposition 3, is rather common in various physics, which has been also repeatedly employed in a
series of works by Plastino et al., for instance, in [16,17].

Next, we will see the convergence of the relative entropy for the pair of time evolutes by the same
Fokker–Planck equations.

Proposition 4. Under Situation A with Assumption D, the relative entropy H( ft | gt) converges exponentially
fast to 0 as t→ ∞.

Proof. We first expand the relative entropy H( ft | gt) as

H( ft | gt) =
∫ (

log ft(x)− log gt(x)
)

ft(x) dx

=
∫ ((

log ft(x) + V(x)
)
−
(

log gt(x) + V(x)
))

ft(x) dx,
(41)

where V(x) is the potential function of the Fokker–Planck equation. Then, we obtain

H( ft | gt) ≤
∫ (

log ft(x) + V(x)
)

ft(x) dx +
∫ ∣∣ log gt(x) + V(x)

∣∣ ft(x) dx. (42)

Since the first term on the right-hand side of (42) is the relative entropy H( ft | e−V), we concentrate
our attention on the second term.

We put the set P ⊂ Rn as P =
{

x ∈ Rn : log gt(x) + V(x) ≥ 0
}

, and then we have

∣∣ log gt(x) + V(x)
∣∣ =


log
(

gt(x)
e−V(x)

)
≤ gt(x)

e−V(x)
− 1 for x ∈ P,

log
(

e−V(x)

gt(x)

)
≤ e−V(x)

gt(x)
− 1 for x ∈ Pc = Rn \ P.

(43)

Thus, for sufficiently large t, it can be evaluated as follows:∫ ∣∣ log gt(x) + V(x)
∣∣ ft(x) dx

≤
∫

P

(
gt(x)

e−V(x)
− 1
)

ft(x) dx +
∫

Pc

(
e−V(x)

gt(x)
− 1
)

ft(x) dx

=
∫

P

∣∣gt(x)− e−V(x)∣∣ ( ft(x)
e−V(x)

)
dx +

∫
Pc

∣∣gt(x)− e−V(x)∣∣ ( ft(x)
gt(x)

)
dx

≤ M1

∫
P

∣∣gt(x)− e−V(x)∣∣ dx + M0

∫
Pc

∣∣gt(x)− e−V(x)∣∣ dx,

(44)

where in the last inequality is by virtue of the assumption on the relative densities. Consequently, we
can have the estimation that∫ ∣∣ log gt(x) + V(x)

∣∣ ft(x) dx ≤ M
∫ ∣∣gt(x)− e−V(x)∣∣ dx, (45)
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with the positive constant M = max{M0, M1}.
As we have mentioned in Lemma 3 that the relative entropy controls the L1-norm, we have∫ ∣∣gt(x)− e−V(x)∣∣ dx ≤

√
2H
(

gt | e−V
)
. (46)

Thus, we obtain that, for sufficiently large t,

H
(

ft | gt
)
≤ H

(
ft | e−V)+ M

√
2H
(

gt | e−V
)
. (47)

Taking the limit t → ∞, it follows that H
(

ft | gt
)
→ 0 exponentially fast because H

(
ft | e−V) and

H
(

gt | e−V) converge to 0 in exponentially fast with rate 2K.

By the dissipation formula in Proposition 3, together with the above convergence, we can obtain
the following integral representation of relative entropy.

Theorem 2. Let ft and gt (t ≥ 0) be the flows of probability densities on Rn by the Fokker–Planck equation
under situation A with the assumptions on relative densities D. Then, we have the integral representation of the
relative entropy

H
(

f0 | g0
)
=
∫ ∞

0
I
(

ft | gt
)

dt. (48)

If we choose particularly the equilibrium e−V as the initial measure of the reference g0, then it is
stationary such that gt = e−V (t ≥ 0). Hence, as the direct consequence of the above theorem, we have
the following integral formula:

Corollary 1.

H
(

f0 | e−V) = ∫ ∞

0
I
(

ft | e−V) dt. (49)

3. An Application to the Entropy Gap

In this section, we shall apply the formula of the time integration in Theorem 2 to the
Ornstein–Uhlenbeck flows, which gives an extension of the formula of the entropy gap. For simplicity,
we will consider the one-dimensional case in this section.

Among random variables with unit variance, the Gaussian has the largest entropy. Let X be a
standardized (mean 0 and variance 1) random variable, and let Z be a standard Gaussian random
variable. Then, the quantity H(Z) − H(X) is called the entropy gap or the non-Gaussianity, which
coincides, of course, with the relative entropy H(X | Z). It is known (see, for instance, [18]) that this
entropy gap can be written as the integration of the Fisher information. Namely,

H(X | Z) =
∫ ∞

0

(
I
(
Xt
)
− 1
)

dt, (50)

where Xt is the time evolute at t of the random variable X by the Ornstein–Uhlenbeck semigroup
in (17). It is easy to find that our formula (48) of Theorem 2 covers (50) as one of the special cases.

In the formula (48) of Theorem 2, even for the case of the quadratic potential V(x) =
x2

2
, we

can choose the initial reference measure ν0 more freely other than the standard Gaussian as we will
illustrate below. Let X be a centered random variable of variance σ2 (not a unit in general) and G be a
centered Gaussian of the same variance σ2. Then, applying the integral formula with the potential

function V(x) = x2

2
, the relative entropy H(X |G), which is equal to the entropy gap H(G)− H(X),

can be written by the integration

H(X |G) =
∫ ∞

0
I
(
Xt
∣∣Gt
)

dt, (51)
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where Xt and Gt are the time evolutes by the Ornstein–Uhlenbeck semigroup of X and G, respectively.
By formula (18), Xt and Gt can be given as{

Xt =
√

e−2tX +
√

1− e−2tZ,

Gt =
√

e−2tG +
√

1− e−2tZ,
(52)

where Z is a standard Gaussian random variable independent of X and G.
Since the time evolute Gt becomes a Gaussian random variable of variance e−2tσ2 + (1− e−2t),

the score function of which is given by

ρGt(x) = − x
Var(Gt)

= − x
e−2tσ2 + (1− e−2t)

, (53)

and it is easy to find that the time evolute Xt has the same variance as of Gt, Var(Xt) = Var(Gt).
We denote by µt the probability distribution of Xt, and let ρXt and ρGt be the score functions of

the random variables Xt and Gt, respectively. Then, by direct calculation, we obtain that∫ ∞

−∞
x ρXt(x) dµt(x) = −1, (54)

which corresponds to the special case of the Stein’s identity in (3).
With the above observations, we can reformulate the relative Fisher information I

(
Xt
∣∣Gt
)

as follows:

I
(
Xt
∣∣Gt
)
=
∫ ∞

−∞

(
ρXt(x)− ρGt(x)

)2 dµt(x)

=
∫ ∞

−∞

(
ρXt(x)2 − 2ρXt(x) ρGt(x) + ρGt(x)2

)
dµt(x)

=
∫ ∞

−∞
ρXt(x)2 dµt(x) + 2

Var(Gt)

∫ ∞

−∞
x ρXt(x) dµt(x) + 1

Var(Gt)2

∫ ∞

−∞
x2 dµt(x)

= I(Xt)− 2
Var(Gt)

+
Var(Xt)

Var(Gt)2

= I(Xt)− 1
Var(Xt)

,

(55)

where we have used formula (54) and the fact that Var(Gt) = Var(Xt) in the last equality. Now,
the following formula can be obtained as a direct consequence of Theorem 2.

Proposition 5. Let X be a centered random variable of finite variance σ2, and let G be a centered Gaussian
variable of the same variance σ2. For t ≥ 0, we denote by Xt the evolute of X0 = X by the Ornstein–Uhlenbeck
semigroup, that is,

Xt =
√

e−2tX +
√

1− e−2tZ, (56)

where Z stands for the standard Gaussian random variable independent of X. Then, it follows that

H(X |G) =
∫ ∞

0

(
I(Xt)− 1

Var(Xt)

)
dt =

∫ ∞

0

(
I(Xt)− 1

(σ2 − 1)e−2t + 1

)
dt. (57)

Remark 3. The Ornstein–Uhlenbeck model can be regarded as the time-dependent dilation of Gaussian
perturbation. Thus, we can rewrite formula (57) in terms of Gaussian pertabation. Since the Fisher information
behaves for dilation of a random variable as I(αY) = 1

α2 I(Y), we obtain

I
(
Xt
)
= I
(√

e−2tX +
√

1− e−2tZ
)
= e2t I

(
X +

√
1− e−2t

e−2t Z
)

. (58)
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Changing the variables by τ =
1− e−2t

e−2t , the integral on the right-hand side of (56) becomes

∫ ∞

0

{
(1 + τ) I

(
X +
√

τZ
)
− 1 + τ

σ2 + τ

} dτ

2(1 + τ)
=

1
2

∫ ∞

0

{
I
(
X +
√

τZ
)
− 1

σ2 + τ

}
dτ. (59)

Hence, we obtain

H(G)− H(X) =
1
2

∫ ∞

0

{
I
(
X +
√

τZ
)
− 1

σ2 + τ

}
dτ, (60)

that is,

H(X) =
1
2

log(2πσ2)− 1
2

∫ ∞

0

(
I
(
X +
√

τZ
)
− 1

σ2 + τ

)
dτ, (61)

which is the known integral representation for the entropy of a random variable X by the Fisher information of
Gaussian perturbation derived by Barron in Section 2 in [2].

4. Some Numerical Examples

In this section, we will give numerical examples for the case of the Ornstein–Uhlenbeck flows,

which are given by the potential V =
x2

2
, and, hence, have the standard Gaussian equilibrium. As we

mentioned in (18), the densities of the flows at time t can be calculated analytically by convolution of
the scaled initial measures.

Example 1. In the first numerical example, we take the uniform distribution on the interval (−1, 1) as
the initial objective measure. Namely, the density f0(x) = u(x) is given by

u(x) =


1
2

(−1 ≤ x ≤ 1),

0 otherwise,

which has the mean 0 and the variance 1
3

. We set the centered Gaussian of variance 1
3

as the initial

reference measure. Namely, g0(x) = ϕ(x, 1
3 ), where the function ϕ is defined by

ϕ(x, σ2) =
1√

2πσ2
exp

(
− x2

2σ2

)
.

Here, we can calculate the densities ft and gt of the Ornstein–Uhlenbeck flows at time t analytically
as follows: we rescale the time parameter t as τ =

√
e−2t and put

uτ(x) = 1
τ

u
(

x
τ

)
, ϕτ(x) = 1√

1− τ2
ϕ
(

x√
1− τ2

, 1
)

.

Then, ft and gt are given by

ft(x) =
(
uτ ∗ ϕτ

)
(x) =

∫ ∞

−∞
uτ(y) ϕτ(x− y) dy

=
1

2τ
√

1− τ2

∫ τ

−τ
ϕ
(

x− y√
1− τ2

, 1
)

dy,

and
gt(x) = ϕ

(
x, 1− 2

3
τ2
)

,

respectively. Now, we shall illustrate the convergence of H
(

ft|gt
)

and the upper bound of the
right-hand side in (47) numerically by graphs. We claim that the constant M can be assumed to
be 1 because, in our assumptions (20), (21), and (22), the relative densities converge uniformly to 1.
The convergence of H

(
ft|gt

)
is illustrated in Figure 1.
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H
(

ft | gt
)

Figure 1. The value of H
(

ft|gt
)

.

In Figure 2, the dashed curve indicates the convergence of H
(

ft|gt
)

in Figure 1.

H
(

ft | e−V)+√2H
(

gt | e−V
)

H
(

ft|gt
)

Figure 2. The value of H
(

ft | e−V)+ √
2H
(

gt | e−V
)
.

Example 2. In the second example, we put the initial reference measure as g0(x) = ϕ(x, 3), that is,
we take the centered Gaussian of variance 3 as the initial reference measure, but f0(x) = u(x) is
unchanged. In Figure 3, the convergence of H

(
ft|gt

)
is illustrated.
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H
(

ft | gt
)

Figure 3. The value of H
(

ft|gt
)
.

In Figure 4, the dashed curve indicates the convergence of H
(

ft|gt
)

in Figure 3.

H
(

ft | e−V)+√2H
(

gt | e−V
)

H
(

ft|gt
)

Figure 4. The value of H
(

ft | e−V)+ √
2H
(

gt | e−V
)

.

Example 3. In the third numerical example, the initial objective and the initial reference measures are

given as the uniform distributions on the intervals (−1, 1) and
(
− 1

2
,

1
2
)
, respectively. Namely, we set

the densities as f0(x) = u(x) and g0 = 2u(2x). We illustrate the convergence of H
(

ft|gt
)

in Figure 5.
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H
(

ft | gt
)

Figure 5. The value of H
(

ft|gt
)
.

In Figure 6, the dashed curve indicates the convergence of H
(

ft|gt
)

in Figure 5.

H
(

ft | e−V)+√2H
(

gt | e−V
)

H
(

ft|gt
)

Figure 6. The value of H
(

ft | e−V)+ √
2H
(

gt | e−V
)

.

5. Conclusions

The partial differential equation of Fokker–Planck describes the flow of the probability measures
for diffusion process. The diffusion by the Fokker–Planck equation with the strictly convex potential
V has the long-time asymptotic stationary measure e−V . In the case of the relative entropy endowed
with the stationary measure e−V as reference, the dissipation formula of the relative entropy of the
diffusion flow by the Fokker–Planck equation with the potential V is known in literature.

In this paper, we have derived the similar dissipation formula under the more flexible situation.
Namely, we have considered the situation that the reference measure is also evolved by the
Fokker–Planck equation with the same potential function V for the objective measure. Then, we
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have obtained another integral representation of the relative entropy, which gives an extension of the
formula of the entropy gap.
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