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Abstract: Yang and Qiu proposed and then recently improved an expected utility-entropy (EU-E)
measure of risk and decision model. When segregation holds, Luce et al. derived an expected utility
term, plus a constant multiplies the Shannon entropy as the representation of risky choices, further
demonstrating the reasonability of the EU-E decision model. In this paper, we apply the EU-E decision
model to selecting the set of stocks to be included in the portfolios. We first select 7 and 10 stocks from
the 30 component stocks of Dow Jones Industrial Average index, and then derive and compare the
efficient portfolios in the mean-variance framework. The conclusions imply that efficient portfolios
composed of 7(10) stocks selected using the EU-E model with intermediate intervals of the tradeoff
coefficients are more efficient than that composed of the sets of stocks selected using the expected
utility model. Furthermore, the efficient portfolio of 7(10) stocks selected by the EU-E decision model
have almost the same efficient frontier as that of the sample of all stocks. This suggests the necessity
of incorporating both the expected utility and Shannon entropy together when taking risky decisions,
further demonstrating the importance of Shannon entropy as the measure of uncertainty, as well as
the applicability of the EU-E model as a decision-making model.
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1. Introduction

The von Neumann and Morgenstern expected utility model [1] has been generally accepted as
a normative decision-making model of rational choice under risk, and widely applied as a descriptive
model of economic behavior [2]. It is assumed that all reasonable people would wish to take risky action
to maximize expected utility, and that most people actually do. However, its normative and descriptive
power has been challenged and discussed by some famous paradoxes and researchers, such as the
Allais paradox [3], Machina [4], Levy [5], and so on. Meanwhile, many decision-making models have
been developed to provide alternatives as the decision-making model under risk. These models include
those developed by Kahneman and Tversky [2], Sarin and Weber [6], Bell [7], Levy [8], Marley et al. [9],
Luce et al. [10,11], Yang and Qiu [12], etc.

Yang and Qiu [8] established a normative decision-making model under risk, the expected
utility-entropy (EU-E) decision-making model, combining the decision-maker’s subjective preference
and the objective uncertainty regarding the states of nature, in which the decision-maker’s subjective
preference is reflected by the expected utility; the objective uncertainty is measured using Shannon
entropy [13]. In this model, the measure of risky action is the weighted linear average of expected
utility and entropy using a risk tradeoff factor. Using the EU-E decision model, some typical decision
problems including the famous Allais paradox can be solved reasonably.

The work conducted by Yang and Qiu [8] is not axiomatic, and mathematically is not very general.
To further these results under behavioral axioms about preference orderings among gambles and
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their joint receipt, Luce et al. [6] derived the numerical representations. These representations are
for uncertain alternatives and consist of a subjective utility term plus a term depending upon the
events and the subjective weights. For the risky case, Luce et al. [7] obtained a linear weighted utility
term plus a term corresponding to information-theoretical entropies as the numerical representations
under segregation and under duplex decomposition. To some extent, their results can be regarded as
an axiomatic basis of the EU-E model. This further demonstrates the reasonability of the EU-E decision
model in Yang and Qiu [8]. Recently, Yang and Qiu [14] improved the model and measure of risk
into a normalized expected utility-entropy measure of risk, allowing for comparing acts or choices
where the number of states are quite apart. Using this decision model, the certainty effect in prospect
theory [2] can be interpreted in a reasonable way. Dong et al. [15] presented a further discussion on the
expected utility and entropy decision-making model. They emphasize the important role of Shannon
entropy in the field of decision-making under risk.

Furthermore, Shannon entropy has been widely used in the field of finance [16]. One of the
most prominent applications in finance is in portfolio selection [17]. Portfolio selection originated
from modern portfolio theory by Markowitz [18]. Since then, there has been a growing literature
concerning portfolio models, in which the original portfolio model was the mean-variance model and
prominent risk measures were developed as variance or standard deviation of the portfolios [14].
In addition, as entropy is a measure of uncertainty in information theory, using entropy as an
alternative risk measure of portfolio selection was developed as well. Philippatos and Wilson [19]
applied entropy to portfolio selection, proposing a mean-entropy approach to construct portfolios of
50 randomly selected New York Stock Exchange (NYSE) securities over a 14-year period. They found
that the mean-entropy portfolios are consistent with the Markowitz full-covariance and Sharpe
single-index models, indicating that mean-entropy portfolios are also mean-variance efficient.
Similarly, Philippatos and Gressis [13] applied the concept of entropy into portfolio selection theory
and examined the selection criteria of mean-variance and mean-entropy portfolios. They found
that the mean-entropy portfolios are consistent with the Markowitz full-covariance and the Sharpe
single-index models under uniform, normal, and lognormal return distributions. Most importantly,
the use of mean-entropy criteria is preferred to mean-variance as it is not constrained to any particular
distribution. Moreover, Usta and Kantar [20] proposed an approach in which an entropy measure is
added to the mean-variance-skewness model (MVSM) to generate a well-diversified portfolio and
present a multi-objective approach based on a mean-variance-skewness-entropy portfolio selection
model (MVSEM). They evaluated the performance of the MVSEM in terms of several portfolio
performance measures. They demonstrated that the MVSEM performs well out-of sample relative to
traditional portfolio selection models.

Recently, Ormos and Zibriczky [21] investigated entropy as a measures of financial risk by
evaluating the performance of the Shannon and the Rényi entropy measures with respect to traditional
measures such as beta and standard deviation. The results show that entropy yields a similar amount
of diversification effects as standard deviations, confirming its ability as an appropriate risk measure.
In their regression analyses, they found that entropy has a higher explanatory power for the expected
return than the capital asset pricing model.

Caraiani [22] examined the predictability of the Dow Jones Industrial Index by computing the
entropy based singular value decomposition of correlation matrices between the components of
the market index using both daily and monthly data. The conclusion shows that the entropy has
a predictive ability with respect to stock market dynamics, as indicated by the Granger causality tests.

Most of the previous studies deal with a situation in which investors have already selected a certain
set of stocks, and then constructed the efficient portfolios using various criteria. Yet, in practice, the first
step for investors to do is to select a certain set of stocks from hundreds or thousands of stocks in the
stock market. The commonly used way is to select a certain set of stocks with the highest expected
utility of stock returns among all the stocks in the market. However, this kind of selection method
does not take the uncertainty of stock returns into account. In fact, it is necessary to consider the
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variation of stock returns. From previous studies, the mean-entropy portfolios are consistent with the
Markowitz full-covariance model under three different return distributions [13]. Furthermore, entropy
has a higher explanatory power for the expected return than the capital asset pricing model [17].
Entropy, as a measure of uncertainty of returns, can be an important factor to select an appropriate set
of stocks in which to invest. This consideration suggests the use of the EU-E decision-making model to
select stocks at first, after which various kinds of portfolios can be constructed to invest using these
stocks. Therefore, this idea stimulated us to perform the following research.

Differing from previous studies, in this paper, we apply the EU-E decision model to stock selection,
i.e., selecting the set of stocks with the lowest EU-E measure of risk for tradeoff coefficients within
certain intervals, and then derive the efficient portfolios using these sets of stocks in the mean-variance
framework proposed by Markowitz. In the paper, we select 7 and 10 stocks from 30 sample stocks of
Dow Jones Industrial Average index as an illustrative sample, and then derive efficient portfolios in the
traditional mean-variance framework. Having compared the efficient frontier for the various intervals
of λ, the conclusion shows that for intermediate values of the tradeoff coefficient λ, the efficient
portfolios composed of the set of stocks selected using the EU-E model are more efficient than that
of the set of stocks selected using the expected utility criterion. Moreover, the efficient frontiers of
portfolios for intermediate values of λ are almost the same as that of portfolios composed from the
sample of all stocks. Previously, Yang et al. [23] preliminarily apply the EU-E decision model to
stock section for constructing portfolios of 4 stocks from a sample of 40 stocks from the Shenzhen
Component Index. The results concluded in Yang et al. [23] highlight the importance of using entropy
when considering the uncertainty of states in making decisions under risk. In addition to results in
Yang et al. [23], the conclusions in this paper further demonstrate the necessity of incorporating both
the expected utility and Shannon entropy together for risky choices, and shows the usefulness of
Shannon entropy as the measure of uncertainty in a decision-making model. The results show that the
EU-E decision model can be a useful method for stock selection.

2. EU-E Measure of Risk and Decision Model

2.1. EU-E Measure of Risk

Yang and Qiu [8] proposed an expected utility-entropy (EU-E) measure of risk and then improved
the model to a normalized EU-E measure of risk and decision model [10]. We simply refer to the
original and improved models as the EU-E measure of risk and the decision-making model. We give the
definition of the EU-E measure of risk and the decision-making model in Definition 1 and Definition 2
as follows.

Definition 1. Given a general decision analysis model G = (Θ, A, U), action a ∈ A, state of nature θ ∈ Θ.
Suppose there exist at least two actions in the action space and at least two states in the state space, respectively;
the decision-maker’s utility function u(x) is mono-increasing. If maxa∈A{|E[u(X(a, θ))]|} is nonzero, the EU-E
measure of risk when taking action a is defined as follows:

R(a) = λHa(θ)/ ln(n)− (1− λ)E[u(X(a, θ))]/maxa∈A{|E[u(X(a, θ))]|}, (1)

where λ is the tradeoff coefficient ranging from 0 to1, Ha(θ) denotes the Shannon entropy of the distribution of
its corresponding states; X(a, θ) denotes the outcome corresponding to state θ when taking action a.

In Definition 1, the λ reflects a tradeoff between the decision-maker’s subjective expected utility
of an action and objective uncertainty of the corresponding states of the action.

The above definition provides a quantified measure of an individual’s intuitive perception of
an action’s risk. It is the weighted linear average of normalized expected utility and normalized
Shannon entropy. The idea of the normalized entropy is based on Golan et al. [24].
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Definition 2. For a given general decision analysis model G = (Θ, A, U), action a1, a2 ∈ A, R(a1), R(a2)

denote the EU-E measure of risk of a1and a2, respectively. If R(a1) < R(a2), then action a1 is preferred to
action a2 in the sense of the EU-E measure of risk, denoted by a1 � a2; if R(a1) ≤ R(a2), then action a2 is not
superior to a1, denoted by a1�a2.

The decision model based on Definition 2 is referred to as the EU-E decision model. The EU-E
model is a representation of the decision-maker’s preferences. From the model, the decision-maker
prefers a lower EU-E measure of risk. Also, we can rank all of the actions in action space by EU-E
measure of risk in ascending order, where a smaller risk is better.

2.2. EU-E Investment Decision Model for Stock Selection

We consider an investor seeking to select k stocks to compose portfolios from m stocks and
denote the action of selecting stock Si as ai (i = 1, 2, . . . , m). For each stock, we collect the return for l
previous days and denote the return series of stock Si as ri1, ri2, . . . , ril , and a = min

1≤i≤m
{ri1, ri2, · · · , ril},

b = max
1≤i≤m

{ri1, ri2, · · · , ril}, to form an interval [a, b]. Next, we construct the distribution of

stock returns by dividing interval [a, b] into n equal sub-intervals [r0, r1), [r1, r2), . . . , [rn−1, rn],
where a = r0 < r1 < . . . < rn = b, denoting these intervals as θj (j = 1, 2, . . . , n), respectively. We
then calculate the frequency of the return of stock Si, which falls within interval θj, denoted by ρij,
and let the expected return of Si within interval θj be xij. According to the law of large numbers by
Bernoulli, ρij approaches the probability of the return of stock Si, pij, as l increases. Therefore, if l is
large enough, ρij can be regarded as an approximation of pij. Consequently, we can assume that in
the future, the return of stock Si will take an expected value of xij within interval θj drawn from the
probability distribution, pij.

The investment decision model for stock selection can be summarized as G = (Θ, A, u), where
A = {a1, a2, . . . , am} is the set of investing stocks, Θ = {θ1, θ2, · · · , θn} is the state space, and u(x) is
the investor’s utility function.

According to Definition 1, the EU-E measure of risk for stock selection is shown in Equation (2)
as follows:

R(ai) = −λ
n

∑
j=1

ρij ln ρij/ ln(n)− (1− λ)
n

∑
j=1

[u(xij)ρij]/ max
1≤i≤m

{|
n

∑
j=1

u(xij)ρij|}, (2)

where R(ai) is the risk measure of investing stock Si (i = 1, 2, . . . , m; j = 1, 2, . . . , n).
By Equation (2), investors can calculate the EU-E risk measure of investing each stock, then select k

stocks with the lowest risk measure. After that, we can derive and compare the set of efficient frontiers
in the traditional mean-variance framework.

3. Stock Selection Using the EU-E Investment Decision Model

3.1. Sample Stocks and Probability Distribution of Stock Returns

We apply the EU-E investment decision model to stock selection for portfolios. Taking 30 component
stocks of Dow Jones Industrial Average (DJIA) in December 2016 as an example, we select a set of stocks
from 30 component stocks, and then derive efficient portfolios using this set of stocks. Since the DJIA is
an index that shows how 30 large, publicly owned companies based in the United States have traded
during a standard trading session in the stock market, it is typical enough to choose a number of stocks
from DJIA component stocks to derive efficient portfolios as the application. These 30 component stocks
are denoted by Si (i = 1, 2, . . . , 30), respectively. Beginning on 18 March 2015, after the close, the DJIA
consists of the following 30 major American companies shown in Table 1.
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Table 1. The components of the Dow Jones Industrial Average.

Stock Company Stock Company Stock Company

S1 United Health Group S11 American Express S21 Wal-Mart
S2 Goldman Sachs S12 United Technologies S22 Verizon
S3 JPMorgan Chase S13 McDonald’s S23 IBM
S4 Pfizer S14 The Home Depot S24 General Electric
S5 Walt Disney S15 Microsoft S25 Exxon Mobil
S6 Caterpillar S16 Procter & Gamble S26 Chevron
S7 Boeing S17 Apple S27 Intel
S8 Johnson & Johnson S18 Travelers S28 3M
S9 Cisco Systems S19 Merck S29 Nike
S10 Visa S20 Coca-Cola S30 DuPont

We collect the daily closing prices of components of the DJIA over the period of January 2014 to
December 2016. There are 756 transaction days in the American stock market over the period for these
three years. Therefore, we obtain 756 daily closing prices for each component stock.

We determine the daily log returns of each component stock according to Equation (3), where rit
(i = 1, 2, . . . , 30; t = 1, 2, . . . , 755) is the return of stock Si at the tth transaction day, and pit and Dit
denote the closing price and dividend of stock Si at the tth transaction day, respectively [25].

rit = 100× ln
pit + Dit

pi,t−1
, (3)

Then, we calculate the probability distribution of return for each stock. The daily return of each
stock is between a and b, where a and b are the minimum and maximum of all stock returns, respectively.
The variations of the daily return of each stock are usually within interval [−0.11, 0.11]. We make
a minor adjustment of intervals in the EU-E investment decision model and let r0 = min{a,−0.11} and
r11 = max{b, 0.11}. Then, we divide variations of the daily return of each stock into 11 sub-intervals
[r0, −0.09), [−0.09, −0.07), [−0.07, −0.05), [−0.05, −0.03), [−0.03, −0.01), [−0.01, 0.01), [0.01, 0.03),
[0.03, 0.05), [0.05, 0.07), [0.07, 0.09), [0.09, r11], and we denote these sub-intervals as θ1, θ2, . . . , θ11,
respectively. Next, we calculated the frequency ρij of the return of stock Si, which falls within interval
θj. Let the expected return of the stock Si within interval θj be denoted by xij, and the probability of
the return of stock Si within interval θj be denoted by pij. In this paper, we obtained 755 returns for
each stock, therefore Bernoulli’s theorem holds. Then, we can use ρij as an estimation of pij. Thus, we
can obtain the probability distribution of each sample stock.

3.2. Stock Selection by the EU-E Investment Decision Model

Before using the EU-E model for stock selection, we need to determine investors’ utility function u(x).
Kahneman and Tversky prospect theory demonstrates that most human utility is defined on deviations
from the reference point; the utility function is normally concave for gains and commonly convex for losses,
and is generally steeper for losses than for gains. These features of human behavior in decision-making
can often be characterized by the following S-shaped utility function [26] in Equation (4):

u(x) =

{
G(x),

−λG(−x),

x ≥ 0

x < 0
, (4)

where G(·) is increasing and strictly concave on (0, +∞) with G(0) = 0, and λ ≥ 1 reflects that the change
in utility value is steeper for losses than for gains.

We take the return of zero as the reference point, hence the returns quantifies the deviation from
the reference point. This means that the utility function u(x) is equal to 0 when the stock return is zero.
These factors imply that most investors are risk averse for gains and risk seeking for losses.
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In particular, exponential utility is commonly used in economics and decision analysis, e.g., in
the work of Bouakiz and Sobel [27], and Chen et al. [28]. Therefore, based on the properties above,
we adopt the following exponential-type S-shaped utility function as shown in Equation (5):

u(x) =

{
1− e−x, x ≥ 0

−λ(1− ex), x < 0
, (5)

where λ = 1.1 ≥ 1 reflects that the change in utility value is a little steeper for losses than for gains for
the stock returns being very small. By expanding u(x) in Taylor series approximations around zero
in Equation (5), then the utility function tends to be approximately linear when the return is small,
which means that investors tend to be risk neutral in the case of small returns. Moreover, Rabin [29]
also shows that people are approximately risk neutral when stakes are small.

Using Equation (2), we calculate the EU-E measure of risk of selecting each stock when the value
of λ varies from 0 to 1. We determine different risk measures of selecting each stock for different
values of coefficient λ. Then, we rank these stocks using the EU-E risk measure of each stock in
ascending order.

Alexeev and Dungey [30] used high frequency and daily data on S&P500 constituents for the
period from 2003 to 2011, and found that an average investor is able to diversify away 85% (90%) of the
unsystematic risk using equally weighted portfolios of 7(10) stocks, irrespective of the data frequency
used or the time period considered. Therefore, we select 7 and 10 stocks, denoted by sets Q with
subscripts in each portfolio with the lowest EU-E measure of risks corresponding to different values of
λ. Using Equation (2), we find that 7 and 10 stocks with the lowest EU-E risk measures are the same
when λ takes values within a certain interval. We obtain six different sets of stocks corresponding
to six different intervals of λ, as shown in Table 2. Similarly, we obtain seven different sets of stocks
corresponding to seven different intervals of λ in Table 3.

Table 2. Six sets of 7 stocks corresponding to λ within different intervals.

Set Intervals of λ Subscripts of 7 Stocks Included in Set Q

Q1 [0.000, 0.337] 1 2 3 5 8 14 18
Q2 [0.338, 0.692] 1 3 5 8 14 18 28
Q3 [0.693, 0.716] 1 5 8 14 18 20 28
Q4 [0.717, 0.895] 5 8 13 14 18 20 28
Q5 [0.896, 0.908] 8 13 14 16 18 20 28
Q6 [0.909, 1.000] 8 13 16 18 20 22 28

Table 3. Seven sets of 10 stocks corresponding to λ within different intervals.

Set Intervals of λ Subscripts of 10 Stocks Included in Set Q

Q1 [0.000, 0.175] 1 2 3 5 8 13 14 17 18 28
Q2 [0.176, 0.693] 1 2 3 5 8 13 14 18 20 28
Q3 [0.694, 0.836] 1 3 5 8 13 14 18 20 22 28
Q4 [0.837, 0.919] 3 5 8 13 14 16 18 20 22 28
Q5 [0.920, 0.978] 5 8 13 14 16 18 20 21 22 28
Q6 [0.979, 0.982] 5 8 13 16 18 20 21 22 24 28
Q7 [0.983, 1.000] 8 12 13 16 18 20 21 22 24 28

In Table 2, the first column stands for the set Qi of seven stocks (i = 1, 2, . . . , 6), the second column
represents the corresponding intervals of the tradeoff coefficient λ to set Qi. The third column shows
the corresponding subscripts of 7 stocks included in the set Qi, e.g., when the tradeoff coefficient λ

varies from 0 to 0.337, the set Q1 consists of stocks S1, S2, S3, S5, S8, S14, S18, as shown in the Table 1.
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Similarly, in Table 3, the first column stands for the set Qi of ten stocks (i = 1, 2, . . . , 7), the second
column represents the corresponding intervals of the tradeoff coefficient λ to set Qi. The third column
lists the corresponding subscripts of 10 stocks included in the set Qi.

4. Comparisons of Efficient Frontiers of Portfolios of Stocks Selected Using the EU-E Model

4.1. Comparison of Efficient Frontiers of Portfolios of Stocks Selected Using the EU-E Decision Model and the
EU Decision Criterion

In this section, we use the traditional Markowitz [18] mean-variance model to construct efficient
portfolios, in which the expected return of the portfolio is the weighted average of the expected return
of each stock; the risk of the portfolio is represented by the standard deviation of the portfolio and
calculated using the formula developed by Markowitz [18]. In particular, the covariance between the
various stock returns are included in the formula.

For the case of 7 stocks selected, we obtained six selection sets using the EU-E investment decision
model. Since different sets include different stocks, the portfolios composed by different sets present
different efficient frontiers of portfolios. Thus, we can compare the efficiency of portfolios composed
by the six sets of stocks. Since each set could compose countless portfolios by changing the weight of
components, to simplify the comparison, we only compare the efficient frontier of portfolios composed
by the six sets under the condition that short sale is forbidden.

Subsequently, we compare the efficient frontiers of portfolios composed by set Q1, Q2, . . . , Q6.
Since the set Q1 is obtained when λ ∈[0.000, 0.337], this is actually the same as the set Q1 obtained
using expected utility criterion (λ = 0).

Using traditional mean-variance criterion to compose portfolios originated from modern portfolio
theory by Markowitz [18], we obtain 100 weights of selected stocks of efficient portfolios and
corresponding standard deviation and expected return. Then we draw the efficient frontiers of
these portfolios, as shown in Figure 1, where efficient frontiers corresponding to different sets of stocks
Q1, Q2, . . . , Q6 are presented with corresponding colors.
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Note: The efficient frontiers in Figure 1 and the following Figures 2–4 only provide the research
results and do not serve as the investment suggestions.

As Figure 1 shows, compared with the efficient frontier of portfolios composed using stock
selection set Q1, the efficient frontiers of portfolios composed using sets Q2 and Q3 have the larger
returns with fixed risk, or the lower risk with fixed returns. In particular, efficient frontier of portfolio
composed of the set Q3 of stocks when λ values being within [0.693, 0.716] perform much better than



Entropy 2017, 19, 508 8 of 11

that of portfolio composed of the set Q1 using the expected utility criterion, which is the special case
when λ = 0 in the EU-E model.

Similarly, for the case of 10 stocks selected, the efficient frontiers of corresponding efficient
portfolios are shown in Figure 2 as follows, where the efficient frontiers corresponding to different sets
of stocks Q1, Q2, . . . , Q7 are presented with corresponding colors. We can conclude that the efficient
frontiers of portfolios derived using sets Q2 and Q3 are more efficient than that of portfolio derived by
Q1. This suggests that when λ ∈[0.176, 0.836], the EU-E decision model is preferred to the EU model
for its performance in stock selection. This further demonstrates that, for intermediate values of λ,
the EU-E decision model is superior to the EU model.

1 

 

 

 

Figure 2. The efficient frontiers of portfolios of 10 stocks selected using the EU-E model.

For λ near zero, then investor is more concerned about the expected utility, and less about the
uncertainty of returns of the stock. Thus, for λ close to zero, the highest expected return stocks are
selected. However, this may be bad when looking at mean-variance efficient portfolios, because it
ignores the uncertainty of the stocks, which could result in an efficiency loss. We achieve more efficient
portfolios for intermediate values of λ, which can be an intuitive explanation corresponding to cases
where expected return and entropy are both considered with appropriate weights. By ignoring the
uncertainty of the stock, we may face an efficiency loss, especially for lower expected return portfolios,
where one could obtain portfolios with much lower risk if an intermediate λ had been used in the
stock selection process.

If a higher λ close to 1 had been used in the stock selection process, on the contrary, there would be
more weights on the uncertainty of the returns of stock, and the expected utility of stock returns would
be of less concerned in the selection process. In this case, the stock selection process heavily relies on the
uncertainty and almost ignores the expected return, and chooses stocks with lower uncertainty. We may
also face an efficiency loss in this case, where one could obtain portfolios with much lower risk as
shown in Figures 1 and 2. Still, this may be undesirable (in the mean-variance efficiency sense) because
one may not select stocks with a bit more risk but also with much higher expected return. In this case,
the efficiency loss is more in terms of a much lower expected return for a given level of risk.

4.2. Comparison of Efficient Frontiers of Portfolios of Stocks Selected Using the EU-E Model and the Sample of
All Stocks

In this section, we compare the efficient frontiers of portfolios of stocks selected using the EU-E
model and that of all the sample stocks. Figure 3 presents the efficient frontiers of portfolios of 7 stocks
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selected using the EU-E model and that of all sample stocks. In Figure 3, the dashed line, the red
line, and the blue line represent the efficient frontiers of the portfolio of all stocks QAll , Q3 of 7 stocks
selected using the EU-E model when λ values are within [0.693, 0.716], and Q1 of 7 stocks selected
using the expected utility model, respectively.

Figure 4 presents the efficient frontiers of portfolios of 10 stocks selected using the EU-E model and
that of all sample stocks. In Figure 4, the dashed line, the red line, and the blue line denote the efficient
frontiers of the portfolio of all stocks QAll , Q3 of 10 stocks selected using the EU-E model when λ values
are within [0.694, 0.836], and Q1 of 10 stocks selected using the expected utility model, respectively.
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In Figures 3 and 4, it is shown that the efficient frontier of portfolios of 7(10) stocks has almost the
same performance with that of the sample of all stocks. Particularly in Figure 4, the efficient frontier of
portfolios of 10 stocks has nearly the same expected returns with the fixed risk.



Entropy 2017, 19, 508 10 of 11

5. Conclusions

In this paper, we applied the EU-E decision model to stock selection for portfolios of 7(10) stocks
from the 30 DJIA components stocks, and then derived efficient portfolios using sets of stocks selected
by the EU-E model for different values of λ. We compared the efficiency of several portfolios for
different tradeoff coefficients (λ) and found that portfolios constructed by the set of stocks selected
using an intermediate value of λ are more efficient than those selected using a smaller λ, especially
when λ equals zero, i.e., using the expected utility model. Furthermore, portfolios constructed by
the set of stocks selected using values of λ with a specific interval are found to yield similar results
to a portfolio selected under the expected utility theory. To be exact, when λ takes values within
[0.000, 0.337] or [0.000, 0.175], the stock selection sets are equivalent to 7 or 10 stocks, respectively,
selected using the expected utility model.

We also compared the efficient frontiers of portfolios of sets of stocks selected using the EU-E
model and that of all the sample stocks. We found that the efficient frontier of portfolios of 7(10) stocks
has almost the same performance with that of all the sample stocks.

The conclusions suggest that the EU-E decision model is a useful method in stock selection for
investors. As the EU-E decision model takes into account both investors’ subjective expectation and
objective uncertainty of outcomes by information entropy, it is a useful method for stock selection in
the field of investment decision-making.

The results show the necessity of incorporating both the expected utility and Shannon entropy
together in decision-making under risk, and further demonstrate the importance of entropy as the
measure of uncertainty in the decision-making model. Thus, based on the results, we conclude that
the incorporated form of expected utility and information entropy is a reasonable measure of risky
action. If we only take the expected utility as a unique decision-making factor, the results may not be
as good as that selected by the expected utility-entropy decision model.
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