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Abstract: The Ka-band and higher Q/V band channels can provide an appealing capacity for the
future deep-space communications and Space Information Networks (SIN), which are viewed as a
primary solution to satisfy the increasing demands for high data rate services. However, Ka-band
channel is much more sensitive to the weather conditions than the conventional communication
channels. Moreover, due to the huge distance and long propagation delay in SINs, the transmitter
can only obtain delayed Channel State Information (CSI) from feedback. In this paper, the noise
temperature of time-varying rain attenuation at Ka-band channels is modeled to a two-state
Gilbert–Elliot channel, to capture the channel capacity that randomly ranging from good to bad
state. An optimal transmission scheme based on Partially Observable Markov Decision Processes
(POMDP) is proposed, and the key thresholds for selecting the optimal transmission method in the
SIN communications are derived. Simulation results show that our proposed scheme can effectively
improve the throughput.

Keywords: space information networks; Ka-band; Gilbert–Elliot channel; partially observable
Markov decision processes

1. Introduction

With the development of deep-space exploration missions and Space Information Network (SIN)
applications, the Ka-band and higher Q/V band channels are viewed as a primary solution to improve
communication capacity [1]. Compared to commonly used X-band, Ka-band can offer 50 times higher
bandwidth [2,3]. The Mars Reconnaissance Orbiter (MRO) mission demonstrated the availability and
feasibility of the Ka-band for the future exploration missions [4,5].

However, the Ka-band channel is much more sensitive to the weather conditions surrounding
the terrestrial stations, such as rainfall, which can significantly degrade the quality of service [6,7].
Furthermore, the space nodes in SIN only have limited communication resource, thus the optimal
transmission policy should consider the trade-off between complexity and transmission performance [8,9].
Considering the huge distance and long propagation delay in SINs, the handshake process of
conventional Transmission Control Protocol/Internet Protocol (TCP/IP) is not suitable for space
communication scenarios [10,11]. Generally, the delay tolerant network protocols that Consultative
Committee for Space Data Systems File Delivery Protocol (CFDP) and Licklider Transmission Protocol
(LTP) are widely used in SIN communication scenarios [12–14], where the transmitter can obtain the
delayed Channel State Information (CSI) from Negative Acknowledgment (NACK) feedback [15,16].
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In previous studies [17–19], the time-varying rain attenuation at the Ka-band channel is used
to model to a two-state Gilbert–Elliot (GE) channel, and several works have focused on the optimal
data transmission policy. In [20], three data transmission actions were proposed to be chosen at the
beginning of each time slot to maximize the expected long-term throughput.

For the Mars-to-Earth communications over deep space time-varying channels, an optimal data
transmission policy has been developed with the delayed feedback CSI in [21]. The adaptive coding
schemes for deep space communications over the Ka-band channel were also studied in [22,23].
However, little work has been done in optimizing the transmission policy for SINs, especially in the
presence of highly time-varying Ka-band channels.

In this paper, by utilizing the delayed feedback CSI, we propose an optimal transmission scheme
based on the Partially Observed Markov Decision Process (POMDP), and derive the key thresholds for
selecting the optimal transmission actions for the SIN communications.

The rest of this paper is organized as follows. In Section 2, a two-state GE channel is modeled.
We derive the threshold of which we should perform channel sensing before we start the transmission
or not in Section 3, and we also derive the thresholds of choosing data transmission actions from two or
three actions in POMDP. In Section 4, simulation results show that the proposed optimal transmission
policy can increase the throughput in SIN communications. Finally, Section 5 concludes the paper.

2. System Model

According to the previous studies [24–26], we can select an appropriate threshold of the noise
temperature Tth to capture the channel capacity that randomly ranges from good to bad state. Then the
time-varying rain attenuation at the Ka-band channel is modeled to a two-state GE channel according
to the noise temperature T.

If the noise temperature satisfies T ≤ Tth, the channel is on good state, where channel bit error rate
(BER) is as low as (10−8∼10−5); if the noise temperature satisfies T > Tth, the channel is on bad state,
and the channel BER is as high as (10−4∼10−3). We denote the transition probability matrix G of the
two-state GE channel as

G =

[
Pr(g|g) Pr(b|g)
Pr(g|b) Pr(b|b)

]
=

[
λ1 1− λ1

λ0 1− λ0

]
, (1)

where Pr(g|g) = λ1 is the probability that the Ka-band channel is holding on good state, Pr(g|b) = λ0

is the probability that the channel state changes from bad to good. Without loss of generality, we assume
1 > λ1 > λ0 > 0.

The transmission time slots can be expressed as W = {w1, w2, ..., wn}, the duration of a
transmission time slot is a constant D, and and the corresponding states series of the GE channel can
be expressed as S = {s1, s2, ..., sn}. The proposed POMDP-based transmission scheme with delayed
CSI is shown in Figure 1.

The transmitter can thus obtain the delayed CSI through belief probability p, e.g., if the previous
state is in the good state, then the receiver feedback of a single bit information is 1, otherwise 0.
Therefore, there are three transmission actions for the transmitter that can be chosen at the beginning
of each transmission time slot wi, and each action is explained in detail as follows.

Betting aggressively (action A): When the transmitter believes that the channel has a high chance in
a good state, the transmitter decides to “gamble” and transmits a high number Rg of data bits.

Betting conservatively (action C): When the transmitter believes the channel is in a bad state, and
decides to “play safe” and transmits a low number Rb of data bits.

Betting opportunistically (action O): For this action, the transmitter adopts to sense the channel
state at the beginning of the slot by sending a control/probing bit. The cost of sensing is a fraction τ of
the slot, which is the time spent sensing the channel, defined as τ = dRTT

/
D, where dRTT is the round

trip time, and D is the (constant) duration of a transmission time slot. Then the transmitter selects the
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appropriate transmission action (A or C) according to the sensing outcome, and (1− τ)Rg data bits
will send if the channel was found to be in the good state or (1− τ)Rb data bits if otherwise.

Therefore, at the beginning of i-th transmission time slot wi, the transmitter needs to decide an
optimal action ai from the three actions above, i.e., ai ∈ {A, C, O} to maximize the expected throughput
of our proposed POMDP-based transmission scheme. Because the transmitter only can have delayed
feedback CSI or even no feedback, this is a POMDP problem.

Let Xi denote the channel belief, which is the conditional probability that the channel is in the
good state at the beginning of the i-th transmission time slot, from the past channel history of actions
and accumulated delay CSI Hi+t, thus Xi+t = Pr[si+t = 1|Hi+t]. Define a policy π as a map from the
belief at a particular time t to an action in the action space. Hence, by using this belief as the decision
variable, let Vπ

β (p) denote the expected reward, with a discount factor β (0 ≤ β < 1), the maximize
expected throughput has the following expression:

Vπ
β (p) = E[

∞

∑
t=0

βtR(Xi+t, ai+t)|Xi = p], (2)

where Xi = p is the initial value of the belief at the i-th transmission time slot, and we formulate the
optimization problem with t = 0 in the next section.

Transmitter

Reciever

s1=1

ω1 ω2 ω3

s2=0 s3=0 s4 ...

CSI1=1 CSI2=0 CSI3=0

τ 

Figure 1. Adaptive data transmission based on delayed CSI.

3. Optimal Transmission Policy Based on POMDP

In this section, we derive the optimal policy for the transmitter that knows the CSI feedback at
the end of each slot as shown in Figure 1. The necessary conditions that tell if the action of betting
opportunistically should be used under certain SIN communication scenarios was derived, and then the
key thresholds for selecting the optimal transmission actions for the SIN communications are derived.

From the above discussion, we understand that an optimal policy exists for our POMDP problem
as shown in Equation (2), and the expected reward is R(Xi, ai); if the aggressive action A is selected,
since the probability of the channel in a good state at the next time is Xi, then the expected number of
successfully transmitted data bits is XiRg; if the conservative action C is selected, Rb data bits will be
transmitted without error; at last, if opportunistically action O is selected, the expected transmitted data
bits are (1− τ)[(1− Xi)Rb + XiRg]. Then, we define the value function Vβ(p) as Vβ(p) = max

π
Vπ

β (p),

for all p ∈ [0, 1], and π denotes the map from the belief at a particular time to an action in the action
space {A, C, O}. The value function Vβ(p) satisfies the Bellman equation

Vβ(Xi) = max
ai∈{A,C,O}

{Vβ,ai (Xi)}, (3)
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where Vβ,ai(Xi) is the value acquired by taking action ai when the belief is Xi. By using the delayed
feedback belief probability Xi = pi, the transmitter selects the optimal transmission action ai ∈ {A, C, O}
to maximize the throughput with the feedback belief Xi = pi being given by

Vβ,ai (Xi) = R(pi, ai) + βE[Vβ(X)|Xi = pi, ai = A], (4)

where Xi is the channel belief of the optimal action which selected at the beginning of the next time slot,
and X = T(p) = λ0(1− p) + λ1 p = αp + λ0 in which α = λ1 − λ0. Then, Vβ,ai (pi) can be explained
for the three possible actions:

(1) Betting aggressively: If aggressive action A is taken, then, the value function evolves as
Vβ,A(Xi = pi) = piRg + βVβ(T(pi));

(2) Betting conservatively: If the conservative action C is selected, the value function evolves as
Vβ,C(Xi = pi) = Rb + βVβ(T(pi));

(3) Betting opportunistically: If opportunistic action O is selected, the value function evolves as
Vβ,O(Xi = pi) = (1− τ)[piRg + (1− pi)Rb] + βVβ(T(pi)).

Hence, if the channel belief Xi = pi is probability of the slot wi in a good state, then the channel
belief of next slot wi+1 is λ1. Similarly, if the CSI in a bad state is (1− pi) in wi, then the channel
belief of wi+1 is λ0, i.e., Vβ(T(pi)) = (1− pi)Vβ(λ0) + piVβ(λ1), and then we can rewrite the above
equations as follows

Vβ,A(Xi = pi) = piRg + β(piVβ(λ1) + (1− pi)Vβ(λ0))

Vβ,C(Xi = pi) = Rb + β(piVβ(λ1) + (1− pi)Vβ(λ0))

Vβ,O(Xi = pi) = (1− τ)[piRg + (1− pi)Rb] + β(piVβ(λ1) + (1− pi)Vβ(λ0))

. (5)

Finally, the Bellman equation for our POMDP-based transmission policy over Ka-Band channels
for SINs can be expressed as

Vβ(Xi = pi) = max
ai∈{A,C,O}

{Vβ,A(pi), Vβ,C(pi), Vβ,O(pi)}. (6)

Moreover, Smallwood et al. [27] proved that Vβ(Xi) is convex and nondecreasing, and there
exist three thresholds 0 ≤ ρ1 ≤ ρ2 ≤ ρ3 ≤ 1. Therefore, there are three types of threshold policies
accordingly: (1) When ρ1 = ρ2 = ρ3, the optimal policy is a one-threshold policy; (2) When ρ1 < ρ2 =

ρ3, the optimal policy is a two-thresholds policy; (3) When ρ1 < ρ2 < ρ3, the optimal policy is a
three-thresholds policy. The optimal policy for the three-thresholds policy is illustrated in Figure 2,
and the interval [0, 1] is separated in four regions by the thresholds ρ1, ρ2 and ρ3.

ρ1 ρ2 ρ3

C O C A

Xi

Figure 2. Thresholds of the optimal transmission action.

Intuitively, one would think that there should exist only three regions, i.e., if Xi is small, one
should play safe; if Xi is high, one should gamble, and, somewhere in between, sensing is optimal.
However, if the transmitter can not obtain the feedback CSI, for some cases , a three-threshold policy is
optimal and an example is shown in [28].

However, with the help of the delayed feedback CSI, our POMDP-based transmission policy has
only three regions, i.e., (ρ2, ρ3) = ∅. Therefore, the necessary conditions that tell if action O should be
selected under a given SIN communication scenario, with data rate Rg and Rb in good and bad states,
respectively, two thresholds {ρ1, ρ2}, and cost of action O is τ, are given in the following theorem.
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Theorem 1. In terms of the POMDP-based optimal transmission scheme constructed by the Bellman function
Equation (6), where XiRg is the expected return when the risky action A is taken, Rb bits are transmitted
regardless of the channel conditions when action C is selected, and the expected return when the sensing action
O is taken is (1− τ)[(1− Xi)Rb + XiRg], therefore:

If Rb/Rg < (1− 2τ)
/
(1− τ) then the optimal policy is a two-thresholds {ρ1, ρ2} policy, and the optimal

action ai can be selected from {A, C, O};
Otherwise, if Rb/Rg ≥ (1− 2τ)

/
(1− τ) then the optimal policy is a one-threshold ρ policy and the

optimal action ai can be selected from {A, C}.

Proof of Theorem 1. In our SIN POMDP-based transmission scheme, without loss of generality,
assume that the optimal policy has two thresholds 0 < ρ1 ≤ ρ2 < 1. Note that, since ρ1 is the solution
of Vβ,C(Xi) = Vβ,O(Xi), and ρ2 is the solution of Vβ,O(Xi) = Vβ,A(Xi), it is easy to establish that{

Vβ,C(ρ1) = Vβ,O(ρ1)

Vβ,A(ρ2) = Vβ,O(ρ2)
. (7)

From Equation (5), we have  ρ1 = τRb
(1−τ)(Rg−Rb)

ρ2 = (1−τ)Rb
(1−τ)Rb+τRg

. (8)

If the optimal policy has two thresholds then ρ1 < ρ2, and the communication parameters
should satisfy

Rb
Rg

<
1− 2τ

1− τ
. (9)

Otherwise, if the optimal policy has one threshold ρ = (ρ1 = ρ2), then the communication
parameters turn to satisfy

Rb
Rg
≥ 1− 2τ

1− τ
. (10)

Note that Theorem 1 establishes the structure that tells if action O should be used, and two types
of threshold policies exist depending on the system parameters–in particular, the cost of the sensing
action τ versus the ratio of Rb/Rg, and the optimal policy space is partitioned into two regions, which
is illustrated in Figure 3.
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one−threshold policy region, ai choose from ( A,  C)

two−thresholds policy region, ai choose from ( A,  C and  O)

Figure 3. The optimal transmission policies thresholds are determined by the SIN communication
parameters based on delayed feedback CSI.
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Figure 3 illustrated that the established two optimal policies regions can be further partitioned
into three regions at most. As one should expect, the optimal transmission scheme here is a myopic
policy that maximizes the immediate reward. Next, we detailed the optimal transmission action in the
one-threshold policy region and the two-thresholds policy region in Figure 3, and gave a complete
characterization of the thresholds for each policy in the following, respectively.

Assume that the one-threshold policy has one threshold 0 < ρ < 1, and the transition probability

matrix G of the two-state GE channel is G =

[
λ1 1− λ1

λ0 1− λ0

]
. Then, the optimal transmission action ai

is introduced in the following Theorem 2.

Theorem 2. Let ai = {A, C} denote the action space in the one-threshold policy region, Rg and Rb denote the
transmitted numbers of data bits that corresponding to the action A and C, respectively, then ai is determined
as follows:

(1) If Rb/Rg < λ0, then the optimal transmission action is ai = A regardless of the delayed feedback CSI is
si−1 = 1 or si−1 = 0;

(2) If Rb/Rg > λ1, then the optimal transmission action is ai = C regardless of the delayed feedback CSI is
si−1 = 1 or si−1 = 0;

(3) Finally if λ0 ≤ Rb/Rg ≤ λ1, then the optimal transmission action ai = A when the delayed feedback CSI
is si−1 = 1, and the optimal transmission action is ai = C when the delayed feedback CSI is si−1 = 0.

Proof of Theorem 2. Recall in our POMDP model that any general value function Vβ(·) is convex.
Hence, (1) if Rb/Rg < λ0, when the delayed feedback CSI is si−1 = 1, and the channel belief is

Xi = λ1, then we have Vβ,A(Xi = λ1) > Vβ,C(Xi = λ1) since{
Vβ,A(Xi = λ1) = λ1Rg + β(λ1Vβ(λ1) + (1− λ1)Vβ(λ0)),
Vβ,C(Xi = λ1) = Rb + β(λ1Vβ(λ1) + (1− λ1)Vβ(λ0)),

(11)

and λ1 > λ0 > Rb/Rg. Similarly, when the delayed feedback CSI is si−1 = 0, we still have
Vβ,A(Xi = λ0) > Vβ,C(Xi = λ0) since{

Vβ,A(Xi = λ0) = λ0Rg + β(λ0Vβ(λ0) + (1− λ0)Vβ(λ0))

Vβ,C(Xi = λ0) = Rb + β(λ0Vβ(λ0) + (1− λ0)Vβ(λ0))
. (12)

Hence, the optimal transmission action in this case is ai = A.
(2) If Rb/Rg > λ1, similar to the previous case, regardless of the delayed feedback CSI is si−1 = 1

or si−1 = 0 (i.e., the channel belief is Xi = λ1 or Xi = λ0, respectively), we have Vβ,A(pi) < Vβ,C(pi),
therefore, by substituting pi into Equations (11) and (12) directly. Therefore, the action ai = C is
optimal in this case.

(3) If λ0 ≤ Rb/Rg ≤ λ1, the approach here is similar to the previous cases, i.e., when the delayed
feedback CSI is si−1 = 1 and pi = λ1, we will have Vβ,A(Xi = λ1) > Vβ,C(Xi = λ1) by substituting
pi = λ1 into Equation (11), and the action ai = A is the optimal strategy here; otherwise, when the
delayed feedback CSI is si−1 = 0 and pi = λ0, we consequently obtain Vβ,A(Xi = λ0) < Vβ,C(Xi = λ0)

by substituting pi = λ0 into Equation (12) and the optimal transmission action in this case is ai = C.

The complete characterization of the optimal transmission action of the one-threshold policy is
given in Table 1.
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Table 1. Optimal transmission action in the one-threshold policy region.

Parameters Delayed Feedback CSI si−1 Optimal Transmission Action ai

Rb/Rg < λ0 si−1 = 1/0 ai = A

λ0 ≤ Rb/Rg ≤ λ1
si−1 = 1 ai = A
si−1 = 0 ai = C

Rb/Rg > λ1 si−1 = 1/0 ai = C

Furthermore, it is worth noting that Theorem 2 proves that the value function is totally determined
by finding Vβ(λ1) and Vβ(λ0). In order to calculate the expected reward of the optimal action when
the belief is λ1 or λ0, we start by comparing these value functions established in Theorem 2 to the
threshold ρ in Theorem 1. Then, all that remains is solving a system of two linear equations with two
unknowns, i.e., Vβ(λ1) and Vβ(λ0), in three cases: ρ < λ0, λ0 ≤ ρ ≤ λ1 and λ1 < ρ.

To illustrate the procedure of determining Vβ(λ1) and Vβ(λ0), we consider the example
where ρ < λ0, and the optimal transmission action is ai = A regardless of the delayed feedback
CSI in this case, as we have proved in Theorem 2; we have then

Vβ(λ0) = Vβ,A(Xi = λ0) = λ0Rg + β(λ0Vβ(λ1) + (1− λ0)Vβ(λ0)), (13)

Vβ(λ1) = Vβ,A(Xi = λ1) = λ1Rg + β(λ1Vβ(λ1) + (1− λ1)Vβ(λ0)). (14)

Recall that we have α = λ1 − λ0, and solving for Vβ(λ1) and Vβ(λ0) leads to

Vβ(λ0) = λ0Rg
/
((1− β)(1− αβ)), (15)

Vβ(λ1) = (λ1 − αβ)Rg
/
((1− β)(1− αβ)). (16)

All other cases can be solved similarly, and the closed form computation expressions of the
one-threshold policy are given in Table 2.

Table 2. Closed form computation expressions of the one-threshold policy.

Conditions Corresponding Value Functions Closed Form Computation Expressions

ρ < λ0
Vβ(λ0) = Vβ,A(Xi = λ0)
Vβ(λ1) = Vβ,A(Xi = λ1)

Vβ(λ0) =
λ0Rg

(1−β)(1−αβ)

Vβ(λ1) =
(λ1−αβ)Rg

(1−β)(1−αβ)

λ0 ≤ ρ ≤ λ1
Vβ(λ0) = Vβ,C(Xi = λ0)
Vβ(λ1) = Vβ,A(Xi = λ1)

Vβ(λ0) =
(1−βλ1)Rb+βλ0λ1Rg

(1−β)(1−αβ)

Vβ(λ1) =
β(1−λ1)Rb+(1−β+βλ0)Rg

(1−β)(1−αβ)

λ1 < ρ
Vβ(λ0) = Vβ,C(Xi = λ0)
Vβ(λ1) = Vβ,C(Xi = λ1)

Vβ(λ0) =
Rb

(1−β)

Vβ(λ1) =
Rb

(1−β)

Next, assume that in the two-thresholds policy region, the optimal policy has two thresholds

0 < ρ1 < ρ2 < 1, and the transition probability matrix is G =

[
λ1 1− λ1

λ0 1− λ0

]
. Then, the optimal

transmission action ai is given in the following Theorem 3.

Theorem 3. Let ai = {A, C, O} denote the action space in the two-thresholds policy region, and Rg and Rb
denote the transmitted numbers of data bits that correspond to the actions A and C, respectively. Recall that
τ is the sensing cost that is the ratio of the round trip time dRTT to the time slot duration D and satisfies
τ < (1− Rb/Rg)

/
(2− Rb/Rg) as in Theorem 1, and Xi is the channel belief, then ai is determined as follows:
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(1) If Rb/Rg < λ0, then two cases can be distinguished: if Rb/Rg < τXi
/
((1− τ)(1− Xi)), the optimal

transmission action is ai = A, regardless of the delayed feedback CSI being si−1 = 1 or si−1 = 0; else,
if Rb/Rg ≥ τXi

/
((1− τ)(1− Xi)), the optimal transmission action is ai = O, regardless of the delayed

feedback CSI being si−1 = 1 or si−1 = 0.
(2) If Rb/Rg > λ1, then two cases can be distinguished: if Rb/Rg < (1− τ)Xi

/
(τ + Xi − τXi), the optimal

transmission action is ai = O, regardless of the delayed feedback CSI being si−1 = 1 or si−1 = 0; else,
if Rb/Rg ≥ (1− τ)Xi

/
(τ + Xi − τXi), the optimal transmission action is ai = C regardless of the

delayed feedback CSI being si−1 = 1 or si−1 = 0.
(3) Finally if λ0 ≤ Rb/Rg ≤ λ1, when the delayed feedback CSI is si−1 = 1 and Xi = λ1, then the optimal

transmission action is ai = A; when the delayed feedback CSI is si−1 = 0 and Xi = λ0, then the optimal
transmission action is ai = C.

Proof of Theorem 3. The proof here needs to utilize the previous case in Theorem 1; recall in our
POMDP model that any general value function Vβ(·) is convex, the interval [0, 1] of Rb/Rg is separate
in three regions by the thresholds ρ1 and ρ2, all the six possible optimal policy structures of the
two-thresholds policy are illustrated in Figure 4, and, then, we can distinguish them into three
possible scenarios.

   !
C O A

Xi

!  ! "

(a)

   !
C O A

Xi

!  ! "

(b)

   !
C O A

Xi

!  ! "

(c)

   !
C O A

Xi

!  ! "

(d)

   !
C O A

Xi

!  ! "

(e)

   !
C O A

Xi

!  ! "

(f)

Figure 4. Illustration of the two-thresholds policy structure: (a) ρ2 < λ0; (b) ρ1 < λ0 < ρ2 < λ1;
(c) ρ1 < λ0 < λ1 < ρ2; (d) λ0 < ρ1 < ρ2 < λ1; (e) λ0 < ρ1 < λ1 < ρ2; (f) λ1 < ρ1.

(1) If Rb/Rg < λ0, we can distinguish three subcases:

If ρ2 < λ0 as shown in Figure 4a, then we have that the optimal action is ai = A for si = 0/1
where Vβ,A(Xi = λ0) > Vβ,O(Xi = λ0) and Vβ,A(Xi = λ1) > Vβ,O(Xi = λ1), and since{

Vβ,A(Xi = pi) = piRg + β(piVβ(λ1) + (1− pi)Vβ(λ0))

Vβ,O(Xi = pi) = (1− τ)[piRg + (1− pi)Rb] + β(piVβ(λ1) + (1− pi)Vβ(λ0))
. (17)

Hence, the optimal transmission action in this case is ai = A for Rb/Rg < τλ0
/
((1− τ)(1− λ0))

and Rb/Rg < τλ1
/
((1− τ)(1− λ1)).

Else, if ρ1 < λ0 < ρ2 < λ1, as is illustrated in Figure 4b, then we have ai = A for si−1 = 1
where Vβ,A(Xi = λ1) > Vβ,O(Xi = λ1) as the above subcase obtained, and ai = O is the optimal action
for si−1 = 0 where Vβ,O(Xi = λ0) > Vβ,A(Xi = λ0) in Figure 4b, and Rb/Rg ≥ τλ0

/
((1− τ)(1− λ0))

by substituting Xi = λ0 into Equation (17) with ρ1 < λ0 < ρ2 < λ1.
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Lastly, if ρ1 < λ0 < λ1 < ρ2, as is shown in Figure 4c, we have ai = O for si = 0/1 being
the optimal action due to the solution of Vβ,C(Xi = λ0) < Vβ,O(Xi = λ0) and Vβ,C(Xi = λ1) <

Vβ,O(Xi = λ1) by substituting Xi = λ0 and Xi = λ1 into Equation (17), and we obtain Rb/Rg ≥
τλ0

/
((1− τ)(1− λ0)).

(2) If Rb/Rg > λ1, similarly, three subcases can be distinguished:

If ρ1 < λ0 < λ1 < ρ2, as is shown in Figure 4c, then we have Vβ,C(Xi = λ0) < Vβ,O(Xi = λ0) and
Vβ,C(Xi = λ1) < Vβ,O(Xi = λ1); thus, we have{

Vβ,O(Xi = pi) = (1− τ)[piRg + (1− pi)Rb] + β(piVβ(λ1) + (1− pi)Vβ(λ0))

Vβ,C(Xi = pi) = Rb + β(piVβ(λ1) + (1− pi)Vβ(λ0))
, (18)

where ai = O is the optimal action since Rb/Rg < (1 − τ)λ1
/
(τ + λ1 − τλ1) and Rb/Rg <

(1 − τ)λ0
/
(τ + λ0 − τλ0) by solving the value function Equation (18).

Else, if λ0 < ρ1 < λ1 < ρ2, as is shown in Figure 4e, then we have ai = C for si−1 = 0 where
Vβ,O(Xi = λ0) < Vβ,C(Xi = λ0) for Rb/Rg ≥ (1− τ)λ0

/
(τ + λ0 − τλ0) by substituting Xi = λ0 into

Equation (18), and ai = O is the optimal action for si−1 = 1 where Vβ,O(Xi = λ1) > Vβ,A(Xi = λ1) for
Rb/Rg < (1− τ)λ1

/
(τ + λ1 − τλ1) by substituting Xi = λ1 into Equation (18).

Lastly, if λ1 < ρ1, as is shown in Figure 4f, we have ai = C being the optimal action regardless
if the delayed feedback CSI is si−1 = 0 or si−1 = 1, where Vβ,C(Xi = λ0) > Vβ,O(Xi = λ0) and
Vβ,C(Xi = λ1) > Vβ,O(Xi = λ1). Then, Rb/Rg ≥ (1 − τ)λ0

/
(τ + λ0 − τλ0) and Rb/Rg ≥ (1 −

τ)λ1
/
(τ + λ1 − τλ1) by substituting Xi = λ0 and Xi = λ1 into Equation (18), respectively.

(3) Finally, if λ0 ≤ Rb/Rg ≤ λ1, the computation is similar to the previous cases. For λ0 < ρ1 < ρ2 <

λ1, as is shown in Figure 4d, where the optimal action is ai = A for si−1 = 1, by using Equation (17)
to solve Vβ,A(Xi = λ1) > Vβ,O(Xi = λ1) with Xi = λ1, then Rb/Rg < τλ1

/
((1− τ)(1− λ1)).

In addition, if si−1 = 0, then ai = O is the optimal action, by solving Equation (18) with Xi = λ0

for Vβ,C(Xi = λ0) > Vβ,O(Xi = λ0), and then we have Rb/Rg ≥ (1− τ)λ0
/
(τ + λ0 − τλ0).

Let A(Xi) = τXi
/
((1− τ)(1− Xi)) and C(Xi) = (1− τ)Xi

/
(τ + Xi − τXi), and Table 3 shows

the complete characterization of the optimal transmission action in the two-thresholds policy region.
Similar to the previous case, we illustrate mathematical expressions for the Vβ(λ1) and Vβ(λ0)

of Theorem 3 in Table 4, in order to calculate the expected reward of the value function of the
corresponding optimal action that is given in Theorem 3. Again, once Vβ(λ1) and Vβ(λ0) have
been computed for the six possible optimal policy structures of the two-thresholds policy region in
Theorem 3, we retain the scenario that gives the maximal values.

Table 3. Optimal transmitting action in the two-thresholds policy region.

Parameters Conditions Delayed Feedback CSI si−1 Optimal Action ai

Rb
Rg

< λ0

Figure 4a: Rb/Rg < A(λ1) si−1 = 1
ai = AFigure 4a: Rb/Rg < A(λ0) si−1 = 0

Figure 4b: Rb/Rg < A(λ1) si−1 = 1
Figure 4b: Rb/Rg ≥ A(λ0) si−1 = 0

ai = OFigure 4c: Rb/Rg ≥ A(λ1) si−1 = 1

Rb
Rg

> λ1

Figure 4c: Rb/Rg ≥ C(λ0) si−1 = 0
Figure 4e: Rb/Rg ≥ C(λ1) si−1 = 1
Figure 4e: Rb/Rg < C(λ0) si−1 = 0

ai = CFigure 4f: Rb/Rg < C(λ1) si−1 = 1
Figure 4f: Rb/Rg < C(λ0) si−1 = 0

λ1 ≤ Rb
Rg
≤ λ1

Figure 4d: Rb/Rg < A(λ1) si−1 = 1 ai = A
Figure 4d: Rb/Rg ≥ C(λ0) si−1 = 0 ai = C
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Table 4. Closed form computation expressions of the two-thresholds policy.

Conditions Corresponding Functions Closed Form Computation Expressions

ρ2 ≤ λ0
Vβ(λ0) = Vβ,A(Xi = λ0)
Vβ(λ1) = Vβ,A(Xi = λ1)

Vβ(λ0) =
λ0Rg

(1−β)(1−αβ)

Vβ(λ1) =
(λ1−αβ)Rg

(1−β)(1−αβ)

ρ1 < λ0 < ρ2 ≤ λ1
Vβ(λ0) = Vβ,O(Xi = λ0)
Vβ(λ1) = Vβ,A(Xi = λ1)

Vβ(λ0) =
(1−τ)(1−βλ1+βλ0λ1)Rb+(1−τ)λ0(Rg−Rb)+τβλ0λ1Rg

(1−β)(1−αβ)

Vβ(λ1) =
(1−τ)β(1−λ0)(1−λ1)Rb+(λ1−αβ−τβλ0+τβλ0λ1)Rg

(1−β)(1−αβ)

ρ1 < λ0 < λ1 ≤ ρ2
Vβ(λ0) = Vβ,O(Xi = λ0)
Vβ(λ1) = Vβ,O(Xi = λ1)

Vβ(λ0) =
(1−βλ1)Rb+βλ0λ1Rg

(1−β)(1−αβ)

Vβ(λ1) =
β(1−λ1)Rb+(1−β+βλ0)λ1Rg

(1−β)(1−αβ)

λ0 < ρ1 < ρ2 ≤ λ1
Vβ(λ0) = Vβ,C(Xi = λ0)
Vβ(λ1) = Vβ,A(Xi = λ1)

Vβ(λ0) =
(1−τ)((1−αβ)Rb+λ0(Rg−Rb))

(1−β)(1−αβ)

Vβ(λ1) =
(1−τ)((1−λ1)Rb+(λ1−αβ)Rg)

(1−β)(1−αβ)

λ0 < ρ1 < λ1 ≤ ρ2
Vβ(λ0) = Vβ,C(Xi = λ0)
Vβ(λ1) = Vβ,O(Xi = λ1)

Vβ(λ0) =
(1−β+βλ0)Rb+(1−τ)βλ0λ1(Rg−Rb)

(1−β)(1−αβ)

Vβ(λ1) =
β(1−τ)Rb+(1−τ)(1−β+βλ0)((1−λ1)Rb+λ1Rg)

(1−β)(1−αβ)

λ1 ≤ ρ1
Vβ(λ0) = Vβ,C(Xi = λ0)
Vβ(λ1) = Vβ,C(Xi = λ1)

Vβ(λ0) =
Rb

(1−β)

Vβ(λ1) =
Rb

(1−β)

The procedure to calculate Vβ(λ1) and Vβ(λ0) starts by comparing these value functions
established in Theorem 3 to the thresholds ρ1 and ρ2 established in Figure 4, and all the cases can
be solved similarly to the previous example, and the closed form computation expressions of the
two-thresholds policy are given in Table 4.

4. Simulation and Results

To evaluation our proposed POMDP-based optimal transmission policy, we start by comparing
the transmission actions with different setups, each leading to a different optimal policy. We choose
the parameters below in order to illustrate that, in theory, the optimal policy is determined by the
communication scenario parameters, such as data rate Rb, Rg and τ which is affected by the round trip
time and the duration of the transmission time slot as in Theorem 1.

The first set of parameters considered is τ = 0.4, Rg = 2, Rb = 1, λ1 = 0.9, λ0 = 0.2, and β = 0.5.
Note that from Theorem 1, τ = 0.4 > 1/3 represents the action of betting opportunistically, which could
not be used under this scenario, thus the one-threshold policy is optimal as the numerical result shows
in Figure 5a. Furthermore, from Theorem 2, the threshold in Figure 5a is ρ = 0.5. Therefore, if pi < ρ,
the optimal action is ai = C, else if pi ≥ ρ, the optimal action is ai = A, and betting opportunistically is
unfeasible in this scenario.

If we keep all the parameter values fixed and diminish the cost of sensing to τ = 0.15, then from
Theorem 1 we can compute that the optimal policy is the two-thresholds policy, shown in Figure 5b.
From Figure 5b we can see that the one-threshold policy gives suboptimal values, and the two
thresholds in this scenario are ρ1 = 0.176 and ρ2 = 0.739 by using Theorem 3. If pi < 0.176,
the optimal transmission action is betting conservatively (ai = C); else if 0.176 ≤ pi ≤ 0.739, the optimal
transmission action is betting opportunistically (ai = O), which can achieve a better reward than ai = C
or ai = A unless pi > 0.739, the optimal action is betting aggressively (ai = A).
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Figure 5. Numerical result of our POMDP-based transmission policy: (a) optimality of a one-threshold
policy scenario; (b) optimality of a two-thresholds policy scenario.

Next, we compare the long-term effect of the expected throughput of our adaptive data
transmission scheme with conventional fixed-rate schemes, to validate the optimality of our
POMDP-based transmission policy over Ka-band channels for SIN communications. Let w denote
the number of the transmission time slots W = {w1, w2, ..., wn}, and V = ∑w

i=1 Vβ(Xi) denote the
accumulated expected values in Figure 6.

The system parameters in these scenarios are as follows: Rg = 2, Rb = 1, λ1 = 0.9, λ0 = 0.2, and
β = 0.99. With these parameters, the one-threshold policy is optimal for τ ∈ (0.333, 1], and beyond
these critical values, the two-thresholds policy will become optimal. We have τ1 = 0.4 in Figure 6a,
and τ2 = 0.1 in Figure 6b, respectively. As expected, at the beginning of several transmission time
slots, betting conservatively can archive the same throughput as the adaptive transmission scheme does
as is illustrated in Figure 6a. However, the adaptive transmission scheme can better utilize the channel
capacity when the Ka-band channel turns it into a good state, which leads to a higher throughput
in a long-term program. On the other hand, if the two-thresholds policy is optimal as in Figure 6b,
betting opportunistically is also performed well, but still has a gap remaining compared to our adaptive
transmission scheme due to the reward from “gamble”, and “play safe” will be better than sensing the
channel sometimes.
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Figure 6. Expected reward of adaptive transmission schemes with different setups: (a) τ = 0.4,
one-threshold policy; (b) τ = 0.1, two-thresholds policy.
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So far, we have demonstrated our POMDP-based transmission policy can perform well with
different communication setups. In the following, we simulate and compare the adaptive transmission
schemes under Ka-band channel communications.

Assume the threshold of the two-state GE channel noise temperature is Tth = 20 K, and the

corresponding transition probability of the GE channel is G =

[
0.9773 0.0223
0.1667 0.8333

]
, according to [24].

If the channel state is bad, the channel bit error rate (BER) is 10−3, and we select four different BERs
10−8, 10−7, 10−6 and 10−5 as the channel state is good. Assume normalized the data bit Rg = 1 when
BER is 10−8, then we can calculate data bits Rb and Rg with other BER values according to the error
function [24]. We simulate the adaptive transmission schemes in two cases, Earth-to-Moon (τ = 0.03),
and Earth-to-Mars (τ = 1), and the transmission schemes are as follows.

Case 1: The transmitter adopts the action of betting conservatively regardless of the channel state,
which can ensure Rb data bits are successfully transmitted.

Case 2: The transmitter only adopts the action of betting aggressively, if the channel state is good,
Rg bits are successfully transmitted; else, if the channel state is bad, all data bits are lost.

Case 3: The transmitter only adopts the action of betting opportunistically, if the channel state is good,
(1− τ)Rg bits can be received; else, if the channel state is bad, (1− τ)Rb bits can be received successfully.

Case 4: The transmitter chooses optimal action by using delayed feedback CSI and and Theorem 2,
the adaptive data transmission action space is a, a ∈ {A, C}.

Case 5: The transmitter chooses optimal action by using delayed feedback CSI and Theorem 3,
the adaptive data transmission action space is a, a ∈ {A, O, C}.

Case 6: We directly give the outage capacity bounds of the corresponding channels.
The simulation results of throughput performance of the 5 transmission schemes above and

the capacity bounds are shown in Figure 7, and we can see that if the right transmission scheme
with certain channel conditions can be selected by using our derived thresholds, it can increase the
throughput in Ka-band SIN communications.
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Figure 7. Throughput comparison of different data transmission schemes: (a) Moon-to-Earth scenario;
(b) Mars-to-Earth scenario.
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Based on the previous analysis, we can expect that the two-thresholds policy is optimal for the
Moon-to-Earth scenario in Figure 7a as the sensing cost is τ = 0.03. Therefore, the transmitter can
access the sensing action with little cost. As it can be seen in Figure 7a, the total number of transmitted
bits of betting opportunistically is substantially augmented and the two-thresholds policy transmission
scheme performs close to the capacity bounds.

On the other hand, the round trip time between Mars-to-Earth is about 6–40 min, which is leading
to the one-threshold policy being optimal with τ = 1, and betting opportunistically is completely
unfeasible as shown in Figure 7b, there is no data bit that can be transmitted if the transmitter perform
channel sensing. And the two-thresholds policy transmission scheme in this scenario is degenerated to
the one-threshold policy transmission scheme, where both of the transmission schemes have exactly
the same expected total number of transmitted bits.

5. Conclusions

In this paper, considering the potential of the Ka-band high throughput satellites applications to
SINs, we reviewed the rain attenuation over Ka-band channel and modeled a two-state Gilbert–Elliot
channel for SINs. Then, we proposed an optimal transmission scheme based on POMDP by using
the delayed feedback CSI, and derived the thresholds over Ka-band channels for SINs of which we
should perform channel sensing or not at the beginning of each transmission time slot. We also
derived the thresholds of choosing data transmitting actions from two or three actions in POMDP.
Simulation results show that the proposed optimal transmission policy can increase the throughput in
SIN communications.
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