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Abstract: This paper investigates the complex behaviors and entropy properties for a novel random
complex interacting stock price dynamics, which is established by the combination of stochastic
contact process and compound Poisson process, concerning with stock return fluctuations caused
by the spread of investors’ attitudes and random jump fluctuations caused by the macroeconomic
environment, respectively. To better understand the fluctuation complex behaviors of the proposed
price dynamics, the entropy analyses of random logarithmic price returns and corresponding absolute
returns of simulation dataset with different parameter set are preformed, including permutation
entropy, fractional permutation entropy, sample entropy and fractional sample entropy. We found
that a larger λ or γ leads to more complex dynamics, and the absolute return series exhibit lower
complex dynamics than the return series. To verify the rationality of the proposed compound price
model, the corresponding analyses of actual market datasets are also comparatively preformed.
The empirical results verify that the proposed price model can reproduce some important complex
dynamics of actual stock markets to some extent.

Keywords: complex and entropy; complex price dynamics model; contact process; compound
Poisson process; permutation entropy; fractional permutation entropy; sample entropy; fractional
sample entropy

1. Introduction

The financial market is a complex nonlinear evolving system composed of many interacting
agents just as physical systems, and its fluctuation and corresponding absolute returns often
represent strong nonlinearity and persistent memory [1–11]. Recently, much effort has gone into
the study of reproducing and investigating nonlinear complex dynamics of financial systems
for a further understanding the mechanisms of financial markets, and its crucial application in risk
management, non-equilibrium derivatives pricing, hedging, forecasting, etc. [2,10,12–15]. Over the
past decade, a considerable volume of agent-based models have been proposed, based on the field
of interacting particle systems (or statistical physics systems), to model the main observed stylized
facts, such as fat-tailed distribution, volatility clustering, time-dependence, multifractality and complex
dynamics [10,16–24]. For example, the percolation and oriented percolation are used to construct
a financial price model, in which the mutual interaction is imitated by the movement and filtering
of fluids through porous materials, and a cluster of percolation is utilized to define the group
of investors sharing the same trading attitudes toward the financial markets [17,18]. Stochastic
contact process is introduced to construct agent-based financial interacting dynamic system, in which
the dissemination of trading attitudes in the financial market is imitated by the epidemic spread
process [19]. A novel random financial price dynamics is developed by stochastic exclusion process
to study the complex behaviors of financial markets, in which the trading attitude interaction is imitated
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by the exclusion rules [20]. They are all based on the fact that the financial market is a complex dynamics
system comprised of a large number of interacting agents, and these agents interact in complicated
ways [6,10], and they try to explain the stylized facts reported in financial time series. Quantifying the
complex behaviors of financial signals is one of the most significant topics in understanding financial
market dynamics. Entropy, which originates from signal processing, used to quantify the complexity
and uncertainty in financial time series and others [25–28]. Permutation entropy proposed by Bandt
and Pompe is a complex measure for arbitrary time series based on analysis of order patterns [29].
Sample entropy, a complex statistics measure of regularity of time series through comparing the number
of vector pairs in template vectors of two adjacent integer embedding dimensions, is developed
by Richman and Moorman [30]. Fractional sample entropy [31], which is proposed to detect
characteristics of fractional order information for complex systems, is utilized to analyze the complex
behaviors of datasets in this paper.

Since real stock markets sometimes display violent volatilities and drastic fluctuations, and these
jumps have predominant and significant impact on future volatilities, modeling financial market
fluctuations with random jumps have become increasingly crucial both for risk management and
option pricing [32]. In the present work, the combination of stochastic contact process and compound
Poisson process is adopted to construct a novel microscope complex price dynamics, in an attempt to
reproduce and characterize the complex dynamics of financial markets. For the proposed compound
price model, statistical properties, permutation entropy, fractional permutation entropy, sample
entropy, and fractional sample entropy are applied to investigate the fluctuation characters, the fat-tail
distribution and complex behaviors of returns and corresponding absolute return time series. Moreover,
the comparison results between the actual datasets (Shanghai Stock Exchange (SSE) Composite Index,
and Hang Seng Index (HSI)) and the simulation ones confirm that the established nonlinear financial
price dynamics can reproduce main complex characteristics of actual market returns.

2. Interacting Price Dynamics with Random Jump

Interacting particle systems have been widely applied to model the financial market dynamics.
The behaviors of interacting traders in the financial markets are imitated by particles’ interacting
process. These models’ efficiency has been widely testified by a large number of literature.
In this section, we construct a novel random complex interacting stock price dynamics by the
combination of stochastic contact process and compound Poisson process.

2.1. Stochastic Contact Process

The contact process, one of interacting particle systems [19,33,34], is often thought of as a fundamental
model for the spread of some infection. In contact process, infected individuals recover with a constant
rate, and healthy individuals become infected with a rate which is proportional to the number of the
infected neighbors. Specifically, the stochastic contact model is a continuous time Markov process

ηs which belongs to the configuration space {0, 1}Z
d
. If ηs(x) = 0, the individual at the position x

is healthy and will be infected with a rate equal to λ times the number of the infected neighbors;
if ηs(x) = 1, the individual is regarded as infected and becomes healthy at rate 1. For a smooth function

f on {0, 1}Z
d

that depend on finitely many coordinates, the generator of the process ηs is defined as

Ω f (η) = ∑
x

c(x, η)[ f (ηx)− f (η)] (1)

where ηx(y) = η(y) if y 6= x, ηx(y) = 1− η(x) if y = x, for any x, y ∈ Zd. c(x, η) is named the
transition rate function and given as
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c(x, η) =


1, η(x) = 1

λ ∑
{y: ||y−x||=1}

η(y), η(x) = 0 (2)

where, || · || denotes Euclidean distance in Zd. Let ηA
s denotes the state of contact process at time s with

the initial infected set ηA
0 = A. Further, let η

{0}
s (x) be the state of x ∈ Zd at time s with the initial single

point infected set {0}. One of the most important features of the contact process is that survival and
extinction can be both occur, and which one occurs depends on the value of rate λ. There is a critical
value, which is defined as

λc = inf{λ : P(|η{0}s | > 0, for all s ≥ 0) > 0} (3)

where |A| denotes the cardinality of a finite set A. If λ < λc, the contact process is said to die out,
namely, P(|η{0}s | 6= ∅, for all s ≥ 0) = 0; otherwise, for λ > λc, it is said to survive. More generally,
we consider the initial probability distribution of infected individuals as νρ, the product measure with
probability ρ (0 ≤ ρ ≤ 1) at the initial moment, namely, each individual is independently infected with
probability ρ, and denoted as η

ρ
s for simplicity.

2.2. Modeling Financial Price Model

In this section, we develop a novel agent-based price dynamics by the combination of contact
process and compound Poisson process with normally distributed jumps, which represent
the fluctuations caused by the spread of the investors’ trading attitudes and the random jump
fluctuations caused by the macroeconomic environment, respectively. Firstly, we assume that
the stock price fluctuations partly result from the investors trading attitudes toward the stock
market, and suppose that the trading attitude is represented by the viruses of the contact model,
which accordingly classify the market investors with buying attitude, selling attitude and neutral
attitude, respectively. Considering a model of auctions in a security market, assume that each investor
can trade the stock several times each day t ∈ {1, 2, . . . , T}, but at most one unit of security each
time. Let l be the length of trading time in each trading day, we denote the security price at time s in
the t-th trading day by Pt(s) where s ∈ [0, l]. Suppose that the security market consists of 2M + 1
(M is large enough) investors, who are located in lattice {−M, . . . , −1, 0, 1, . . . , M} ∈ Z (similarly
for d-dimensional lattice Zd). At the beginning of every trading day, suppose that the investors at the
infected sites have same trading attitudes. Then, we define a random variable ξt for these investors,
suppose these investors take buying attitude (ξt = 1), selling attitude (ξt = −1) or neutral attitude
(ξt = 0) with probability p1, p−1 or 1− p1 − p−1, respectively. Then, these investors send bullish,
bearish or neutral attitudes to their nearest neighbors according to the one-dimension contact dynamic
mechanisms. Infected investors can affect their neighbors, or the trading attitudes can be spread,
which is assumed as one of the main factors for price fluctuations. For a fixed s ∈ [0, l], we define

At(s) = ξt|ηρ
s |/(2M + 1) (4)

where |ηρ
s | is the cardinal number of investors who take buying position or selling position at

time s with initial distribution νρ, ξt represents trading attitudes in t-th trading day, and, hence,
At(s) represents the aggregate demand in t-th trading day. From the above definitions and
References [10,19,21], the stock price evolution at t-th trading day is given as

P(t) = P(t− 1) exp {β1 At(s)} (5)

where the coefficient β1 is named depth parameter of the security market in this work, which measures
sensitivity of price fluctuation in response to the aggregate demand. Thus, we have



Entropy 2017, 19, 512 4 of 14

P(t) = P0 exp

{
t

∑
k=1

β1 Ak(s)

}
(6)

where P0 is the initial stock price at time t = 0.
Then, we pay attention to the random jump fluctuations. Suppose ζt is a Poisson process with

intensity γ, B(vk) is an independent identical distributed (i.i.d.) sequence with normally distributed
jumps, and B(vk) and ζt are independent. The stock return jump amplitude at k-th Poisson point
is B(vk). Here, B(vk) is defined as the k-th sample value of a standard normal distribution. The
compound Poisson jump of the price is given by

P jump(t) = P0 exp

{
β2

ζt

∑
k=1

B(vk)

}
(7)

where the coefficient β2 measures sensitivity of price fluctuation in response to macroeconomic environment.
We assume that the fluctuations of a security price is determined mainly by two parts, P(t)

and P jump(t). We define the stock price Pt on Ω × Ω̃, which describes the behavior of all markets
investors. More specifically, the stock price Pt (t = 1, 2, . . . , T) at t-th trading day, for a fixed s ∈ [0, l],
is defined as

Pt = P0 exp

{
β1

t

∑
k=1

A(ωk) + β2

ζt

∑
k=1

B(vk)

}
(8)

where P0 is initial stock price at time 0, and parameters β1, β2 > 0. Now, we discuss the price process
with the continuous time, which are defined from Equation (9). The normalized process Yn

u , u ∈ [0, 1]
is defined by

Yn
u =

1√
n

[
β1(
dnue

∑
k=1

A(ωk) | Qn)
]
+ β2

ζdnue

∑
k=1

B(vk), for u ∈ [0, 1] (9)

where dnue denotes the integral part of a real number nu, and Qn is a random variable which denotes
the area under the A(ωk). From References [10,19], the formula of stock logarithmic return is defined as

r(t) = lnPt+1 − lnPt. (10)

3. Probability Distributions of the Price Model

Considering stock returns in an interval time are autocorrelated [4,10], for the interacting part
of the model, the “area” Qn may represent the situation on this stock during the time from 0 to n,
including the investors’ prediction, company prospect and benefit, trends, political event, economic
policy, etc. If “area” is positive, there may have a positive influence on some market participants
so that they are likely to take buying positions. In this paper, we only consider the case that the “area”
is positive when n is large enough, similarly for the opposite case. In the following, with the condition
Qn = c(λ)

√
n, the limiting probability distribution of random process [β1(∑

dnue
l=1 A(ωl) | Qn)]/

√
n

is given. When λ is large enough and c(λ) > 0, the finite dimensional distribution of normalized
conditional return process

Xdnue =
1√
n

[
β1

( dnue

∑
l=1

A(ωl) | Qn = c(λ)
√

n
)]

(11)

converges to the corresponding distribution∫ u

0
µ1(u)du +

∫ u

0
σ1(λ)dB(u), for u ∈ [0, 1] (12)
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where B(u) is a standard Brownian motion, σ1(λ) is the degree of fluctuation of the stock price, and µ1(u)
is the local tendency of the stock price process. The proof is based on Section 4 of [35], whose strategy
of proof is from the theory in [36–38]. For the jump part of the model, since ξt = β2 ∑ζt

k=1 B(vk)

is a compound Poisson process, then {ξt, t ≥ 0} is a Lévy process [39–41]. For real-valued Lévy
processes, the characteristic function of its increments follows the Lévy–Khinchine formula

Eeizξt = eψ(z) (13)

where ψ(z) = izm − 1
2 z2σ2 +

∫
(eizu − 1 − izu1{|u|<1})µ(du), i =

√
−1, m and σ are continuous

functions of t. From the combination of above two parts, and by Equations (12) and (13), we can
deduce that the distribution of the proposed model given in Equation (9) has the Lévy type distribution.

4. Empirical Research for Financial Price Dynamics

In this section, we investigate the nonlinear complex behaviors of the proposed compound
financial price dynamics. To obtain a robust result, actual market datasets (Shanghai Stock Exchange
(SSE) composite index and Hang Seng Index (HSI)) are comparatively considered with the simulation
ones, the selected daily closing prices for the period from 28 June 1995 to 31 May 2017 with 5320 data
points (some slight differences exist for different non-trading days between the two markets, and some
one-day missing values are supplemented by linear interpolation). The time series are available on
the Yahoo Finance website (https://finance.yahoo.com). For simplicity, the corresponding empirical
experiment is performed by computer simulation for different infection rates λ in contact process,
and different intensity γ in compound Poisson process. In the following, we set the time length of
analysis to 5320 and initial probability ρ to 0.3 (namely, each individual is independently infected with
probability 0.3) in contact process to gain simulation datasets.

4.1. Basic Statistical Properties of Returns

The statistical analysis of the financial returns and the corresponding absolute return series has
attracted the interest of many researchers for their wide application in asset allocation, asset pricing,
risk management, stock return volatility forecasting, etc. [2,10,12–15]. Recent empirical works have
reported that the empirical probability distributions of financial returns are believed to deviate from
a Gaussian distribution, and they usually exhibit more leptokurtic and fatter tails than the Gaussian
case, which is usually called “fat-tail” distribution, and may be explained as the result of the herd effect
of investors in the security markets or illiquidity. A highly leptokurtic distribution is characterized
by a narrower and larger maximum, and by fatter tails than a Gaussian one [10]. The kurtosis,
which is one of the most important statistics to describe leptokurtic, is exhibited in Table 1. When the
kurtosis of a series is larger than 3, which is the kurtosis of a Gaussian distribution, there exist fat
tails in the probability distribution. Moreover, the descriptive statistics, the Kolmogorov-Smirnov
(K-S) test and Anderson-Darling (A-D) test of normalized returns of the actual marketdatasets and
the simulation ones are also exhibited in Table 1 [42]. In the K-S test of the corresponding normalized
returns, the signification level is 5%, and the lengths of returns are 5320, the critical values are the
same at 0.0186. The K-S test returns the logical value H = 1 if it rejects the null hypothesis that the
distribution of normalized returns follows the standard normal distribution at the given significance
level, while H = 0 if it cannot. In the A-D test of the returns, the hypothesized distribution is normal
distribution in this paper, the signification level is also 5%, and the corresponding critical values are
0.7518. The A-D test returns the logical value I = 1 if it rejects the null hypothesis that the distribution
of returns follows a given probability distribution (here, normal distribution) at the given significance
level, while I = 0 if it cannot [42].

According to the empirical results in Table 1, we can find that the tail distributions of the simulative
datasets and the actual ones are deviating from the Gaussian case, the kurtosis are larger than 3.
Moreover, in K-S test and A-D test, all the logical values are 1, and all the stats are larger than the

https://finance.yahoo.com
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corresponding critical value, so the null hypothesis that the distribution of the simulative datasets and
the actual ones follow the normal distribution can be rejected at the significance level 5%. It is obvious
that the actual datasets and the simulation ones display similar fat-tail and leptokurtic attributes. We
also find that the kurtosis isincreasing steadily from 4.9788 to 7.0522 with λ increasing from 1.5 to
2.5 and fixed γ = 0, which imply that the fat-tail behavior is more significantly as λ increases. The
reason of this increasing is that the rate λ represents the rate of attitude spread in the price dynamics,
and the increasing of λ implies the interaction among the investors becomes more and more active,
which is supposed to bring the herd behavior of the security market, and usually results in the fat-tail
distribution for the returns. There are similar patterns for γ = 10 and γ = 20, but larger kurtosis than
the case of γ = 0, which may be explained that γ represents the rate of Poisson jumps; that is, a larger
γ shows more large fluctuations and directly leads to fat-tail phenomenon of the returns.

Table 1. Descriptive statistics and tests of simulation datasets and actual datasets.

Descriptive Statistics K-S Test A-D Test

Mean Std Max Min Skewness Kurtosis ksstat H adstat I

SSE 0.0003 0.0171 0.0940 −0.1044 −0.3509 7.8473 0.0846 1 81.266 1
HSI 0.0001 0.0155 0.1018 −0.1099 −0.2027 8.0296 0.0767 1 67.524 1

γ λ Mean Std Max Min Skewness Kurtosis ksstat H adstat I

0 1.5 −0.0001 0.0080 0.0449 −0.0539 0.0473 4.9788 0.0930 1 92.199 1
0 2 −0.0001 0.0122 0.0617 −0.0741 −0.0767 5.9401 0.0690 1 65.553 1
0 2.5 0.0002 0.0170 0.0955 −0.0917 0.0113 7.0522 0.0506 1 50.723 1

10 1.5 −0.0001 0.0084 0.0702 −0.0548 0.2197 5.2835 0.0900 1 90.403 1
10 2 −0.0000 0.0126 0.0931 −0.0751 −0.0164 6.3699 0.0666 1 63.809 1
10 2.5 0.0003 0.0172 0.0955 −0.1149 −0.0326 8.1074 0.0494 1 47.488 1

20 1.5 −0.0001 0.0089 0.0822 −0.0691 0.2554 5.5807 0.0887 1 84.661 1
20 2 −0.0001 0.0131 0.0916 −0.0968 −0.0472 7.0812 0.0652 1 60.104 1
20 2.5 0.0003 0.0176 0.1030 −0.1143 0.0842 9.7433 0.0475 1 46.573 1

Moreover, the empirical probability density distributions of the simulation datasets with γ = 10
are presented in Figure 1 with comparison to a Gaussian distribution. The patterns of these curves also
show that the actual datasets and the simulated ones deviate from the Gaussian. It is transparent that
the simulation datasets exhibit the similar fat-tail and peak distributions to the actual ones.

−0.1 −0.05 0 0.05 0.1
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10
−1
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1

r
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(r
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λ=1.5
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λ=2.5
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Figure 1. Logarithmic plot of empirical probability distributions of returns for the simulation datasets
with γ = 10 and the actual ones.

4.2. Fractional Permutation Entropy

Permutation entropy, proposed by Bandt and Pompe, is a complex measure for arbitrary time
series based on analysis of order patterns [29]. Consider a time series x(t) (t ∈ {1, 2, . . . , T}),
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comparing n-dimension vector (x(t), x(t + τ), . . . , x(t + (n− 1)τ)), suppose it has permutation π,
and all n! permutations π of order n which are considered as possible order types of n different
numbers. For each permutation π, the relative frequency is determined as

p(π) =
]{t|t ≤ T − (n− 1)τ, (x(t), x(t + τ), . . . , x(t + (n− 1)τ) has type π}

T − (n− 1)τ
(14)

where n and τ denote the embedding dimension and the time delay, respectively. The permutation
entropy of order n ≥ 2 is defined as

H(n) = −∑ p(π) ln p(π) (15)

where the sum runs over all n! permutations π of order n. The permutation entropy H(n) is between 0
and ln n! for τ = 1, when all the permutations have same frequency, H(n) reaches its maximum.

Permutation entropy of returns r(t) and absolute returns |r(t)| for n ∈ {4, 6, 8} of simulation
datasets and actual datasets with τ = 1 are exhibited in Table 2. We can find that all the permutation
entropy values are close, the permutation entropy of returns r(t) is slightly increasing from 3.1684 to
3.1768 with λ increasing from 1.5 to 2.5 and fixed γ = 0 and n = 4, which means that the behavior
of returns is more complex as λ increases. The reason for this increase is that the rate λ represents the
rate of attitude spread, and the increasing of λ implies that the interaction among the investors becomes
more frequent, which is supposed to bring more random order patterns and temporal information,
and hence lead to more complex dynamics. There are similar patterns for γ = 10 and γ = 20,
but with larger permutation entropy than the case of γ = 0. This may be explained as a larger γ

shows more frequent violent fluctuation to the stock price. Additionally, the permutation entropy
values of absolute returns |r(t)| are slightly smaller than those of returns r(t), which represents that
the absolute return series exhibit less order permutation patterns, larger correlation, and hence are
easier to predict than the return series.

Table 2. Permutation entropy of returns r(t) and absolute returns |r(t)| of simulation datasets and
actual datasets.

n = 4 n = 6 n = 8

r(t) |r(t)| r(t) |r(t)| r(t) |r(t)|
SSE 3.1679 3.1651 6.4748 6.4621 8.4739 8.4723
HSI 3.1718 3.1701 6.4977 6.4758 8.4870 8.4813

γ λ r(t) |r(t)| r(t) |r(t)| r(t) |r(t)|
0 1.5 3.1684 3.1462 6.4735 6.4154 8.4732 8.4453
0 2 3.1723 3.1667 6.5032 6.4805 8.4858 8.4791
0 2.5 3.1768 3.1721 6.5088 6.4983 8.4900 8.4871

10 1.5 3.1701 3.1493 6.4803 6.4239 8.4740 8.4414
10 2 3.1725 3.1674 6.5047 6.4862 8.4857 8.4813
10 2.5 3.1765 3.1721 6.5104 6.4992 8.4896 8.4743

20 1.5 3.1695 3.1525 6.4784 6.4323 8.4795 8.4515
20 2 3.1738 3.1694 6.5069 6.4918 8.4964 8.4829
20 2.5 3.1770 3.1725 6.5150 6.4999 8.4986 8.4933

A generalized expression of permutation entropy is brought with approaches in fractional calculus
by References [43,44]. Fractional permutation entropy (FPE), a modified permutation entropy, is
proposed to detect fractional order characteristics for complex system.

Sα = ∑
i

{
−

p−α
i

Γ(α + 1)
[ln pi + ψ(1)− ψ(1− α)]

}
pi (16)
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where −1 ≤ α ≤ 1, pi is the probability that the system is in state i, and i runs over all possible states in
the system, Sα leads to the permutation entropy as α→ 0, where Γ(·) is the gamma function, and ψ(·)
is digamma function, which has the form ψ(x) = Γ′(x)/Γ(x). The FPE of returns r(t) with fractional
exponent α from −0.3 to 0.4 with step size of 0.1 for n = 3 and τ = 2 of simulation datasets and
actual datasets are exhibited in Table 3. For every fixed parameter set, as α value increases, the FPE
firstly increases and then decreases. For a fixed γ, the FPE values for larger λ are larger than the
corresponding FPE values for smaller λ, which shows that a larger λ leads to more complex dynamics.
Comparing the FPE for γ = 20 with γ = 0, we find that the FPE for γ = 0 are slightly less than
the corresponding FPE values for γ = 20, which means that high frequency of jumps leads to the
increasing of complexity.

Table 3. FPE of returns r(t) with different fractional exponent α.

α

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

SSE 2.2024 2.2276 2.2470 2.2599 2.2653 2.2625 2.2502 2.2274
HSI 2.2028 2.2280 2.2474 2.2603 2.2657 2.2629 2.2506 2.2278

γ λ −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

0 1.5 2.1964 2.2215 2.2409 2.2538 2.2593 2.2566 2.2445 2.2218
0 2 2.1994 2.2245 2.2439 2.2568 2.2623 2.2595 2.2473 2.2246
0 2.5 2.2026 2.2278 2.2472 2.2601 2.2656 2.2627 2.2505 2.2277

20 1.5 2.1982 2.2234 2.2428 2.2556 2.2611 2.2583 2.2462 2.2235
20 2 2.1994 2.2247 2.2443 2.2569 2.2625 2.2595 2.2475 2.2249
20 2.5 2.2027 2.2280 2.2474 2.2604 2.2658 2.2630 2.2509 2.2281

Figure 2 depicts FPE curves versus α from 0.15 to 0.36 with step size of 0.01 for the actual market
datasets and the simulation ones with n = 3 and τ = 2 ((a) for γ = 0 and (b) for γ = 20). We can
find that all curves evolve along similar shape. In Figure 2, the FPE values track with larger λ lie
above the ones with smaller λ. It indicates that, when λ increases, the FPE increases, which means that
the dynamics of system become more complex as λ increases. Because the rate λ relates to the speed
of investors react to the security market, as λ increases, the market will become more swarming and
the investors are more likely to group together which lead to large fluctuations as a result.
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Figure 2. FPE versus α for the actual market datasets and the simulation ones: (a) for γ = 0; and
(b) for γ = 20.

4.3. Fractional Sample Entropy

Sample entropy proposed by Richman and Moorman [30], which is independent of data length
and exhibits relative consistency, is a complex statistics method of time series through comparing
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of vector pairs in template vectors of two adjacent embedding dimension. Considering a time
series x(t) (t ∈ {1, 2, . . . , T}), the state vector Xm,τ is defined as Xm,τ

i = {x(i), x(i + τ), x(i +
2τ), . . . , x(i + (m− 1)τ)} (i = 1, 2, . . . , Tm), where Tm = T − (m− 1)τ, τ represents the time delay
(set τ = 1 in the following for simplicity) and m represents the embedding dimension, respectively. The
underlying dynamics of time series {x(1), x(2), . . . , x(T)} are fully embedded in the m-dimensional
phase space {Xm,τ

i , i = 1, 2, . . . , Tm}. The embedding theorem [45] guarantees a full knowledge of
a system contained in the time series of any one measurement and a proxy for the full multivariate
phase space that can be constructed from the time series. Two vectors, Xm,τ

i and Xm,τ
j , are considered

as close if their distance d(Xm,τ
i , Xm,τ

j ) = max{|x(i + kτ)− x(j + kτ)| : 0 ≤ k ≤ m− 1} is smaller than
a given tolerance level r̂. Let Nm

i (r̂) represents the number of vectors Xm,τ
j (where j 6= i to exclude

self-matches) that are close to the vector Xm,τ
i . Then, the probability that any vector Xm,τ

j is close to the
vector Xm,τ

i within a tolerance level r̂ is defined as

Cm
i (r̂) =

Nm
i (r̂)

(T −m− 1)
. (17)

The average of the Cm
i (r̂) is given as

Cm(r̂) =
1

T −m

T−m

∑
i=1

Cm
i (r̂) (18)

which represents the frequency that any two vectors are within r̂ of each other. Then, the sample
entropy of time series x(t) (t ∈ {1, 2, . . . , T}) is given as

SampEn(x, m, r̂) = − ln
[Cm+1(r̂)

Cm(r̂)

]
. (19)

Although m and r̂ are vital in calculating the sample entropy, no guidelines exist for optimizing
their values. The rule accepted widely is that r̂ = l × SD (0.1 ≤ l ≤ 0.25) and values of m of 1 or 2.
We calculate the fractional sample entropy for all datasets with parameters m = 2 and r̂ = 0.15× SD,
SD represents the standard deviation of the considered time series, which is the usually chosen
parameters combination [31].

Sample entropies of returns r(t) and absolute returns |r(t)| of simulation datasets and actual
datasets with m ∈ {1, 2, 3} are exhibited in Table 4. For every fixed parameter set, as λ value increases,
the sample entropy increases, which means that the sample entropy values for larger λ are larger
than those for smaller λ, which shows that a larger λ leads to larger fluctuation, larger difference
in number of vector pairs in template vectors of two adjacent embedding dimension, less self-similarity
in data series, hence leads to more complex dynamics. We also find that sample entropies for γ = 0
and γ = 10 are slightly less than those for γ = 20, which means that higher frequency of jumps
leads to more diversified template vectors. Meanwhile, the sample entropies of absolute returns |r(t)|
are slightly smaller than those of returns r(t), which displays that the absolute return series exhibit
more self-similarity, lower complex dynamics than the return series.

The fractional sample entropy, a modified sample entropy approximation based on the methods
in References [30,43], is developed to detect characteristics of fractional order information for complex
dynamics [31]. The fractional sample entropy (FSE) of time series x(t) (t ∈ {1, 2, . . . , T}) is then
defined as Reference [31]

FSE(x, m, α, r̂) = − ln Cm+1(r̂)− ln Cm(r̂) + ψ(1)− ψ(1− α)

Γ(α + 1)

[Cm+1(r̂)
Cm(r̂)

]−α
. (20)
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Table 4. Smaple entropy of returns r(t) and absolute returns |r(t)| of simulation datasets and
actual datasets.

m = 1 m = 2 m = 3

r(t) |r(t)| r(t) |r(t)| r(t) |r(t)|
SSE 2.1194 1.8067 2.0216 1.7344 1.9378 1.6509
HSI 2.1302 1.8468 2.0744 1.7980 1.9929 1.7341

γ λ m = 1 m = 2 m = 3

0 1.5 1.9661 1.7812 1.8664 1.6724 1.7691 1.5854
0 2 2.1305 1.9127 2.0207 1.7799 1.8917 1.7286
0 2.5 2.2293 1.9970 2.1216 1.8878 2.0215 1.7942

10 1.5 1.9944 1.8212 1.9127 1.7277 1.8136 1.6510
10 2 2.1475 1.9497 2.0508 1.8215 1.9237 1.7310
10 2.5 2.2353 2.0116 2.1263 1.9040 2.0245 1.8116

20 1.5 2.0045 1.8383 1.9265 1.7443 1.8286 1.6781
20 2 2.1520 1.9604 2.0539 1.8329 1.9352 1.7729
20 2.5 2.2389 2.0169 2.1301 1.9052 2.0572 1.8246

The FSE method is applied to study the complex behaviors of the actual datasets, the simulation
ones, the empirical results with Gaussian are exhibited in Tables 5 and 6 and Figure 2. Table 5 displays
the FSE of returns r(t) with fractional exponent α form −0.3 to 0.4 with step size of 0.1 for different
values of γ and λ. For every fixed parameter set, as α value increases, the FSE firstly increases
and then decreases. All the FSE values of simulation datasets and actual ones are less than the
corresponding FSE values of Gaussian, which displays that they are deviating from the Gaussian
series. Meanwhile, for every fixed parameter set, as λ value increases, the FSE increases, which means
that the FSE for larger λ are larger than those for smaller λ, which shows that a larger λ leads to more
complex dynamics. We also find that the FSE for γ = 0 and γ = 10 are slightly less than those for
γ = 20, which means that higher frequency of jumps leads to more complex behaviors. Additionally,
comparing Table 6 with Table 5, we find that the FSE values of absolute returns |r(t)| are observably
less than the corresponding FSE values of returns r(t) (except for Gaussian), which means that the
absolute return series exhibit lower complexity than the return series.

Table 5. FSE of returns r(t) with different exponent values α.

α

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

SSE 1.1101 1.5211 2.0227 2.6088 3.2493 3.8644 4.2683 4.0339
HSI 1.1145 1.5351 2.0522 2.6615 3.3347 3.9923 4.4458 4.2561

Gaussian 1.1349 1.6246 2.2593 3.0522 3.9930 5.0134 5.9105 6.1562

γ λ −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

0 1.5 1.0947 1.4773 1.9338 2.4536 3.0026 3.5006 3.7712 3.4218
0 2 1.1100 1.5209 2.0222 2.6079 3.2478 3.8622 4.2652 4.0301
0 2.5 1.1181 1.5472 2.0783 2.7088 3.4119 4.1089 4.6088 4.4618

10 1.5 1.0997 1.4908 1.9607 2.4999 3.0754 3.6072 3.9155 3.5980
10 2 1.1126 1.5289 2.0391 2.6380 3.2965 3.9349 4.3660 4.1560
10 2.5 1.1184 1.5484 2.0809 2.7135 3.4196 4.1207 4.6253 4.4827

20 1.5 1.1011 1.4948 1.9687 2.5137 3.0974 3.6394 3.9594 3.6517
20 2 1.1128 1.5297 2.0408 2.6411 3.3015 3.9425 4.3764 4.1691
10 2.5 1.1187 1.5493 2.0830 2.7173 3.4259 4.1301 4.6386 4.4996
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Table 6. FSE of absolute returns |r(t)| with different exponent values α.

α

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

SSE 1.0785 1.4366 1.8557 2.3216 2.7982 3.2061 3.3773 2.9481
HSI 1.0867 1.4566 1.8936 2.3852 2.8960 3.3463 3.5639 3.1712

Gaussian 1.1349 1.6246 2.2593 3.0522 3.9930 5.0134 5.9105 6.1562

γ λ −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

0 1.5 1.0698 1.4165 1.8182 2.2596 2.7039 3.0723 3.2011 2.7397
0 2 1.0844 1.4510 1.8829 2.3671 2.8681 3.3061 3.5102 3.1068
0 2.5 1.0971 1.4836 1.9463 2.4750 3.0362 3.5498 3.8376 3.5028

10 1.5 1.0776 1.4345 1.8517 2.3149 2.7880 3.1916 3.3581 2.9254
10 2 1.0895 1.4638 1.9075 2.4087 2.9325 3.3990 3.6343 3.2561
10 1.5 1.0988 1.4883 1.9557 2.4912 3.0617 3.5870 3.8882 3.5645

20 1.5 1.0798 1.4398 1.8616 2.3315 2.8133 3.2277 3.4060 2.9823
20 2 1.0909 1.4673 1.9142 2.4201 2.9503 3.4247 3.6689 3.2978
20 2.5 1.0989 1.4886 1.9564 2.4924 3.0636 3.5899 3.8920 3.5692

Figure 3 depicts FSE curves versus α for the actual market datasets and the simulation ones,
α ranges from −1 to 0.6 with step size of 0.03. Figure 3a depicts the FSE curves of returns of the
SSE, the HSI, and the financial price model for λ = 1.5, λ = 2 and λ = 2.5 with fixed γ = 0.
All curves evolve along similar shape, as α value increases, the FSE firstly increases and then decreases.
The FSE values of Gaussian lies above others, and, as can be seen, all datasets are deviating from the
Gaussian. In Figure 3a, the FSE track with larger λ lies above the ones with smaller λ. It indicates
that, when λ increases, the FSE increases, which means that the dynamics of system become more
complex as λ increases. Because the rate λ relates to the speed of investors react to the security
market, as λ increases, the market will become more swarming and the investors are more likely
to group together which lead to large fluctuations as a result. Figure 3b depicts the FSE curves of
absolute returns of the actual datasets and simulation ones. Being compared with Figure 3a,b has
similar dynamics behaviors. Figure 3b illustrates that except for Gaussian series, the FSE of absolute
return series of actual datasets and simulation ones significantly decrease, which means that absolute
return series exhibit lower complexity than return series. Figure 3c,d and Figure 3e,f depict the FSE
curves of returns and absolute return series with γ = 10 and γ = 20, and have similar patterns
with Figure 3a,b.
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Figure 3. FSE versus α for the actual market datasets and the simulation ones: (a) For r(t) and γ = 0.
(b) For |r(t)| and γ = 0. (c) For r(t) and γ = 10. (d) For |r(t)| and γ = 10. (e) For r(t) and γ = 20.
(f) For |r(t)| and γ = 20.

5. Conclusions

In the present paper, a novel agent-based complex price dynamics is introduced by the
combination of contact process and compound Poisson process with normally distributed jumps,
which concern with the fluctuations caused by the spread of the investors’ attitudes and random jump
fluctuations caused by macroeconomic environment, respectively. Then, we investigate and analyze
the statistical behaviors of returns of the proposed model by descriptive statistics, K-S test and A-D test.
The results show that the proposed price dynamics displays some stylized facts reported in financial
time series. Further, to better understand complex dynamics of the proposed model, entropy analyses
including permutation entropy, fractional permutation entropy, sample entropy and fractional sample
entropy are preformed. The empirical results show that absolute return series exhibit less complex
dynamics than fluctuation ones. A large λ is more likely to lead to complex dynamics, since the rate
λ relates to the speed of attitude interaction in the security market, as λ increases, the market will
become more swarming which lead to large fluctuations as a result. Furthermore, larger γ almost have
larger entropy, since γ represents the rate of Poisson jumps, a large γ is more liable to trigger large
fluctuation and directly lead to fat-tail and complex dynamics. Moreover, we choose the daily returns
of SSE and HSI as the actual market datasets. Through the comparisons of the above analyses for the
actual datasets and the simulation ones, the simulation datasets derived from the nonlinear stochastic
interacting price model have similar statistical and complex dynamics with the actual markets, which
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indicates that the present financial price dynamics model could grasp some natural features of actual
markets to some extent.
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