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Abstract: In this overview paper, we introduce an application of stochastic orders in wireless
communications. In particular, we show how to use stochastic orders to investigate the ergodic
capacity results for fast fading Gaussian memoryless multiuser channels when only the statistics of
the channel state information are known at the transmitters (CSIT). In general, the characterization
of the capacity region of multiuser channels with only statistical CSIT is open. To attain our goal,
in this work we resort to classifying the random channels through their probability distributions
by which we can obtain the capacity results. To be more precise, we derive sufficient conditions
to attain some information theoretic channel orders such as degraded and very strong interference
by exploiting the usual stochastic order and exploiting the same marginal property. After that, we
apply the developed scheme to Gaussian interference channels and Gaussian broadcast channels.
We also extend the framework to channels with multiple antennas. Possible scenarios for channel
enhancement under statistical CSIT are also discussed. Several practical examples such as Rayleigh
fading and Nakagami-m fading, etc., illustrate the application of the derived results.
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1. Introduction

Ordering plays a fundamental role in mathematics, science, engineering, finance, etc. The most
well known and commonly used one is the trichotomy order, in which we compare real values.
In the applications of wireless communications, when there is perfect channel state information at
the transmitter (CSIT), it is known that for some Gaussian multiuser (MU) channels the capacity
results can be attained due to the capability of ordering the quality of channels among different users.
For example, capacity regions/secrecy capacity of degraded broadcast channels (BC) and wiretap
channels (WTC) (even for multiple-antenna cases) [1], and also the sum capacity of low-interference
regime [2] and capacity regions for some cases of IC such as strong IC [3–5] and very strong IC [4]
are derived. When fading effects of wireless channels are taken into account, if there is perfect CSIT,
some of the above capacity results still hold with an additional operation of taking an average over
the capacity (region) with respect to fading channels. For example, in [6], the ergodic secrecy capacity
of Gaussian WTC is derived; in [7], the ergodic capacity regions are derived for ergodic very strong
and uniformly strong (each realization of the fading process is a strong interference channel) of the
Gaussian IC. Notably, the orders in the above scenarios are all trichotomy orders.

Due to several practical limitations, for example, the finite bandwidth of feedback channels,
a delay caused by channel estimation, etc., the transmitter may not be able to track channel realizations
precisely instantaneously if they vary rapidly. Thus, for fast fading channels, it is more practical to
consider the case with only partial CSIT of the legitimate channel, where statistical CSIT is one of
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the most commonly considered one [8,9]. However, when there is only statistical CSIT (In this paper,
statistical CSIT and no CSIT will be used interchangeably.), there are only few known capacity results,
such as the layered BC [10], the binary fading interference channel [11], the one-sided layered IC [12],
Gaussian WTC [13,14], and layered WTC [14], etc. This is because, when the transmitter has imperfect
CSIT, e.g., only the statistics of the channels, the comparison of channels cannot be attained directly by
trichotomy law due to the random characteristic of the fading channels. Then the optimal strategy for
the transmission, including the design of the codebook, channel input distribution, resource allocation,
etc., can not be easily done. In particular, those channel orders commonly used in information theory
include degraded, less noisy, and more capable [9] in BC and WTC or the strong and very strong in
IC [9] depends on the knowledge of CSIT. Note that by these information theoretic orders, we can
highly simplify the functional optimization with respect to the channel input distribution and/or
channel prefixing.

To consider an MU-channel in which the transmitters only know the distributions of the channels
but not the realizations, we may ask the following questions: is it possible to compare the channel
qualities just according to their distributions? If yes, how to do it? How to derive the capacity region
under such comparison of channel qualities? In this work we resort to partly solve these problems by
classifying the random channels into stochastically orderable and its complement. In particular, an MU
channel with orderable random channels means that there exists an equivalent channel in which we
can reorder the channel realizations among different transmitter-receiver pairs in the desired manner.
More specifically, we resort to finding a subset of all fading channel tuples, namely, A, which should
possess the following properties:

• It allows the existence of a corresponding set B in which the channels follow a certain order, e.g.,
trichotomy order.

• It encompasses a constructive way (or easy) to find a transformation f : a 7→ b, a ∈ A, b ∈ B.
• Capacity results are attainable.

Taking the BC as an example, an orderable two-user BC means that under the same noise distributions
at the two receivers, in the equivalent BC, one channel strength is always stronger or weaker than the
other for all fading states. The main tool we use for this channel classification and ordering is stochastic
orders [15] from probability theory, combined with the same marginal property [16] from information
theory. The stochastic orders have been widely used in the last several decades in diverse areas
of probability and statistics such as reliability theory, queueing theory, and operations research,
etc., see [15] and references therein. Different stochastic orders such as the usual stochastic order,
the convex order, and the increasing convex order can help us to identify the location, dispersion,
or both location and dispersion of random variables, respectively. Smartly choosing a proper stochastic
order to compare the channels with statistical CSIT allows us to form an equivalent channel in which
realizations of channel gains are ordered in a desired manner. Then we are able to derive the capacity
regions of the equivalent MU channel, which is simpler than directly considering the original channel.
Note that in [17] the authors also consider stochastic orders for fading channels. However, there is no
such alignment concept by constructing an equivalent channel in [17] and hence the relation between
the same marginal property and stochastic orders is completely not investigated there. In contrast, they
discuss the stochastic dominance between fading channels by Shannon transform order. Stochastic
orders are also used in stochastic geometry to analyze the performance of a random network [18].
Similarly, the inter-relation between the information theoretic channel orders and probabilistic orders
are not addressed in [18].

The main issues discussed by this overview paper are summarized as follows.

• We classify fading MU channels such that we can characterize the capacity results of some
memoryless Gaussian MU channels under statistical CSIT. To achieve it, we combine the concept
of usual stochastic order and also the same marginal property, i.e., an intrinsic property of some
MU channels. Intuitively, by doing so we can align the realizations of the fading channel gains
between different users in an identical trichotomy order over time in an equivalent channel.
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• We then apply the proposed scheme to characterize the capacity regions of Gaussian IC and BC,
which is novel in the literature.
• We further extend the framework to channels with multiple antennas. Applicable scenarios for

channel enhancement scheme under statistical CSIT, which is originally for channels with perfect
CSIT, are also discussed.

• Several examples with practical channel distributions are illustrated to show the usage scenarios
of the developed framework.

Notation: Upper case normal/bold letters denote random variables/random vectors (or matrices),
which will be defined when they are first mentioned; lower case bold letters denote vectors.
The statistical expectation is denoted by E[.]. The mutual information between two random variables
X and Y is denoted by I(X; Y). The complementary cumulative density function (CCDF) is denoted
by F̄X(x) = 1− FX(x), where FX(x) is the CDF of X. In addition, we denote the probability mass
function (PMF) by p and the probability density function (PDF) by f . X ∼ F denotes that the random
variable X follows the distribution F. Markov chain relation between X, Y, and Z is described by
X−Y− Z. Unif(a, b) denotes the uniform distribution between a and b. Z+ = {0, N}. The indicator
function is denoted by 1{.}. The supports of a function f and a random variable X are respectively
denoted by supp( f ) and supp(X). The logarithms used in the paper are all of base 2. We denote
C(P) = log(1 + P). We denote the equality in distribution by =d.

The remainder of the paper is organized as follows. In Section 2, we introduce the background
knowledge and preliminaries. In Section 3, we formulate a problem and propose a framework to solve
it. In Section 4 we apply the tools developed in Section 3 to fast fading Gaussian interference channels
and broadcast channels with statistical CSIT. In Section 5 we consider channels with multiple antennas.
In Section 6, an application of Laplace transform order on solving a power allocation problem is
reviewed. Finally, Section 7 concludes the paper.

2. Preliminaries

In this section, some important properties and definitions for deriving the main results of this
work will be introduced, including the same marginal properties, degradedness, and the usual
stochastic orders.

2.1. Same Marginal Property

The same marginal property plays a crucial role in the proposed channel classification to obtain
the capacity results. This is because it provides us the degree of freedom to construct an equivalent
channel in the sense that the marginal distributions are the same as the original one, but not the joint
distribution. By such a relaxation of considering an equivalent channel, we are able to reorder all
channel gains under some conditions.

Two versions of the same marginal property are introduced as follows:

Theorem 1 (Same Marginal Property for One-Transmitter (Theorem 13.9 in [19])). The capacity region
of a multiuser channel with one transmitter and two non-cooperative receivers depends only on the conditional
marginal distributions PY1|X and PY2|X and not on the jointly conditional distribution PY1,Y2|X .

Theorem 2 (Same Marginal Property for Two-Transmitter (Theorem 16.6 in [19])). The capacity region
of a multiuser channel with two-transmitter and two non-cooperative receivers depends only on the conditional
marginal distributions PY1|X1,X2

and PY2|X1,X2
and not on the jointly conditional distribution PY1,Y2|X1,X2

.

Remark 1. By the union bound, the error probability of a channel with multiple-receiver can be upper
bounded by the sum of individual error probability. Therefore, the overall error probability approaches
zero if the individual error probabilities approach zero, respectively. This fact results in the consequence
that only the marginal transition probabilities affect the capacity result, but not the joint one.
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Remark 2. Note that since the capacity region of a multiple access channel is determined by pY|X1, X2
,

the technique of reordering random fading channels developed in this paper can be useful to simplify
the proof for the GMAC with statistical CSIT.

For channels with a single transmitter and multiple receivers, e.g., BC or WTC, we can get
Theorem 1 from Theorem 2 by removing X1 or X2.

2.2. Information Theoretical Orders for Memoryless Channels and Stochastic Orders

The main task in this paper is on ordering channels. Here we introduce several important
definitions describing the relation of reception qualities among different receivers from an information
theoretic to the probabilistic point of view.

Definition 1. A channel with two non-cooperative receivers and one transmitter is physically degraded if the
transition distribution satisfies PY1Y2|X(·|·) = PY1|X(·|·)PY2|Y1

(·|·), i.e., X, Y1, and Y2 form a Markov chain
X−Y1 −Y2. The channel is stochastically degraded if its conditional marginal distribution is the same as that
of a physically degraded channel, i.e.,

there exists a P̃Y2|Y1
(·|·), such that PY2|X(y2|x) = ∑

y1

PY1|X(y1|x)P̃Y2|Y1
(y2|y1). (1)

Denote the fading channel gains in AWGN channels from the transmitter to the first and second receivers
by H1 and H2, respectively. Define a set of tuples of random channels H10 = {(H1, H2)} and also a set
H1 = {(H1, H2) : 1{(1)} = 1}.

Recall that 1{(1)} = 1 means (1) is true. In the following, we call a stochastically degraded channel
simply a degraded channel due to the same marginal property. Note that discussions on the relation
between degradedness and other information theoretic channel orders can be referred to [19–21].

Definition 2. A discrete memoryless-IC is said to have very strong interference if

I(X1; Y1|X2, H11, H12) ≤ I(X1; Y2|H21, H22), (2)

I(X2; Y2|X1, H21, H22) ≤ I(X2; Y1|H11, H12), (3)

for all fX1 · fX2 . Define the setH3 = {(H11, H12, H21, H22) : 1{(2)} ∩ 1{(3)} = 1}.

After information theoretic orders, we introduce some important definitions of stochastic orders,
which are the underlying tools in this paper.

Definition 3 ([15]). For given random variables X and Y, the usual stochastic order (st), the convex order (cx),
the concave order (cv), the increasing convex order (icx), the increasing concave order (icv), and the Laplace
transform order (Lt) are respectively defined as follows:

X ≤st Y, if E[ f (X)] ≤ E[ f (Y)] for all increasing f ,

X ≤cx (cv) Y, if E[ f (X)] ≤ E[ f (Y)] for all convex (concave) f ,

X ≤icx (icv) Y, if E[ f (X)] ≤ E[ f (Y)] for all increasing convex (concave) f ,

X ≤Lt Y, if E[exp(−sX)] ≥ E[exp(−sY)] for all s > 0.

Note that the stochastic orders in Definition 3 can be further represented by the following relations,
which are more easily evaluated.
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Theorem 3 ([15]). For random variables X and Y, X ≤st Y if and only if F̄X(x) ≤ F̄Y(x) for all x, and
X ≤icx Y if and only if ∫ ∞

t
F̄X(h)dh ≤

∫ ∞

t
F̄Y(h)dh (4)

for all t. Moreover, X ≤cx Y if and only if (4) is valid for all t and E[X] = E[Y]. Similarly, X ≤icv Y if and
only if

∫ t

−∞
F̄X(h)dh ≤

∫ t

−∞
F̄Y(h)dh (5)

for all t. Finally, X ≤cv Y if and only if (5) is valid for all t and E[X] = E[Y]. X ≤Lt Y if an only if∫ ∞

0
e−sh F̄X(h)dh ≤

∫ ∞

0
e−sh F̄Y(h)dh, for all s > 0. (6)

Note that when X and Y are nonnegative, the condition E[X] = E[Y] can be further expressed as∫ ∞
0 F̄X(h)dh =

∫ ∞
0 F̄Y(h)dh [22].

Compared with the original expectation, the integral form of the CCDFs, which unifies the
expression of the considered stochastic orders as functions of the CCDFs only, highly simplifies the
following derivations. The relation between the aforementioned stochastic orders can be seen from the
Venn diagram in Figure 1. By Definition 3, the constraint to be fulfilled by the Laplace transform order
is the least restrict, so pairs of random variables belong to the concave order, increasing concave order,
or the usual stochastic order, must also belong to the Laplace transform order. Note that the intersection
between the concave order and the usual stochastic order happens only when the distributions of the
two random variables are identical, which can be easily seen from the constraint E[X] = E[Y] due to
the concave order. In the following sections, we will develop our results mainly based on the usual
stochastic order and also the Laplace transform order. Due to the indirect relation to wireless channels,
we do not discuss stochastic orders such as convex/concave and increasing convex/concave orders
here. Some few discussions can be referred to [14].

  

Lt

icv
cv

st

Figure 1. Venn diagram of different stochastic orders including Laplace transform order, increasing
concave order, concave order, and usual stochastic order.

3. Main Results

In this section, we first formulate a problem to classify fading channels under which we can
characterize the capacity results when only the statistical CSIT is available. Then, we develop a general
framework in order to partly solve the formulated problem. After that, we exploit the framework to
analyze the performances of several important multi-user additive white Gaussian noises (AWGN)
channels including the interference channel, broadcast channel and an extension to channels with
multiple antennas.
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3.1. Problem Formulation

In the following, we use two simple examples to show the difficulty of the comparison in the
considered scenario. In Figure 2a, the supports of the distributions of two channels are non-overlapping.
Therefore, even though there is only statistical CSIT, we know that channel 2 (with PDF f2) is always
stronger than channel 1 (with PDF f1). In contrast, in Figure 2b, the supports of the two channel
distributions overlap. Intuitively, the transmitter is not able to distinguish the stronger channel just
based on the channel statistics. This is because, due to the overlapping part of the PDF’s, the order of
the channel realizations H1 = h1 and H2 = h2 may alter for each realization. For example, in the current
sample we may have h1 = 3.1 > h2 = 1.7 but in the next sample we may have h1 = 2.3 < h2 = 4.9.
Then for samples within a codeword length, there is no fixed order between the two channels.

  

f
1

f
1

f
2

f
2

h h

PDF PDF

(a) (b)

Figure 2. Two examples of relations between two fading channels: (a) H2 is always stronger than H1;
(b) H2 is not always stronger than H1.

We formulate the problem as finding the tuple (A, f , B) such that the capacity results in the
subset B , {H1, H2, H3} are solvable, where A is a subset of the tuples of all random channels with
a nice property, i.e., there exists a mapping f from a ∈ A to b ∈ B. Figure 3 illustrates the problem
formulation. Note that for each realization of b, the capacity region is provable.

  

All random 
fading channels

A

a

B

b

f(a)

For each realization of b, 
the capacity results are known  

Figure 3. The proposed scheme identifies the ergodic capacity regions under statistical CSIT.

3.2. The Proposed Framework

In the following, we summarize two schemes to compare channel qualities for the case in Figure 2b,
when the transmitter has only statistical CSIT. In fact, these schemes are to construct a new joint
distribution which allows us to align/re-order the realizations of different fading channels in a fixed
order, while the marginal distributions are not changed.

3.2.1. Coupling

In this method, we resort to constructing an explicit coupling such that each realization of a
channel pair follows the same trichotomy order. To proceed, we first introduce the necessary Definition
from [23].

Definition 4 ([23]). The pair (X̃, Ỹ) is a coupling of the random variables (X, Y) if X̃ =d X and Ỹ =d Y.
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Theorem 4. For a single-transmitter two-receiver AWGN channel, if A = {(H1, H2) : H1 ≤st H2}, then
there exists an equivalent channel formed by (H̃1, H̃2), where H̃1 ≤ H̃2 with probability 1.

Proof. From coupling theorem [24] we know that, H1 ≤st H2 if and only if there exist random variables
H̃1 =d H1 and H̃2 =d H2 such that H̃1 ≤ H̃2 with probability 1, where the equivalent channels H̃1

and H̃2 can be constructed by H̃1 = F−1
H1

(U) and H̃2 = F−1
H2

(U), respectively, where U ∼ Unif(0, 1).
Therefore, by construction we know that distributions of H̃1 and H̃2 fulfill the same marginal property.
In addition, the trichotomy relation H̃1 ≤ H̃2 fulfills (H̃1, H̃2) ∈ B, by construction of coupling.

Remark 3. Originally, even though we know H1 ≤st H2, the order of the channel realizations H1 = h1 and
H2 = h2 may vary over time, then we may not able to claim that one channel is stronger than the other from
the scope of a codeword length. However, from Theorem 4 we know that there exists an equivalent channel by
which we can explicitly align all the channel realizations within a codeword length such that each channel gain
realization of H1 is no worse than that of H2, if H1 ≤st H2.

3.2.2. Constructing a New Joint Distribution

In addition to the coupling scheme, we can also directly construct a joint distribution between the
fading channels. By this way, we still can align each realization of channel pair in the same trichotomy
order for all channel realizations within a codeword.

More specifically, we can design the function f by constructing a joint complementary CDF
(CCDF) as follows [10,14]:

F̄H̃1, H̃2
(h̃1, h̃2) = min{F̄H1(h̃1), F̄H2(h̃2)}, (7)

where F̄X,Y(x, y) , P(X ≥ x, Y ≥ y), from which it is clear that the marginal distributions are
unchanged, i.e., F̄H̃1

(h̃1) = F̄H̃1,H̃2
(h̃1, 0) = F̄H1(h̃1) and F̄H̃2

(h̃1) = F̄H̃1,H̃2
(0, h̃2) = F̄H̃2

(h̃2). With the
selection A = {(H1, H2) : H1 ≤st H2}, by the Definition of joint probability, we can prove that
h̃1 ≤ h̃2, ∀(H1, H2) ∈ B = f (A). In particular, assume h̃1 > h̃2 + ε, ε > 0, we can prove that

P(h̃1 ≤ H̃1, h̃2 ≤ H̃2 ≤ h̃2 + ε)

=P(h̃1 ≤ H̃1, h̃2 ≤ H̃2)− P(h̃1 ≤ H̃1, h̃2 + ε ≤ H̃2)

(a)
= F̄H̃1,H̃2

(h̃1, h̃2)− F̄H̃1,H̃2
(h̃1, h̃2 + ε)

(b)
= F̄H̃1

(h̃1)− F̄H̃1
(h̃1)

=0, (8)

where (a) follows from the Definition of the joint CCDF and (b) follows from (7) with the given
property H1 ≤st H2, which implies that F̄H̃2

(h̃2) ≥ F̄H̃2
(h̃2 + ε) ≥ F̄H̃1

(h̃2 + ε) ≥ F̄H̃1
(h̃1). To ensure

that H̃1 ≤ H̃2 for all random samples, we let ε→ 0. Thus, as long as H1 ≤st H2, we can also form an
equivalent channel that has the same marginal distribution as the original one, such that the capacity
is unchanged. Further discussion can be referred to [10,14].

Remark 4. Note that the selection of A in Theorem 4 or in Section 3.2.2 can be easily extended to cases with K
receivers by the concatenation H1 ≤st H2 ≤st · · · ≤st HK.

More discussions on the relation between the above two schemes and also the relation to
copulas [25], please refer to [26]. In the following, we will use the coupling scheme introduced
in Theorem 4 for MU channels due to its intuitive characteristics.
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4. Applications on Gaussian MU Channels with a Single Antenna at Each Node

In this section, we will use interference channels and broadcast channels as examples to show
how to apply the developed scheme. All channels in this section are assumed memoryless. All nodes
are equipped with a single antenna.

4.1. Fading Gaussian Interference Channels with No CSIT

When there is only statistical CSI at the transmitter and full CSI at the receiver, the ergodic capacity
region is unknown in general. In this section, we identify the sufficient condition to attain the capacity
region of Gaussian interference channel with very strong interferences. Practical examples illustrate
the results.

The considered received signals of a two-user fast fading Gaussian interference channel can be
stated as

Y1 =
√

H11ejΦ11 X1 +
√

H12ejΦ12 X2 + Z1 , H̃11X1 + H̃12X2 + Z1, (9)

Y2 =
√

H21ejΦ21 X1 +
√

H22ejΦ22 X2 + Z2 , H̃21X1 + H̃22X2 + Z2, (10)

where Hkj and Φkj are real-valued non-negative independent random variables denoting the absolute
square and the phase of the fading channel between the j-th transmitter to the k-th receiver, respectively,
where k, j ∈ {1, 2}. The CCDF of Hkj is denoted by F̄Hkj . The channel inputs at the transmitters 1
and 2 are denoted by X1 and X2, respectively. We consider the channel input power constraint as
E[|X1|2] ≤ P1 and E[|X2|2] ≤ P2, respectively. Noises Z1 and Z2 at the corresponding receivers are
independent circularly symmetric AWGN with zero mean and unit variance. We assume that the
transmitters only know the statistics but not the instantaneous realizations of {Hkj}. We also assume
that each receiver knows the two channels to itself. Since we consider the case with only statistical
CSIT, the channel input signals are not functions of the channel realizations. Thus, without loss of
generality, we assume {Hkj}, {Φkj}, {Xj}, and {Zk} are jointly independent.

In the following derivation, we do not exploit the commonly used standard form of GIC. This is
because that the normalization operation in the standard form results in a ratio of random variables,
whose distribution may not be easy to derive and thus hinders us on identifying all channels easily.

The ergodic capacity region of a very strong interference channel is as follows.

Theorem 5. If

A =

{
(H11, H12, H21, H22) :

H21

1 + P2H22
≥st H11 ∩

H12

1 + P1H11
≥st H22

}
, (11)

then the following gives the ergodic capacity region of a very strong GIC with no CSIT

C(P1, P2) = {(R1, R2) : R1 ≤ E[C(H11P1)], R2 ≤ E[C(H11P1)]} . (12)

Proof sketch: We first derive the ergodic capacity region of GIC with very strong interference with
no CSIT and then we derive the sufficient condition to achieve the derived capacity region.

For the first part, we can solve the optimal input distributions of GIC with no CSIT by considering

arg max
fX1 , fX2 :

E[|X1|2]≤P1,E[|X2|2]≤P2

I(X1; Y1|X2, H11, H12)+µI(X2; Y2|X1, H22, H21), (13)
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where µ ∈ R+. Note that (13) can be further expressed as

arg max
fX1 , fX2 :

E[|X1|2]≤P1,E[|X2|2]≤P2

I(X1; H11X1+Z1|H11)+µI(X2; H22X1+Z2|H22). (14)

It is clear that for each µ, (14) can be maximized by Gaussian inputs, i.e., X1 ∼ CN (0, P1) and
X2 ∼ CN (0, P2). Then the capacity region can be delineated by (12).

In the second part, from (2) we can derive

I(X1; Y2|H21 = h21, H22 = h22) = log
(

1 +
h21P1

1 + h22P2

)
. (15)

After comparing (15) and I(X1; Y1|X2, H11 = h11, H12 = h12) = log(1+ h11P1), we can find the condition

h11 ≤
h21

1 + P2h22
. (16)

Similarly, from (3) we can derive

h22 ≤
h12

1 + P1h11
. (17)

By treating H21/(1 + P2H22) and H12/(1 + P1H11) as new random variables, respectively, we can
extend (16) and (17) to the stochastic case as

H21

1 + P2H22
≥st H11, and

H12

1 + P1H11
≥st H22. (18)

Note that we can easily check that the marginal distributions are intact as shown in Theorem 2 after
applying the construction by Theorem 4, which completes the proof.

Remark 5. By the considered scenarios of very strong interference channels, we can decouple the
effect of the other user to single user capacity constraints, such that we are able to prove that Gaussian
input can optimize the capacity region.

Examples

In this subsection, we provide examples to show the scenarios that the sufficient condition in
Theorem 5 is feasible and leads to a situation which occurs in wireless communications.

Example 1: In this case, to proceed, we find the distributions of the two ratios of random variables
in (11). We can first rearrange H21/(1 + P2H22) in the ratio of quadratic form as

H21

1 + P2H22
=

HH B1H
1 + P2HH B2H

, Z, (19)

where H , [
√

Hw,21
√

Hw,22]
T , H21 , σ2

21Hw,21, H22 , σ2
22Hw,22, Hw,21 ∼ N(0, 1), Hw,22 ∼ N(0, 1),

Hw,21 is independent to Hw,22, B1 , diag{[σ2
21, 0]} and B2 , diag{[0, σ2

21]}. From [27] we know that
the CDF of the RHS of (19) can be calculated by the following

FZ(t)
(a)
= u(t)− Σ2

i=1
λ2

i
Πl 6=i(λi − λl)

1
|λi|

e
−t
λi u
(

t
λi

)
(b)
= u(t)− 1

σ2
21 + tP2σ2

22

(
e
−t
σ2

21 u

(
t

σ2
21

)
+e

1
P2σ2

22 u

(
−1

P2σ2
22

))
, (20)
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where in (a), u(t) is the unit step function, {λi} are the eigenvalues of B1 − tP2B2, i.e.,
{λi} = {σ2

21, −tP2σ2
22}; in (b) we substitute the eigenvalues into the RHS of (a). Then we evaluate

the first constraint in (11) by checking the difference of CCDFs of Z and H11, i.e., 1− FZ(t) − e
−t
σ2

11

numerically. In the comparison, we fix the variances of the cross channels as c , σ2
12 = σ2

21 = 1
and the transmit powers P , P1 = P2 = 1, and scan the variances of the dedicated channels
by a , σ2

11 = σ2
22 = 0.1, 0.3, 0.5 and 0.7. Since the conditions in (11) are symmetric and the

considered settings are symmetric, once the first condition in (11) is valid, the second one will be
automatically valid. The results are shown in Figure 4, from which we can observe that when a
increases, the difference of the CCDFs decreases. This is because the support of the CCDF of H11

increases with increasing a and in the considered case when a = 0.7, the distribution of H11 concentrates
on larger channel values than H21/(1 + P2H22), which reflects that the CCDFs that, H11 has higher
CCDF than H21/(1 + P2H22) at lower channel values, which violates (11). In contrast, the values
a = 0.1, 0.3 and 0.5 satisfy (11).

0 1 2 3 4 5 6 7
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H

1
−

F
Z
(t
)
−

e−
t/

σ
2 1
1

c=1, P=1

a = 0.1, 0.3, 0.5, 0.7

Very strong GIC

Figure 4. Identification of (11) under different variances of the dedicated channels with c = 1 and
P1 = P2 = 1.

4.2. Fading Gaussian Broadcast Channels with No CSIT

4.2.1. Preliminaries and Results

If a 2-receiver BC is degraded, we know that the capacity region [9] is the union, over all U, X
satisfying the Markov chain U − X−Y1Y2 of rate pairs (R1, R2) such that{

R1 ≤ I(X; Y1|U),
R2 ≤ I(U; Y2),

for some p(u, x), where the cardinality of the auxiliary random variable U satisfies
|U | ≤ min{|X |, |Y1|, |Y2|} + 1. In contrast, for non-degraded BC, only the inner [28] and outer
bounds [29] are known. Therefore it is much easier to characterize the performance of a BC if we can
identify its degradedness.

The capacity region of a Gaussian BC (GBC) is known for both cases with fixed and fading
channels when there are perfect CSIT and CSIR. For multiple antennas GBC with perfect CSIT and
CSIR, Ref. [30] invented the channel enhancement technique to form the degradedness and it is proved
that Gaussian input is optimal. Immense endeavors have been made to find the optimal input
covariance matrix of the Gaussian input, e.g., [31–33]. However, the problem is open in general when
there is imperfect CSIT and only limited cases are known [10]. The fading BC with only perfect CSIR
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but imperfect CSIT lacks the degraded structure in general for arbitrary fading distributions, which
makes it a challenging problem. In particular, the order of channel realizations to different receivers in
fast fading broadcast channels vary within a codeword length. Therefore, intuitively we are not able to
compare the channels as in full CSIT cases to identify the degradedness.

We assume that there is full CSIR such that the receivers can compensate the phase rotation of
their own channels, respectively, without changing the capacity to form real channels. Therefore,
the signal of receiver k of the considered L-receiver fast fading Gaussian broadcast channel can be
equivalently stated as

Yk =
√

HkX + Zk, k = 1 · · · L, (21)

where X is the channel input, Hk is a real-valued non-negative independent random variable denoting
the square of receiver k’s fading channel with CCDF F̄Hk . We consider the channel input power
constraint as E[X2] ≤ PT . The noises {Zk} at the corresponding receivers are independent AWGN
with zero mean and unit variance. We assume that the transmitter only knows the statistics but not the
instantaneous realizations of {Hk}.

The following result can be specialized from Remark 4.

Corollary 1. If A = {H1 ≥st H2 ≥st · · · ≥st HL}, then it is a degraded Gaussian broadcast channel.

Remark 6. An important note is that degradedness does not guarantee the optimality of fading GBC’s with no
CSIT. In [34] it is shown that with statistical CSIT, Gaussian is not optimal in general, by local perturbation of
Gaussian channel input.

Now we can further generalize Corollary 1 to the case in which fading channels are formed by
clusters of scatterers. In particular, we consider the case in which we are only provided the information
of each cluster but not the superimposed result as

√
Hk in (21). Therefore, phases of channels of each

cluster should be taken into account, i.e., we consider the k-th clusters of the first and second users as
H̃1k = H̃1k,Re + i · H̃1k,Im =

√
H1ke−iφ1k and H̃2k = H̃2k,Re + i · H̃2k,Im =

√
H2ke−iφ2k , respectively.

The received signals at receivers 1 and 2 for M clusters are respectively expressed as

Y1 =
M

∑
k=1

H̃1,kX + Z1,

Y2 =
M

∑
k=1

H̃2,kX + Z2.

Corollary 2. Let M be the number of clusters of scatterers for both users 1 and 2, and denote the channels of users
1’s and 2’s kth clusters as H̃1k and H̃2k, respectively, where k = 1, · · · , M. The broadcast channel is degraded if
user 1’s scatterers are stronger than those of user 2’s in the sense that H̃π1k ,Re H̃π1j ,Re ≥st H̃π2k ,ReH̃π2j ,Re, and
H̃π1k ,Im H̃π1j ,Im ≥st H̃π2k ,Im H̃π2j ,Im, ∀k, j ∈ {1, · · · , M}, for some permutation π1 and π2 of users 1’s and
2’s clusters.

The condition of the number of clusters of channels 1 and 2 in Corollary 2 can be relaxed to two
non-negative integer-valued random variables N and M, respectively, and the degradedness among
the two channels is still valid, if |∑N

k=1 H̃1k|2 ≥st |∑M
k=1 H̃2k|2 and if N ≥st M, which can be proved

with the aid of Theorem 1.A.4 in [15].
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4.2.2. Example

Assume the magnitudes of a three-receiver GBC are independent Nakagami-m random variables
with shape parameters m1, m2, and m3, and spread parameters w1, w2, and w3, respectively. From
Corollary 1 we know that the broadcast channel is degraded if

γ
(

m1, m1x
w1

)
Γ(m1)

≥
γ
(

m2, m2x
w2

)
Γ(m2)

≥
γ
(

m3, m3x
w3

)
Γ(m3)

, ∀x,

where γ(s, x) =
∫ x

0 ts−1e−tdt is the incomplete gamma function and Γ(s) =
∫ ∞

0 ts−1e−tdt is the
ordinary gamma function [35]. An example satisfying the above inequality is (m1, w1) = (1, 3),
(m2, w2) = (1, 2) and (m3, w3) = (0.5, 1).

Remark 7. The developed scheme for the MU channels can be easily extended to those with secrecy constraint
from physical layer security. For example, wiretap channels (WTC) [36], broadcast channels with confidential
messages (BCCM) [37], interference channels with secrecy constraint, etc. Compared to the discussion in
Remark 1, the main difference to systems with secrecy constraint is that, here, we need to additionally check the
validity of the same marginal property for related terms in the secrecy constraint, e.g., the strong or weak secrecy
constraints, i.e., H(Wi|Yj) or 1

n H(Wi|Yj), i 6= j. More specifically, by Definition of the conditional entropy,
we can easily observe that these entropies only depend on pWi ,Yj , i 6= j, but not depend on pWi ,Yi , Yj . Therefore,
only marginal distributions affect the performances of channels with the additional secrecy constraint. So the
developed scheme works for these cases.

Remark 8. Note that for either GBC, GWTC, or GBC-CM, we can also use the developed scheme to check the
degradedness. However, the degradedness for characterizing the performances GWTC and GBC-CM are used in
a converse way. For a degraded GWTC, we can identify that Gaussian input is optimal and also the non-zero
secrecy capacity. In contrast, for a two-user GBC-CM if it is degraded, then one received signal is always weaker
than the other one. This means that the secrecy capacity region will degenerate to the secrecy capacity, i.e., the
secrecy capacity region does not exist. It is because, for GBC-CM, both receivers are legitimate receivers as well
as the eavesdroppers, simultaneously. Therefore, the degraded cases of GBC-CM should be avoided.

5. Extension to Multiple Antenna Cases

In this section we consider multiple-antenna at both channel input and output. We assume all
nodes are equipped with the same number of antennas nT . In the following we discuss cases with
only one transmitter, e.g., GBC, GWTC, etc. The results can be easily extended to cases with multiple
transmitters. Again the signals at receivers 1 and 2 can be respectively expressed as

Y1 = H1X + Z1, (22)

Y2 = H2X + Z2, (23)

where Z1 ∼ CN(0, InT ) and Z2 ∼ CN(0, InT ), H1 and H2 ∈ CnT×nT with entries varying over each
code symbol. For the (fading) multiple-antenna cases, the description of the channels is by (random)
matrices. How to order random matrices or which part of the matrices to be ordered is critical to
be clarified. In the following we provide two methods to deal with this problem, including the
aforementioned coupling scheme and the channel enhancement scheme.

5.1. Alignment by Usual Stochastic Order

From random matrix theory we know that the probability of a random matrix to be full rank
approaches 1. In addition to the assumption of full channel state information at the receiver (CSIR),
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we can construct an alternative channel which is full rank and does not change the capacity [1] by
normalizing (22) and (23) equivalently as

Y ′1 = X + Z′1, (24)

Y ′2 = X + Z′2, (25)

where Z′1 ∼ CN(0, A) and Z′2 ∼ CN(0, B), A , H−1
1 H−H

1 , B , H−1
2 H−H

2 . For full CSIT and full
CSIR cases, to make the Markov chain X → Y ′1 → Y ′2 valid, i.e., to obtain a (stochastically) degraded
wiretap channel, the constraint B− A < 0 is sufficient (The reason that it is not necessary is, we may
be able to use the channel enhancement scheme to obtain a degraded channel with B � A). In the
considered scenario we have full CSIR but only statistical CSIT. So we aim to construct an equivalent
degraded channel by showing P(B − A < 0) = 1 according to the coupling. In the following we
will find the relation of the degradedness and the stochastic order among the eigenvalues of A and
B. Note that in [15] the usual stochastic order in a vector (but not matrix) version is considered,
where in the expression of vec(B) ≤st vec(A), the inequality is element-wise, i.e., b′i ≤ a′i, ∀ i, for
P(vec(B′) ≤ vec(A′)) = 1. However, we can not directly apply the multivariate usual stochastic order
to our scenario. This is because that it will not guarantee the positive definiteness of B− A, which is
required for the degradedness. Instead, it is sufficient to check the stochastic order of the eigenvalues
of A− B, namely, ΛB ≥st ΛA, to attain the existence of A′ and B′ in an equivalent channel, such that
P(B′ − A′ < 0) = 1 after using coupling.

We first transform B′ − A′ < 0 into a form that we can simply connect it to the eigenvalues with
the aid of the following lemmas.

Lemma 1 ([38]). Let Y � 0 and Hermitian, and X < 0 and Hermitian. Y − X < 0 if and only if the
eigenvalues of XY−1 all satisfy λi ≤ 1.

We then use the following Lemma to connect the eigenvalues of XY−1 to those of X and Y .

Lemma 2 ([39]). If X and Y are n× n positive semidefinite Hermitian matrices, then

λmax(XY) ≤ λmax(X)λmax(Y). (26)

Then from Lemmas 1 and 2 we can derive the following theorem.

Theorem 6. A sufficient condition to have a degraded multiple-antenna channel X − Y ′1 − Y ′2 is

λmin(H1HH
1 ) ≥st λmax(H2HH

2 ). (27)

Remark 9. To have a degraded channel, (27) is a strict condition to satisfy. The reasons are (1) the condition
A 4 B may not be necessary for the existence of a degraded channel. More specifically, for the full CSIT case, for
arbitrary covariance matrices A and B, Ref. [1] proves that such channel can be transformed into a degraded one
by the channel enhancement technique; (2) the usual stochastic ordering is sufficient but may not necessary,
which can be seen from the SISOSE case [14].

Remark 10. Note that the fast fading channel with only statistical CSIT can be verified as a degraded one,
if, there exists A′ and B′ such that A′ < B′ for each channel realization, where A′ and B′ are the covariance
matrices of the equivalent noises at receivers 1 and 2. Then by Proposition 1 in [40] we know that solving the
optimal input covariance matrix for a GWTC is a convex problem. For full CSIT cases we can use convex
optimization tools to solve it numerically or some partial analytical results can be seen in [40,41], etc.
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In the following, we show a sufficient condition for channels with additional assumptions to
have a degraded channel. Note that due to the additional assumptions, we can derive a less stringent
sufficient condition than that in Theorem 6.

Theorem 7. Let U1D1V H
1 and U2D2V H

2 be the singular value decompositions of H1 and H2, respectively.
Assume that V1 is independent to D1 and U1, and V2 is independent to D2 and U2. Also assume that V H

1 and
V H

2 have the same distribution. If D1 ≥st D2, then there exists an equivalently degraded channel.

Proof. To proceed, we form a new 1st user’s channel as H ′1 = U1D1V H
2 . We can check that the PDF of

H ′1 is the same as that of H1 by the following

fH ′1
= fU1D1V H

2

(a)
= fU1D1V H

1

(b)
= fH1 , (28)

where (a) is due to the following. To calculate the distributions of U1D1V H
2 and U1D1V H

1 , only the joint
distributions fU1,D1,V H

2
and fU1,D1,V H

1
are needed. With the assumptions that V1 and V2 are independent

to D1 and U1, we can further have fU1,D1,V H
1

= fU1,D1 fV H
1

and fU1,D1,V H
2

= fU1,D1 fV H
2

. Since V H
2 and

V H
1 have the same PDF, i.e., fV H

2
= fV H

1
, we know that fU1,D1,V H

2
= fU1,D1,V H

1
. (b) is by Definition of H1.

By (28) and the same marginal property, we know that this new channel with H ′1 being the new 1st
user’s channel has the same ergodic secrecy capacity as that with H1. Then following the same steps in
Theorem 6, we can complete the proof.

Remark 11. Channel matrices with i.i.d. Gaussian entries are valid for the requirement in Theorem 7, i.e., V1 is
independent to D1 and U1. In particular, we can apply the LQ decomposition (LQD) on those channel matrices
to get the right singular vector V1 and V2 which are the Q matrices of the LQD and are independent of the L
matrix [42]. In addition, the random matrix Q follows the isotropic distribution (i.d.) with PDF [43]

f (Q) =
ΠnT

k=1Γ(k)

π
nT (nT+1)

2

δ(QHQ− InT ), (29)

where Γ is the gamma function and δ is the delta function.

In the following, we consider another condition on channel matrices with a special structure.
We can prove that if the channels can be decomposed into i.d. unitary matrices, the channel is
equivalent to a degraded one.

Theorem 8. Let H ′1 = Σ1/2
1 H1, H ′2 = Σ1/2

2 H2. If H1 and H2 are i.d. and Σ1 � Σ2 � 0, then (H ′1, H ′2) is
equivalent to a degraded channel.

Proof. We can form an equivalent channel as

Y ′1 = H1X + Z′1,

Y ′2 = H2X + Z′2,

where Z′1 ∼ CN(0, Σ−1
1 ) and Z′2 ∼ CN(0, Σ−1

2 ). After applying the eigenvalue decomposition, the
covariance matrices of Z′1 and Z′2 can be expressed as U1D1UH

1 and U2D2UH
2 , respectively, with

D2 � D1, by the monotonicity theorem (Theorem 8.4.9 in [44]). Now let Z′′2 ∼ N(0, U2(D2 − D1)UH
2 )

which is independent of Z′1 and Z′2. We can form another equivalent channel at Eve as
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Ỹ2 , U2UH
1 Y ′1 + Z′′2

(a)
= U2UH

1 H1X + U2D1/2
1 W + Z′′2

(b)
= U2UH

1 H1X + Z′′′2 ,

where in (a) W ∼ N(0, InT ) and in (b) Z′′′2 ∼ N(0, U2D2UH
2 ), which has the same distribution as

that of Z′2. From the above it is clear that Ỹ2 is stochastically degraded of Y ′1. Since H1 is i.d., we
know U2UH

1 H1 and H1 have the same distribution. In addition, since H1 and H2 are i.d., we have
fỸ2|X = fY2|X . By same marginal property, we know that the equivalent channel Ỹ2 has the same
capacity as the original one. Thus, we conclude that the original channel is equivalent to a degraded
one with the same secrecy capacity.

Remark 12. The constraint Σ1 � Σ2 in Theorem 8 may be relaxed to Σ1 � Σ2 by the deterministic channel
enhancement, which will be shown in the next sub-section.

5.2. Alignment by Channel Enhancement

In this section, we discuss how to apply the channel enhancement argument [30], which is
originally designed for channels with full CSIT, to the considered model where there is only statistical
CSIT and the channels are fast faded.

The channel enhancement technique, invented in [30], is a critical technique to prove that Gaussian
input is optimal for MIMO Gaussian BC. Later [1] applies this technique to wiretap channels. However,
there are major differences on the use of channel enhancement. In MIMO GBC, every sub-channel from
the transmitter to each receiver is enhanced by reducing the corresponding noise covariance. In GWTC,
however, only those Bob’s sub-channels weaker than those of Eve are enhanced to be the same as Eve’s.
Therefore, an equivalently degraded WTC can be formed. For more detailed discussions please see [1].
Note that in both [1,30], perfect CSIT are required.

For fading channels which are not isotropically distributed, we use the following example to
show that it is still possible to use channel enhancement to attain the capacity region/secrecy capacity.

Example 2: For the received signals

Y1 = HΣ1/2
1 X + Z1, (30)

Y2 = HΣ1/2
2 X + Z2, (31)

assume that the fading channel H has realizations {H0, {AH0} : A ∈ U(n2)}, where U(n) is the
unitary group with degree n. Then it can be easily seen that we can apply the channel enhancement
to the pair of channel realizations (H0Σ1/2

1 , H0Σ1/2
2 ) to achieve the capacity region/secrecy capacity.

A simple way to see it is that the receivers know A and multiplying Y1 and Y2 by unitary A does not
change the capacity.

Following similar steps in Example 2, we can easily see that if the channels are respectively
modeled as Σ1/2

1 H and Σ1/2
2 H, channel enhancement can still work.

6. Other Stochastic Orders

In this section, we show an application of the Laplace transform order introduced in Definition 3 on
solving the resource allocation problem for channels with multiple antennas to attain the capacity result.
We consider the wiretap channel as an example. Note that the secrecy capacity of a multiple-antenna
Gaussian WTC is a difference of two concave functions with respect to the channel input covariance
matrix. Under perfect CSIT assumption, in [45] the authors proved that the maximum secrecy capacity
coincides with the saddle point of a min-max problem, which is by considering a Sato-type outer
bound setting, i.e., Bob additionally knows what Eve knows, in addition to an additional parameter,
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i.e., a correlation matrix between the noises at Bob and Eve. Based on the min-max description, [40]
then developed an algorithm to numerically solve this problem. An analytical solution is still unknown.
In contrast, with statistical CSIT, optimal input distribution is open in general. In the following, we will
review the result [13] that under i.i.d. Rayleigh fading, the Laplace transform order combined with
completely monotone can help us to prove that uniform power allocation is optimal for multiple-input
single-output singe-antenna at eavesdropper GWTC with statistical CSIT of both the legitimate and
eavesdropper’s channels.

First of all, we want to find the optimal input covariance matrix Σx by solving:

arg max
Σx

Cs = arg max
Σx

Eg

log

σ2
g

σ2
h
+ gHΣxg

σ2
g

σ2
h

−Eg [log(1 + gHΣxg)]

 . (32)

After the derivation in [13] we can transform (32) into the following power allocation problem

max
D
Eg

[
log
(

a + gH D∗g
)]
−Eg

[
log
(

1 + gH D∗g
)]

, (33)

where we denote σ2
g /σ2

h by a, which belongs to [0, 1) since we only need to consider the case where
σh > σg . From Section V in [46], the optimal power allocation D satisfies Tr(D) = P. Then for any
D = [d1, d2, · · · , dNT ] where ∑NT

i=1 di = P and di ≥ 0, ∀i. Here we introduce some results from the
stochastic ordering theory [15] to proceed.

Definition 5 ([15]). A function ψ(x) : [0, ∞)→ R is completely monotone if for all x > 0 and n = 0, 1, 2, · · · ,
its derivative ψ(n) exists and (−1)nψ(n)(x) ≥ 0.

Lemma 3 ([15]). Let B1 and B2 be two nonnegative random variables. If B1 ≤LT B2 then
E[ f (B1)] ≤ E[ f (B2)], where the first derivative of a differentiable function f on [0, ∞) is completely monotone,
provided that the expectations exist.

To solve (33), we let B1 = gH Dg, B2 = gH D∗g, and f (x) = log(a + x)− log(1 + x) to invoke
Lemma 3. It can be easily verified that ψ(x), defined as the first derivative of f (x), is completely
monotone by checking Definition 5. More specifically, the n-th derivative of ψ meets

ψ(n)(x) =

{ n!
(a+x)n+1 − n!

(1+x)n+1 > 0, if n is even,
−n!

(a+x)n+1 +
n!

(1+x)n+1 < 0, if n is odd,
(34)

when x > 0, since a ∈ [0, 1). Now from Lemma 3 and Definition 3, we know that to prove (33) is
equivalent to proving E[e−sB1 ] ≥ E[e−sB2 ] or

log
(
E[e−sB1 ]

E[e−sB2 ]

)
≥ 0, ∀s > 0.

From [47], we know that

log
(
E[e−sB1 ]

E[e−sB2 ]

)
=

NT

∑
k=1

log(1 + σ2
g d∗k s)−

NT

∑
k=1

log(1 + σ2
g dks). (35)
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To show that the above is nonnegative, we resort to the majorization theory. Note that
∑NT

k=1 log(1 + σ2
g ďks) is a Schur-concave function [39] in (ď1, . . . , ďNT ), ∀s > 0, and by Definition

of majorization [39],

(d∗1 , · · · , d∗NT
) , (P/NT , P/NT , · · · , P/NT)

≺ (d1, d2, · · · dNT ), (36)

where b ≺ a means that b is majorized by a. Thus, from [39], we know that the RHS of (35) is
nonnegative, ∀s > 0. Then (33) is valid, and D∗ is optimal. Note that D∗ is also the optimal input
covariance matrix Σx since the optimal beamformer U can be selected as I.

7. Conclusions

In this paper, we investigated the ergodic capacity results of the fast fading Gaussian memoryless
multiuser channels when only the statistics of the channel state information are known at the
transmitter. To achieve this goal, we resorted to classifying the random channels through their
probability distributions, by which we are able to attain the capacity results. In particular, we derived
sufficient conditions to attain some information theoretic channel orders such as degraded and very
strong interference by combining the usual stochastic order and the same marginal property, such
that the capacity regions can be simply characterized, which include Gaussian interference channels
and Gaussian broadcast. An extension of the framework to channels with multiple-antenna was also
considered. Practical examples illustrated the application of the derived results.
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