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Abstract: The divergence function in information geometry, and the discrete Lagrangian in discrete
geometric mechanics each induce a differential geometric structure on the product manifold Q×Q.
We aim to investigate the relationship between these two objects, and the fundamental role that
duality, in the form of Legendre transforms, plays in both fields. By establishing an analogy between
these two approaches, we will show how a fruitful cross-fertilization of techniques may arise from
switching formulations based on the cotangent bundle T∗Q (as in geometric mechanics) and the
tangent bundle TQ (as in information geometry). In particular, we establish, through variational
error analysis, that the divergence function agrees with the exact discrete Lagrangian up to third
order if and only if Q is a Hessian manifold.
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1. Introduction

Information geometry and geometric mechanics each induce geometric structures on an arbitrary
manifold Q, and we investigate the relationship between these two approaches. More specifically,
we study the interaction of three objects: TQ, the tangent bundle on which a Lagrangian function
L(q, v) is defined; T∗Q, the cotangent bundle on which a Hamiltonian function H(q, v) is defined;
and Q×Q, the product manifold on which the divergence function (from the information geometric
perspective) or the Type I generating function (from the geometric mechanics perspective) is defined.
In discrete mechanics, while the Q×Q←→ T∗Q correspondence is via a symplectomorphism given by
the time-h flow map associated with the Hamiltonian H(q, p), and the Q×Q←→ TQ correspondence
is via the map relating the boundary-value and initial-value formulation of the Euler–Lagrange flow,
it is the correspondence between TQ ←→ T∗Q through the fiberwise Legendre map based on L or
H that actually serves to couple the Hamiltonian flow with Lagrangian flow, leading to one and the
same dynamics. We propose a decoupling of the Lagrangian and Hamiltonian dynamics through the
use of a divergence function D(q, v, p) defined on the Pontryagin bundle TQ⊕ T∗Q that measures the
discrepancy (or duality gap) between H(q, p) and L(q, v). We also establish, through variational error
analysis that the divergence function agrees with exact discrete Lagrangian up to third order if and
only if Q is a Hessian manifold.

Geometric mechanics [1] investigates the equations of motion using the Lagrangian, Hamiltonian,
and Hamilton–Jacobi formulations of classical Newtonian mechanics. Two apparently different
principles were used in those formulations: the principle of conservation (energy, momentum, etc.)
leading to Hamiltonian dynamics and the principle of variation (least action) leading to Lagrangian
dynamics. The conservation properties of the Hamiltonian approach are with respect to the underlying
symplectic geometry on the cotangent bundle, whereas the variational principles that result in the
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Euler–Lagrange equation of motions and the Hamilton–Jacobi equations reflect the geometry of the
semispray on the tangent bundle. Lagrangian and Hamiltonian mechanics reflect two sides of the
same coin–that they describe the identical dynamics on the configuration space (base manifold) is both
remarkable and also to be expected due to their construction: because the Lagrangian and Hamiltonian
are dual to each other, and related via the Legendre transform.

Information geometry [2,3] in the broadest sense of the term, provides a dualistic Riemannian
geometric structure that is induced by a class of functions called divergence functions, which essentially
provide a method of smoothly measuring a directed distance between any two points on the
manifold, where the manifold is the space of probability densities. It arises in various branches of
information science, including statistical inference, machine learning, neural computation, information
theory, optimization and control, etc. Various geometric structures can be induced from divergence
functions, including metric, affine connection, symplectic structure, etc., and this is reviewed in [4].
Convex duality and the Legendre transform play a key role in both constructing the divergence
function and characterizing the various dualities encoded by information geometry [5,6].

Given that geometric mechanics and information geometry both prescribe dualistic geometric
structures on a manifold, it is interesting to explore the extent to which these two frameworks are
related. In geometric mechanics, the Legendre transform provides a link between the Hamiltonian
function that is defined on the cotangent bundle T∗Q, with the Lagrangian function that is defined on
the tangent bundle TQ, whereas in information geometry, it provides a link between the biorthogonal
coordinates of the base manifold Q if it is dually-flat and exhibits the Hessian geometry. To understand
their deep relationship, it turns out that we need to resort to the discrete formulation of geometric
mechanics, and investigate the product manifold Q × Q. The basic tenet of discrete geometric
mechanics is to preserve the fact that Hamiltonian flow is a symplectomorphism, and construct
discrete time maps that are symplectic. This results in two ways of viewing discrete-time mechanics,
either as maps on Q×Q or T∗Q, which are related via discrete Legendre transforms. The shift in focus
from T∗Q to Q×Q precisely lends itself to establishing a connection to information geometry, as the
divergence function is naturally defined on Q× Q, and in both information geometry and discrete
geometric mechanics, induces a symplectic structure on Q × Q. This is the basic observation that
connects geometric mechanics and information geometry, and we will explore the implications of this
connection in the paper.

Our paper is organized as follows. Section 2 provides a contemporary viewpoint of geometric
mechanics, with Lagrangian and Hamiltonian systems discussed in parallel with one another, in terms
of geometry on TQ and T∗Q, respectively, including a discussion of Dirac mechanics on the Pontryagin
bundle TQ⊕ T∗Q, which provides a unified treatment of Lagrangian and Hamiltonian mechanics.
Section 3 summarizes the results of the discrete formulation of geometric mechanics, which is naturally
defined on the product manifold Q×Q. Section 4 is a review of now-classical information geometry,
including the Riemannian metric and affine connections on TQ, and the manner in which the
divergence function naturally induces dualistic Riemannian structures. The special cases of Hessian
geometry and biorthogonal coordinates are highlighted, showing how the Legendre transform is
essential for characterizing dually-flat spaces. Section 5 starts with a presentation of the symplectic
structure on Q× Q induced by a divergence function, which is naturally identified with the Type I
generating function on it. We follow up by investigating its transformation into a Type II generating
function (which plays a key role in discrete Hamiltonian mechanics). We then propose to decouple
the discrete Hamiltonian and Lagrangian dynamics by using the divergence function to measure
their duality gap. Finally, we perform variational error analysis to show that on a dually-flat Hessian
manifold, the Bregman divergence is third-order accurate with respect to the exact discrete Lagrangian.
Section 6 closes with a summary and discussion.
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2. A Review of Geometric Mechanics

Consider an n-dimensional configuration manifold Q, with local coordinates (q1, . . . , qn).
The Lagrangian formulation of mechanics is defined on the tangent bundle TQ, in terms of
a Lagrangian L : TQ→ R. From this, one can construct an action integral S which is a functional of
the curve q : [t1, t2]→ Q, given by

S(q) =
∫ t2

t1

L(q(t), q̇(t)) dt.

Then, Hamilton’s variational principle states that,

δS(q) = 0, (1)

where the variation δS is induced by an infinitesimal variation δq of the trajectory q, subject to the
condition that the variations vanish at the endpoints, i.e., δq(t1) = δq(t2) = 0. Applying standard
results from the calculus of variations, we obtain the following Euler–Lagrange equations of motion,

d
dt

∂L
∂q̇i −

∂L
∂qi = 0. (2)

The Hamiltonian formulation of mechanics is defined on the cotangent bundle T∗Q, and the
fiberwise Legendre transform, FL : TQ→ T∗Q, relates the tangent bundle and the cotangent bundle
as follows,

(qi, q̇i) 7→ (qi, pi) =

(
qi,

∂L
∂q̇i

)
,

where pi is the conjugate momentum to qi:

p =
∂L
∂q̇

. (3)

The term fiberwise is used to emphasize the fact that FL establishes a pointwise correspondence
between TqQ and T∗q Q for any point q on Q. The cotangent bundle forms the phase space, on which one
can define a Hamiltonian H : T∗Q→ R,

H(q, p) = 〈p, q̇(q, p)〉 − L(q, q̇(q, p)),

where q̇ is viewed as a function of (q, p) by inverting the Legendre transform (3), and

〈p, v〉q = ∑
i

pivi

denotes the duality or natural pairing between a vector v and covector p at the point q ∈ Q.
A straightforward calculation shows that

∂H
∂pi

= q̇i , (4)

and
∂H
∂qi = − ∂L

∂qi .

From these, we transform the Euler–Lagrange equations into Hamilton’s equations,

dqi

dt
=

∂H
∂pi

,
dpi
dt

= −∂H
∂qi . (5)
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The canonical symplectic form ωcan on T∗M can be identified with a quadratic form induced by
the skew-symmetric matrix J, i.e., ωcan(v, w) = vT Jw. With that identification, Hamilton’s equations
can be expressed as, [

q̇
ṗ

]
=

[
0 I
−I 0

] [
∂H
∂q
∂H
∂p

]
= J

[
∂H
∂q
∂H
∂p

]
.

Alternatively, Hamilton’s equations (5) can be derived using Hamilton’s phase space variational
principle, which states that,

δ
∫ t2

t1

[〈p, q̇〉 − H(q, p)] dt = 0,

for infinitesimal variations δq that vanish at the endpoints. The infinitesimal variation of the integral
is computed by differentiating under the integral, integrating by parts, and using the fact that the
infinitesimal variations δq vanish at the endpoints, which yields:

∫ t2

t1

(
〈δp, q̇〉+ 〈p, δq̇〉 − ∂H

∂q
δq− ∂H

∂p
δp
)

dt =
∫ t2

t1

[(
− ṗ− ∂H

∂q

)
δq +

(
q̇− ∂H

∂p

)
δp
]

dt,

and by the fundamental theorem of the calculus of variations, which states that the integral is stationary
only when the terms in the parentheses multiplying into the independent variations δq and δp vanish,
we recover Hamilton’s equations (5).

Lagrangian and Hamiltonian mechanics are typically viewed as different representations of the
same dynamical system, with the Legendre transform relating the two formulations. Here, the Legendre
transform FL (with FH as its inverse) refers to both the map relating two sets of variables, (q, q̇) with
(q, p), as well as the relationship between two functions, the Lagrangian L(q, q̇) and the Hamiltonian
H(q, p). The Legendre transform links pairs of convex conjugate functions; in classical mechanics,
the Lagrangian L and Hamiltonian H are always related in this sense of forming a convex pair.
The requirement that L(q, q̇) be strictly convex in the variable q̇ is referred to as hyperregularity. When the
Lagrangian is positive homogeneous (or singular), the Legendre transform yields a Hamiltonian
function that is identically zero, which means that in such cases, the Hamiltonian analogue of the
Lagrangian system does not exist, which is problematic in the context of analytic mechanics. In order
to address such degeneracy, it is necessary to consider Dirac mechanics on Dirac manifolds, which is a
simultaneous generalization of Lagrangian and Hamiltonian mechanics.

In geometric mechanics, including the contemporaneous Dirac formulation, the Lagrangian L
and Hamiltonian H are always coupled via the fiberwise Legendre transform FL. In information
geometry, it is a well-known fact that one can construct the divergence function (to be defined later),
which captures the departure from such perfect coupling. In other words, we can view Lagrangian and
Hamiltonian systems as two separate systems, which are endowed with their own dynamics and are in
some sense dual to each other, and we then use the divergence function to measure their duality gap.
For this reason, we will review the Lagrangian and Hamiltonian formulation of mechanics in terms
of L(q, q̇) and H(q, p), respectively, without necessarily assuming that the Lagrangian and Hamiltonian are
related by the Legendre transform.

2.1. Lagrangian Mechanics as an Extremization System on TQ

As noted previously, the Euler–Lagrange equations (2) arise from the stationarity conditions that
describe the extremal curves of the action integral, over the class of varied curves that fix the endpoints.
Carrying out the differentiation in (2) explicitly yields,

∑
j

∂2L
∂vi∂vj

dvj

dt
+∑

j
vj ∂2L

∂qj∂vi −
∂L
∂qi = 0. (6)
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The fundamental tensor gij associated with the Lagrangian L(q, v) is given by,

gij(q, v) =
∂2L(q, v)

∂vi∂vj ,

which is assumed to be positive-definite, i.e., the Lagrangian L is hyperregular. Let gil denote the
matrix inverse of gij, then (6) can be written as

d2qi

dt2 + 2Gi
(

q,
dq
dt

)
= 0, (7)

where

Gi(q, v) = ∑
l

gil

2

(
∑
k

∂2L
∂qk∂vl vk − ∂L

∂ql

)
.

So, Equation (7) with the above Gi are Euler–Lagrange equations in disguise, and its solution is
an extremal curve of the action integral.

Recall that a smooth curve on Q can be lifted to a curve on TQ in a natural way: a curve
t 7→ q(t) ∈ Q becomes t 7→ (q(t), q̇(t)) ∈ TQ. Given an arbitrary Gi(q, v), the system of equations (7)
specify a family of curves, called a semispray. As seen above, semisprays arise naturally in variational
calculus as extremal curves of the action integral associated with a Lagrangian.

Semisprays can be more generally described by a vector field. Recall that a vector field on Q is
a section of TQ. Now, consider a vector field on the tangent bundle TQ; it is a section of the double
tangent bundle T(TQ). The integral surfaces of the semispray induces a decomposition of the total
space T(TQ) into the horizontal subspace H(TQ) and the vertical subspace V(TQ), which defines
an Ehresmann connection. A vector on TQ encodes the second-order derivative of curves on Q,
and a semispray defines the following vector field V on TQ:

V(q, v) = ∑
i

(
vi ∂

∂qi

∣∣∣∣
(q,v)
− 2Gi(q, v)

∂

∂vi

∣∣∣∣
(q,v)

)
,

where the factor −2 is there by convention. The integral curve of the semispray satisfies the second-order
ordinary differential equation (7), and we say that a semispray is a vector field on the tangent bundle TQ
which encodes a second-order system of differential equations on the base manifold Q.

A semispray is called a full spray if the spray coefficients Gi satisfy

Gi(q, λv) = λ2Gi(q, v),

for λ > 0. In this case, the integral curve remains invariant under reparameterization by a positive
number, i.e., it satisfies homogeneity. When the semispray becomes a (full) spray, the Lagrange
geometry becomes Finsler geometry, and the fundamental tensor gij(q, v) becomes the Finsler–Riemann
metric tensor (which includes the Riemann metric as a special case).

As noted above, a semispray induces an Ehresmann connection on Q and this connection is
torsion-free and typically nonlinear. Conversely, given a torsion-free connection, one can construct
a semispray. The connection is homogenous if and only if the semispray is a full spray. Moreover, if the
spray is affine, then the connection is affine as well—an affine spray Gi takes the form

Gi =
1
2 ∑

jk
Γi

jk(q) vj vk,

where Γi
jk is referred to as the affine connection.
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To summarize, Lagrangian dynamics is related to action minimization by the Euler operator,
and leads to a semispray on the configuration manifold Q. Under suitable conditions, the Lagrangian
function L(q, v) defined on TQ will lead to a torsion-free but generally nonlinear connection,
and an affine connection only for a very special form of Lagrangian.

2.2. Hamiltonian Mechanics as a Conservative System on T∗Q

Given a Hamiltonian H : T∗Q → R, we consider the Hamiltonian vector field XH ∈ X(T∗Q)

(where X denotes a section) defined by

XH =

(
∂H
∂pi

,−∂H
∂qi

)
. (8)

It is straightforward to verify that H = const along the dynamical flow of XH:

dH
dt

= ∑
i

(
∂H
∂qi

dqi

dt
+

∂H
∂pi

dpi
dt

)
= 0.

So, a Hamiltonian vector field XH advects the Hamiltonian H along its flow, so that H is constant
along solution curves, which implies that the Lie derivative L of H along the flow of XH vanishes,

LXH H = 0.

Formally, starting from the tautological 1-form θ = ∑i pi dqi on Q, one obtains a 2-form ω,
called the Poincaré 2-form,

ω = −dθ = ∑
i

dqi ∧ dpi,

which is the canonical symplectic form on T∗Q:

ω(X, Y) = ∑
i
(dqi ∧ dpi)(X, Y) = ∑

i

(
∂X
∂qi

∂Y
∂pi
− ∂X

∂pi

∂Y
∂qi

)
,

where X, Y are vector fields on T∗Q.
More generally, given a Hamiltonian H along with a symplectic form ω, which is, by definition,

a closed, nondegenerate 2-form, one obtains the Hamiltonian vector field XH on T∗Q, defined in
abstract notation by

ιXH ω = dH, (9)

or equivalently in a more familiar notation,

ω(XH, ·) = dH(·).

One can define the Poisson bracket {·, ·} of two functions F and G by using their respective
Hamiltonian vector fields and the symplectic form,

{F, G} ≡ ω(XF, XG).

For the canonical symplectic form, it has the following coordinate expression,

{F, G} = ∑
i

(
∂F
∂qi

∂G
∂pi
− ∂F

∂pi

∂G
∂qi

)
.
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In this way, Hamilton’s equations can be expressed in terms of the Poisson bracket as follows,

dqi

dt
= {qi, H}, dpi

dt
= {pi, H}. (10)

By Darboux’s theorem, it is always possible to choose local coordinates (q, p) on T∗Q, referred
to as canonical coordinates, such that the symplectic form has the expression ω = ∑i dqi ∧ dpi.
In these coordinates, Hamilton’s equations defined in terms of the symplectic structure (9) and Poisson
structure (10) recover the canonical Hamiltonian vector field (8).

Note that any smooth function H on T∗Q induces a Hamiltonian vector field. An arbitrary vector
field X on T∗Q is locally Hamiltonian, i.e., induced by a smooth function H, if ιXω is closed, i.e.,
LXω = 0. In addition, a Hamiltonian vector field preserves the volume form Ω, i.e.,

LX(Ω) = 0,

where Ω is the n-fold exterior product of ω,

Ω =
(−1)

n(n−1)
2

n!
ω ∧ω · · · ∧ω.

2.3. Symplectic Maps and Symplectic Flows

A symplectic map is a diffeomorphism of T∗Q that preserves its symplectic structure ω. We first
consider a one-parameter family of symplectic maps generated by the flow map FX : T∗Q→ T∗Q of
a vector field X ∈ X(T∗Q). Since the entire family of symplectic maps leave ω invariant, it follows
that £Xω = 0. It can be shown (using Cartan’s magic formula, and the fact that ω is closed) that a
vector field X ∈ X(T∗Q) is symplectic if iXω is closed, i.e., d(iXω) = 0. By the Poincaré lemma, this
implies that iXω is locally exact, that is, in the neighborhood of any point, there exists some function
H : T∗Q→ R such that iXω = dH. So there is always locally exists a Hamiltonian H : T∗Q→ R that
generates a vector field X whose flow is symplectic with respect to ω.

More generally, a diffeomorphism φ : M1 → M2 is a symplectic map from a symplectic space
(M1, ω1) to another space (M2, ω2) if:

φ∗ω2 = ω1, (11)

where ω1, ω2 are the symplectic forms on M1, M2, respectively. The above condition (11) holds if and
only if for any functions f , g:

(i) { f , g} ◦ φ = { f ◦ φ, g ◦ φ},
(ii) φ∗XH = XH◦φ.

With respect to Darboux coordinates about a point z = (q, p) ∈ M1, the condition (11) that a map
φ : M1 → M2 is symplectic can be expressed locally by (Dzφ)T J(Dzφ) = J, where DzF denotes the
Jacobian of φ at z.

A canonical transformation of T∗M is an automorphism φ : T∗Q→ T∗Q,

φ :

{
(q, p)→ (q′)i(q1, · · · , qn, p1, · · · , pn),

(q, p)→ (p′)i(q1, · · · , qn, p1, · · · , pn),

such that
ω = ∑

i
dqi ∧ dpi = ∑

i
dq′i ∧ dp′i.

The significance of canonical transformations is that they preserve the form of Hamilton’s
equations, and one can check that an automorphism φ is canonical by verifying that (Dzφ)T J(Dzφ) = J
in a Darboux coordinate chart.
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2.4. Symplectic Structure on TQ Pulled Back from T∗Q

If we endow T∗Q with the canonical symplectic form, we can construct a symplectic form on TQ
in such a way that these two spaces are symplectomorphic.

The mapping between TQ and T∗Q can be constructed in two different ways, Case I involves the
Legendre transform:

TQ ←→ T∗Q
(q, v) 7→

(
q, ∂L(q,v)

∂v

)(
q, ∂H(q,p)

∂p

)
←[ (q, p)

(12)

and Case II involves the Riemannian metric tensor g (on Q):

TQ ←→ T∗Q
(q, v) 7→

(
q, ∑j gijvj

)(
q, ∑j gij pj

)
←[ (q, p)

(13)

Note that we say that g is a pseudo-Riemannian metric on Q when g acts on a pair of tangent
vectors at the tangent space TqQ at a point q of Q; it can be viewed as a symmetric (0, 2)-tensor that
maps TQ× TQ→ R. On the other hand, the symplectic form ω is a skew-symmetric (0, 2)-tensor that
acts on a pair of tangent vectors on T∗Q, so it maps T(T∗Q)× T(T∗Q)→ R.

Case I. Given the Lagrangian L : TQ → R, this induces the fiberwise Legendre transform
FL : TQ → T∗Q, which is given by (q, v) 7→ (q, p) =

(
q, ∂L

∂v

)
. If L is hyperregular, then this map is

a diffeomorphism. If we endow TQ with the pullback symplectic form (FL)∗ω, which is given by

∑
ij

∂2L
∂vj∂vi dqi ∧ dvj +∑

ij

∂2L
∂qi∂vj dqi ∧ dqj,

then the Legendre transform is a symplectomorphism (by construction).
Case II. The Riemannian metric g induces the musical isomorphisms [ : TQ → T∗Q and

] : T∗Q→ TQ between TQ and T∗Q, which are the operations that lower and raise the index,
respectively. If we endow TQ with the pullback symplectic form [∗ω, which is given by

ω = dq∧ dp(q, v) = ∑
i,j

gijdqi ∧ dvj +∑
ijk

∂gij

∂qk vi dqj ∧ dqk,

then the musical isomorphism is a symplectomorphism (by construction).
Link between Case I and Case II. It is possible that the two ways of identifying TQ↔ T∗Q may

be the same; this happens when g on TQ coincides with the second derivatives of L(q, v) with respect
to the v-variable:

gij(q, v) =
∂2L(q, v)

∂vi∂vj
,

assuming L is hyperregular. The inverse of g, denoted g̃, can be obtained from

g̃ij(q, p) =
∂2H(q, p)

∂pi∂pj
,

using the Hamiltonian H(q, p) defined on T∗Q. Note that when the Lagrangian has the form
L(q, v) = 1

2 vT M(q)v−V(q), this corresponds to the Riemannian metric g being given by the kinetic
energy metric M(q).
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2.5. Hamilton-Jacobi Theory and Dirichlet-to-Neumann Map

In classical mechanics, the Hamilton–Jacobi equation is first introduced as a partial differential
equation that the action integral satisfies. Recall that the action integral S along the solution of the
Euler–Lagrange equation (2) over the time interval [t0, t] is

Sq0(q(t)) :=
∫ t

t0

L(q(s), q̇(s))ds, where q(·) is the solution of the Euler–Lagrange equation. (14)

This is referred to as Jacobi’s solution of the Hamilton–Jacobi equation. Here, we assume that
the initial position q(0) is fixed and the final position q(t) depends on the initial velocity v0 = q̇(0).
By taking a variation δq(t) of the endpoint q(t), one obtains a partial differential equation satisfied
by S(q, t):

H
(

q,
∂S
∂q

)
= 0. (15)

This is the Hamilton–Jacobi equation, when H does not explicit depend on t.
Conversely, it is shown that if Sq0(q) is a solution of the Hamilton–Jacobi equation then Sq0(q) is

a generating function for the family of canonical transformations (or symplectic flows) that describe
the dynamics defined by Hamilton’s equations. This result is the theoretical basis for the powerful
technique of exact integration called separation of variables.

There are two uses of Sq0(q). First, it serves to characterize the Dirichlet-to-Neumann map, which refers
to the correspondence between the boundary data (q0, q) ∈ Q×Q with the initial data (q0, v0) ∈ TQ of a
dynamical system. Second, it provides a foliation of the configuration space Q, around the point q0

and parameterized by t, that is defined by the condition Sq0(q(t)) = const.
In the rest of the paper, we will view Sq0(q) as a scalar-valued function of (q0, q(t)), which we

refer to as the exact discrete Lagrangian LE
d : Q×Q→ R,

LE
d (q0, q1; h) = ext

q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt. (16)

this is equivalent to the expression for Jacobi’s solution, as the stationarity conditions of this variational
characterization are simply the Euler–Lagrange equations. Furthermore, this characterization has the
added benefit that it is well-defined even if the Lagrangian is degenerate. The exact discrete Lagrangian
provides us with the time-h flow map for the Euler–Lagrange equation. Given a fixed initial point q0,
this defines a map which takes q ∈ Q to an initial velocity v0, such that the Euler–Lagrange trajectory
q(t) with initial condition (q(0), q̇(0)) = (q0, v0) has boundary values (q(0), q(h)) = (q0, q). This is the
Dirichlet-to-Neumann map Q×Q 7→ TQ, (q0, q) 7→ (q0, v0).

To address the Dirichlet-to-Neumann map more generally, let us first recall the definition
of a retraction:

Definition 1 ([7], Definition 4.1.1 on p. 55). A retraction on a manifold Q is a smooth mappingR: TQ→ Q
with the following properties: LetRq : TqQ→ Q be the restriction ofR to TqQ for an arbitrary q ∈ Q; then,

(i) Rq(0q) = q, where 0q denotes the zero element of TqQ;
(ii) with the identification T0q(TqQ) ' TqQ,Rq satisfies

T0qRq = idTqQ, (17)

where T0qRq is the tangent map ofRq at 0q ∈ TqQ.
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Equation (17) implies that the mapRq : TqQ→ Q is invertible in some neighborhood of 0q in TqQ.
Its inverse is conveniently denoted as R̃ : TQ→ Q×Q, which is defined by

R̃(vq) := (q,Rq(vq)). (18)

it is easy to see that R̃ : TQ → Q×Q is also invertible in some neighborhood of 0q ∈ TQ for any
q ∈ Q.

Let us introduce a special class of coordinate charts that are compatible with a given retraction
mapR : TQ→ Q. A coordinate chart (U, ϕ) with U an open subset in Q and ϕ : U → Rn is said to be
retraction compatible at q ∈ U if

(i) ϕ is centered at q, i.e., ϕ(q) = 0;
(ii) the compatibility condition

R(vq) = ϕ−1 ◦ Tqϕ(vq) (19)

holds, where we identify T0Rn with Rn as follows: Let ϕ = (q1, . . . , qn) with qi : U → R for i =

1, . . . , n. Then

vi ∂

∂qi 7→ (v1, . . . , vn), (20)

where ∂/∂qi is the unit vector in the qi-direction in T0Rn.
An atlas for the manifold Q is retraction compatible if it consists of retraction compatible

coordinate charts.
In Equation (19), we assumed that Tqϕ(vq) ∈ ϕ(U) ⊂ Rn and so strictly speakingRq is defined on

(Tqϕ)−1(ϕ(U)) ⊂ TqQ. However, it is always possible to define a coordinate chart such that ϕ(U) = Rn

by stretching out the open set ϕ(U) to Rn so that (19) is defined for any vq ∈ TqQ.
Retraction maps provide general means to relate Q × Q to TQ: in essence it provides

a correspondence between {q} ×Q and TqQ for all q ∈ Q (we may take q ∈ Q to mean the projection
of Q×Q onto either the first or the second slot).

2.6. Variational Mechanics and the Pontryagin Bundle

Lagrangian and Hamiltonian mechanics can be combined into Dirac mechanics [8,9], which
is described on the Pontryagin bundle TQ⊕ T∗Q, which has position, velocity, and momentum as
local coordinates.

Just as the Euler–Lagrange equations of motion arises out of Hamilton’s principle, Hamilton’s
equations can also arise from Hamilton’s phase space principle:

δ
∫ t2

t1

[〈p, q̇〉 − H(q, p)] dt = 0.

On the Pontryagin bundle TQ ⊕ T∗Q, which has local coordinates (q, v, p), a relaxation of
Hamilton’s principle (1) is the Hamilton–Pontryagin variational principle, which uses a Lagrange
multiplier p to impose the second-order condition v = q̇,

δ
∫ t2

t1

(
L(q, v)− 〈p, q̇− v〉q

)
dt = 0. (21)

This encapsulates both Hamilton’s and Hamilton’s phase space variational principles, as well as
the Legendre transform, and gives the implicit Euler–Lagrange equations,

q̇ = v, ṗ =
∂L
∂q

, p =
∂L
∂v

.
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The last equation explicitly imposes the primary constraint condition, which is important when
describing degenerate Lagrangian systems, such as electrical circuits. Note that the p are interpreted
as Lagrange multipliers [10] in addition to its usual interpretation as conjugate momenta. The three
equations can be combined by eliminating v and p to recover the Euler–Lagrange equations.

An important application of Hamilton–Jacobi theory is in optimal control theory. Consider a typical
optimal control problem,

min
u(·)

∫ T

0
L(q, u) dt,

subject to the constraints,
q̇ = f (q, u),

and the boundary conditions q(0) = q0 and q(T) = qT. We convert constrained optimization to
unconstrained optimization by using Lagrange multipliers p (sometimes called the costate or auxiliary
variables), and we can define the augmented cost functional:

Ŝ[u] :=
∫ T

0
{L(q, u) + 〈p, q̇− f (q, u)〉} dt =

∫ T

0

{
〈p, q̇〉 − Ĥ(q, p, u)

}
dt,

where we introduced the costate variables p, and also defined the control Hamiltonian,

Ĥ(q, p, u) := 〈p, f (q, u)〉 − L(q, u).

The variables (q, p) forms a Hamiltonian system, so we impose the optimality condition,

∂Ĥ
∂u

(q, p, u) = 0,

to obtain the equation for the optimal control u = u∗(q, p), and we obtain the Hamiltonian,

H(q, p) := max
u

Ĥ(q, p, u) = Ĥ(q, p, u∗(q, p)).

We also define the optimal cost-to-go function,

C(q, t) :=
∫ T

t

{
L(q̂, u∗) + 〈p, ˙̂q− f (q̂, u∗)〉

}
ds

=
∫ T

t

{
〈p̂, ˙̂q〉 − H(q̂, p̂)

}
ds = S∗ − S(q, t),

where (q̂(s), p̂(s)) for s ∈ [0, T] is the solution of Hamilton’s equations with the above H such that
q̂(t) = q; and S∗ is the optimal cost

S∗ :=
∫ T

0

{
〈p̂, ˙̂q〉 − H(q̂, p̂)

}
ds =

∫ T

0

{
〈p̂, ˙̂q〉 − Ĥ(q̂, p̂, u∗(q̂, p̂))

}
ds = Ŝ[u∗],

and the function S(q, t) is defined by

S(q, t) :=
∫ t

0

{
〈p̂, ˙̂q〉 − H(q̂, p̂)

}
ds.

Since this definition coincides with (14), the function S(q, t) = S∗ − C(q, t) satisfies the
Hamilton–Jacobi equation (15); this reduces to the Hamilton–Jacobi–Bellman (HJB) equation for
the optimal cost-to-go function C(q, t):

∂C
∂t

+min
u

{〈
∂C
∂q

, f (q, u)
〉
+ L(q, u)

}
= 0. (22)
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It can also be shown that the costate p of the optimal solution is related to the solution of the
Hamilton–Jacobi–Bellman equation.

3. Discrete Formulation of Geometric Mechanics

In this section, we review various schemes for discretizing mechanics (see, e.g., [11]). Geometric
mechanics focuses on the differential geometric structure of the configuration manifolds, the associated
symplectic and Poisson structures on the phase space, and the conservation laws generated by
symmetries, and geometric structure-preserving numerical integration aims to preserve as many
of these geometric properties as possible under discretization. The main idea is to start from the
canonical symplectic form ω on T∗Q, and look at the symplectomorphisms that preserve ω or its
pullback via the Legendre transforms to Q×Q or TQ.

3.1. Symplectomorphisms from T∗Q to TQ and to Q×Q

Given a cotangent bundle T∗Q with a symplectic form ω, we wish to endow the bundles TQ and
Q×Q with a symplectic structure. Given a function L : TQ→ R, the Legendre transform is viewed as
the fiber derivative FL : TQ → T∗Q, (q, q̇) 7→ (q, ∂L/∂q̇). The pullback of ω with respect to FL yields
a symplectic structure ωL = FL∗ω on TQ.

Similarly, given a function Ld : Q × Q → R, we define two discrete fiber derivatives,
FL±d : Q×Q→ T∗Q, which serve as discrete Legendre transforms:

FL+
d (qk, qk+1) = (qk+1, D2Ld(qk, qk+1)), (23)

FL−d (qk, qk+1) = (qk,−D1Ld(qk, qk+1)). (24)

Here D1, D2 refers to taking a derivative with respect to the first or second slot, respectively:

D1Ld(qk, qk+1) =
∂Ld(qk, qk+1)

∂qk
, D2Ld(qk, qk+1) =

∂Ld(qk, qk+1)

∂qk+1
.

The two choices of discrete fiber derivatives correspond to whether one views Q×Q as a bundle
over Q with respect to π− : (qk, qk+1) 7→ qk or π+ : (qk, qk+1) 7→ qk+1, i.e., projection onto the first or
the second slot. These induce symplectic structures ω±Ld

= (FL±d )
∗ω on Q×Q by pullback.

(TQ, ωL) //

FL

��

(TQ, ωL)

FL

��
(T∗Q, ω)

F //

FL−d

��

FL+d

��

(T∗Q, ω)

FL−d

��

FL+d

��
(Q×Q, ω−Ld

)
99

(Q×Q, ω+
Ld
)

99
(Q×Q, ω−Ld

) (Q×Q, ω+
Ld
)

Let F : T∗Q→ T∗Q be a symplectic map and let the maps denoted by the dotted arrows in the
figure above be defined by requiring that the diagram commutes. Then, these maps are also symplectic
maps, and the fiber derivative FL is a symplectomorphism between (TQ, ωL) and (T∗Q, ω), and the
discrete fiber derivatives FL±d are symplectomorphisms between (Q×Q, ω±Ld

) and (T∗Q, ω).
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3.2. Discrete Lagrangian Mechanics

The aim of geometric structure-preserving numerical integration is to preserve as many geometric
conservation laws as possible under discretization. Discrete variational mechanics [11] is based on the
discrete Hamilton’s principle,

δ ∑n−1
i=0 Ld(qi, qi+1) = 0, (25)

where the endpoints q0 and qn are fixed, and the discrete Lagrangian, Ld : Q× Q → R, is a Type I
generating function of the symplectic map. Recall that there exists an exact discrete Lagrangian LE

d (16),
that generates the exact time-h flow of a Lagrangian system, but it cannot be computed in general.
One possible method of constructing computable discrete Lagrangians is the Galerkin approach,
which involves replacing the infinite-dimensional function space C2([0, h], Q) and the integral in (16)
with a finite-dimensional function space and a quadrature formula, respectively. Below are two
examples of discrete Lagrangians:

(i) Symplectic midpoint integrator

Ld(q0, q1, h) = hL
(

q0 + q1

2
,

q1 − q0

2

)
.

this can be obtained from the Galerkin approach by considering the family of linear polynomials
as the finite-dimensional function space, and the midpoint rule as the quadrature formula.

(ii) Störmer–Verlet integrator

Ld(q0, q1, h) =
h
2

[
L
(

q0,
q1 − q0

2

)
+ L

(
q1,

q1 − q0

2

)]
.

this can be obtained from the Galerkin approach by considering the family of linear polynomials
as the finite-dimensional function space, and the trapezoidal rule as the quadrature formula.

Performing variational calculus on the discrete Hamilton’s principle (25) yields the discrete
Euler–Lagrange (DEL) equations,

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0. (26)

The above equation implicitly defines the discrete Lagrangian map FLd : (qk−1, qk) 7→ (qk, qk+1) at
points sufficiently close to the diagonal of Q×Q. This is equivalent to the implicit discrete Euler–Lagrange
(IDEL) equations,

pk = −D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1), (27)

which is precisely the characterization of a symplectic map in terms of Type I generating function.
It implicitly defines the discrete Hamiltonian map F̃Ld : (qk, pk) 7→ (qk+1, pk+1), and it is symplectic with
respect to the canonical symplectic form ωcan on T∗Q, i.e., F̃∗Ld

ωcan = ωcan.
The two discrete fiber derivatives FL±d induce a single unique discrete symplectic form

ωLd = ω±Ld
= (FL±d )

∗ωcan on Q×Q,

ωLd(qk, qk+1) =
∂2Ld

∂qk∂qk+1
(qk, qk+1)dqk ∧ dqk+1, (28)

and the discrete Lagrangian map is symplectic with respect to ωLd on Q×Q, i.e., F∗Ld
ωLd = ωLd .

The discrete Lagrangian and Hamiltonian maps can be expressed in terms of the discrete fiber
derivatives, FLd = FL+

d ◦ (FL−d )
−1, and F̃Ld = (FL−d )

−1 ◦ FL+
d , respectively. This characterization of the

discrete flow maps underlies the proof of the variational error analysis theorem.
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These properties may be summarized in the following commutative diagram,

(TQ, ωL) //

FL

��

(TQ, ωL)

FL

��
(T∗Q, ωcan)

F̃Ld //

FL−d

{{

FL+d

##

(T∗Q, ωcan)

FL−d

{{

FL+d

##
(Q×Q, ωLd) FLd

// (Q×Q, ωLd) F̃Ld

// (Q×Q, ωLd)

If the exact discrete Lagrangian LE
d is used, then the discrete Hamiltonian map F̃Ld is equal to

the time-h flow map of Hamilton’s equations, and the dotted arrow is the time-h flow map of the
Euler–Lagrange equations.

The variational integrator approach to constructing symplectic integrators simplifies the numerical
analysis of these methods. In particular, the task of establishing the geometric conservation properties
and order of accuracy of the discrete Lagrangian map FLd reduces to the simpler task of verifying
certain properties of the discrete Lagrangian instead.

3.3. Discrete Hamilton–Jacobi Formulation

In the context of discrete variational mechanics, discrete Hamilton–Jacobi theory can be viewed
as a composition theorem which relates the composition of symplectic maps generated by a Type II
generating function H+

d (qk, pk+1) with a symplectic map generated by a Type I generating function
Sk

d(q0, qk). By convention, the first argument q0 in the composition generating function is typically
omitted, and we simply consider it to be a function Sk

d(qk) of the final position qk.
The right discrete Hamiltonian, H+

d (qk, pk+1) [12], is related to the discrete Lagrangian by the
Legendre transform,

H+
d (qk, pk+1) = 〈pk+1, qk+1〉 − Ld(qk, qk+1),

where we impose the condition that pk+1 = D2Ld(qk, qk+1). Equivalently, this can be characterized
variationally by H+

d (qk, pk+1) = extpk [〈pk+1, qk+1〉 − Ld(qk, qk+1)]. This leads to a discrete Hamilton’s
principle in phase space,

δ
n−1

∑
i=0

{
〈pi+1, qi+1〉 − H+

d (qi, pi+1)
}
= 0,

which yields the right discrete Hamilton’s equations,

qk+1 = D2H+
d (qk, pk+1), pk = D1H+

d (qk, pk+1), (29)

which is precisely the characterization of a symplectic map in terms of Type II generating function.
The continuous Hamilton–Jacobi equation can be derived by considering the evolution properties

of Jacobi’s solution, which is the action integral evaluated along the solution of the Euler–Lagrange
equations. One can derive a discrete Hamilton–Jacobi theory by considering a discrete analogue of
Jacobi’s solution, expressed in terms of the right discrete Hamiltonian,

Sk
d(qk) ≡

k−1

∑
i=0

{
pi+1 · qi+1 − H+

d (qi, pi+1)
}

,

which we evaluate along a solution of the right discrete Hamilton’s equations (29). From this, we have,

Sk+1
d (qk+1)− Sk

d(qk) = pk+1 · qk+1 − H+
d (qk, pk+1), (30)
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where pk+1 is considered to be a function of qk and qk+1. Taking derivatives with respect to qk+1,
we obtain,

DSk+1
d (qk+1) = pk+1 +

∂pk+1
∂qk+1

·
[
qk+1 −D2H+

d (qk, pk+1)
]

,

but the term inside the parenthesis vanishes as we are restricting this to a solution of the right discrete
Hamilton’s equations. Therefore, we have that

DSk+1
d (qk+1) = pk+1,

which when substituted into (30) yields the discrete Hamilton–Jacobi equation,

Sk+1
d (qk+1)− Sk

d(qk) = DSk+1
d (qk+1) · qk+1 − H+

d (qk, DSk+1
d (qk+1)).

3.4. Discrete Hamilton–Pontryagin Principle

Leok and Ohsawa [13] considered the discrete Hamilton’s principle and relaxed the discrete
second-order condition,

q1
k = q0

k+1,

and reimposed it using Lagrange multipliers pk+1, in order to derive the discrete Hamilton–Pontryagin
principle on (Q×Q)×Q T∗Q,

δ
[
∑n−1

i=0 Ld(q0
i , q1

i ) +∑n−2
i=0 pi+1(q0

i+1 − q1
i )
]
= 0. (31)

Here, the superscripts 0, or 1 on qi refers to the first or second slot, respectively, in Q×Q. This in
turn yields the implicit discrete Euler–Lagrange equations,

q1
k = q0

k+1, pk+1 = D2Ld(q0
k, q1

k), pk = −D1Ld(q0
k, q1

k), (32)

where D1, D2 denote as before the partial derivative with respect to the first or second argument
in Ld. Making the identification qk = q0

k = q1
k−1, the last two equations define the discrete fiber

derivatives, FL±d : Q×Q→ T∗Q as given by (23) and (24). Discrete fiber derivatives induce a discrete
symplectic form, ωLd ≡ (FL±d )

∗ωcan, and the discrete Lagrangian map FLd ≡ (FL−d )
−1 ◦ FL+

d :
(qk−1, qk) 7→ (qk, qk+1) and the discrete Hamiltonian map F̃Ld ≡ FL+

d ◦ (FL−d )
−1 : (qk, pk) 7→ (qk+1, pk+1)

preserve ωLd and ωcan, respectively.

4. Information Geometry

4.1. Statistical Structure on M

On a differentiable manifold M endowed with a metric g and a torsion-free affine connection∇,
the compatibility of a metric g and a connection∇ is encoded by the cubic form 3-tensor field C = ∇g,
i.e., the covariant derivative of g. In a local coordinate system with basis ∂i ≡ ∂/∂xi, the metric tensor
g is locally represented by

gij(x) = g(∂i, ∂j), (33)

and the components of∇ takes the contravariant form Γl
ij, where

∇∂i
∂j = ∑

l
Γl

ij ∂l, (34)

or the covariant form Γij,k, where

Γij,k = g(∇∂i
∂j, ∂k) = ∑

l
glkΓl

ij. (35)
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Torsion-freeness of∇ implies the symmetry of its (first) two lower indices, i.e.,

Γl
ij(x) = Γl

ji(x), Γij,l(x) = Γji,l(x).

We can now compute the cubic form,

C(∂i, ∂j, ∂k) = (∇∂k
g)(∂i, ∂j) = ∂kg(∂i, ∂j)− g(∇∂k

∂i, ∂j)− g(∂i,∇∂k
∂j),

or in components,

Cijk =
∂gij

∂xk
− Γki,j − Γkj,i. (36)

When the cubic form is identically zero, ∇ is said to be parallel with respect to g. A torsion-free
connection parallel to g is called the Levi-Civita connection ∇̂ associated to the given metric g:

∂kg(∂i, ∂j) = g(∇̂∂k
∂i, ∂j) + g(∂i, ∇̂∂k

∂j). (37)

The fundamental theorem of Riemannian geometry establishes the existence and uniqueness of
the Levi-Civita connection, which is a solution of (37), and is given by,

Γ̂k
ij = ∑

l

gkl

2

(
∂gil

∂xj +
∂gjl

∂xi −
∂gij

∂xl

)
.

Generalizing the notion of parallelism of a connection is the notion of conjugacy (denoted by ∗)
between two connections. A connection∇∗ is said to be conjugate (or dual) to∇ with respect to g if

∂kg(∂i, ∂j) = g(∇∂k
∂i, ∂j) + g(∂i,∇∗∂k

∂j). (38)

Clearly, (∇∗)∗ = ∇. Moreover, ∇̂, which satisfies (37), is special in the sense that it is self-conjugate
(∇̂)∗ = ∇̂. Writing out (38):

∂gij

∂xk = Γki,j + Γ∗kj,i, (39)

where Γ∗kj,i is defined analogously to (34) and (35),

∇∗∂i
∂j = ∑

l
Γ∗lij ∂l,

so that
Γ∗kj,i = g(∇∗∂j

∂k, ∂i) = ∑
l

gilΓ
∗l
kj .

From (36) and (38), the cubic form can now be written as

Cijk = Γ∗kj,i − Γkj,i.

Clearly, Cijk = Cjik, i.e., it is symmetric with respective to its first two indices. When both∇ and∇∗
are torsion-free, this implies that

Γkj,i = Γjk,i, Γ∗kj,i = Γ∗jk,i,

then Cijk = Cikj, which leads to C being totally symmetric in all the indices,

Cijk = Cikj = Ckij = Ckji = Cjki = Cjik.
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Requiring that Cijk is totally symmetric imposes a compatibility condition between g and∇, so that
they form a Codazzi pair (see [14]), which generalizes the Levi-Civita coupling (whose corresponding
cubic form Cijk ≡ 0). Lauritzen [15] defined a statistical manifold (M, g,∇) to be a manifold M equipped
with metric g and connection ∇ such that (i) ∇ is torsion-free; (ii) ∇g ≡ C is totally symmetric.
Equivalently, a manifold has a statistical structure when the conjugate (with respect to g) ∇∗ of a
torsion-free connection∇ is also torsion-free. In this case,∇∗g = −C, and the Levi-Civita connection
∇̂ = (∇+∇∗)/2.

On a statistical manifold, one can define a one-parameter family of affine connections ∇(α),
called α-connections (α ∈ R) [2]:

∇(α) =
1+ α

2
∇+

1− α

2
∇∗. (40)

Obviously,∇(0) = ∇̂ is the Levi-Civita connection, and the cubic form is given by∇(α)g = αC.
The curvature/flatness of a connection∇ is described by the Riemann curvature tensor R, defined as

R(∂i, ∂j)∂k = (∇∂i
∇∂j
−∇∂j

∇∂i
)∂k.

Writing R(∂i, ∂j)∂k = ∑l Rl
kij∂l and substituting (34), the components of the Riemann curvature

tensor are

Rl
kij(x) =

∂Γl
jk(x)

∂xi −
∂Γl

ik(x)
∂xj +∑

m
Γl

im(x)Γ
m
jk(x)−∑

m
Γl

jm(x)Γ
m
ik(x).

By definition, Rl
kij is antisymmetric when i↔ j. The covariant form of the Riemann curvature is

Rlkij = ∑
m

glm Rm
kij.

When the connection is torsion-free, Rlkij is antisymmetric when i↔ j or when k↔ l, and symmetric
when (i, j)↔ (l, k). It is related to the Ricci tensor Ric by Rickj = ∑i,l Rlkijgil .

In addition, it can be shown that the curvatures Rlkij, R∗lkij for the pair of conjugate connections
∇,∇∗ satisfy

Rlkij = R∗lkij.

A connection is said to be flat when Rl
kij(x) ≡ 0. So,∇ is flat if and only if∇∗ is flat. In this case,

the manifold is said to be dually-flat, and the metric g takes on a particular form (to be discussed later).

4.2. Divergence Function and Induced Geometry

A divergence function D : M×M→ R≥0 on a manifold M with respect to a local chart V ⊆ Rn is
a C3 function satisfying

(i) D(x, y) ≥ 0,∀x, y ∈ V, with equality holding if and only if x = y;
(ii) Di(x, x) = D,j(x, x) = 0,∀i, j ∈ {1, 2, · · · , n};

(iii) −Di,j(x, x) is positive-definite.

Here Di(x, y) = ∂xi D(x, y), D,i(x, y) = ∂yiD(x, y) denote partial derivatives with respect to the
i-th component of point x and of point y, respectively, and Di,j(x, y) = ∂xi ∂yjD(x, y) the second-order
mixed derivative, and so on.

On a manifold, divergence functions act as pseudo-distance functions that are nonnegative but
need not be symmetric. Every divergence function induces a dualistic Riemannian structure, i.e.,
statistical structure, which was first demonstrated by Eguchi (see [16]).
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Lemma 1. A divergence function induces a Riemannian metric g and a pair of torsion-free conjugate connections
∇,∇∗ given as

gij(x) = − Di,j(x, y)
∣∣
x=y ,

Γij,k(x) = − Dij,k(x, y)
∣∣∣
x=y

,

Γ∗ij,k(x) = − Dk,ij(x, y)
∣∣∣
x=y

.

The Γij,k, Γ∗ij,k are torsion-free and are conjugate with respect to the induced metric gij.
Hence, the divergence function D induces (M, g,∇,∇∗), which is a statistical manifold (Lauritzen [15]).

A popular divergence function is the Bregman divergence BΦ(x, y) [17], which is associated
to a strictly convex function Φ:

BΦ(x, y) = Φ(y)−Φ(x)− 〈y− x, ∂Φ(x)〉, (41)

where ∂Φ = [∂1Φ, · · · , ∂nΦ] denotes the exterior derivative, and 〈·, ·〉n denotes the canonical pairing of
a vector x = [x1, · · · , xn] ∈ Rn and a covector u = [u1, · · · , un] ∈ R̃n (dual to Rn), i.e.,

〈x, u〉 =
n

∑
i=1

xiui. (42)

Where there is no danger of confusion, the subscript n in 〈·, ·〉n is often omitted. A basic fact in convex
analysis is that the necessary and sufficient condition for a smooth function Φ to be strictly convex is

BΦ(x, y) > 0, (43)

for all x 6= y.
Recall that when Φ is convex, its convex conjugate, Φ̃ : Ṽ ⊆ R̃n → R, is defined through the

Legendre transform:
Φ̃(u) = 〈(∂Φ)−1(u), u〉 −Φ((∂Φ)−1(u)), (44)

with ˜̃Φ = Φ and (∂Φ) = (∂Φ̃)−1. Since Φ̃ is also convex, by (43), we obtain the Fenchel inequality,

Φ(x) + Φ̃(u)− 〈x, u〉 ≥ 0,

for any x ∈ V, u ∈ Ṽ, with equality holding if and only if

u = (∂Φ)(x) = (∂Φ̃)−1(x)←→ x = (∂Φ̃)(u) = (∂Φ)−1(u), (45)

or, in component form,

ui =
∂Φ
∂xi ←→ xi =

∂Φ̃
∂ui

. (46)

Using conjugate variables, we can introduce the canonical divergence AΦ : V × Ṽ → R+

(and AΦ̃ : Ṽ ×V → R+),

AΦ(x, v) = Φ(x) + Φ̃(v)− 〈x, v〉 = AΦ̃(v, x).

They are related to the Bregman divergence (41) via the relation

BΦ(x, (∂Φ)−1(v)) = AΦ(x, v) = BΦ̃((∂Φ̃)(x), v).
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Though the Bregman divergence is not a metric, it satisfies a quadrilateral relation [18]: For any
four points x, x′, x′′, x′′′ ∈ V,

BΦ(x, x′) +BΦ(x′′′, x′′)−BΦ(x, x′′)−BΦ(x′′′, x′) = 〈x′′ − x′, ∂Φ(x)− ∂Φ(x′′′)〉 .

As a special case, when x′′′ = x′, BΦ(x′′′, x′) = 0, the above equality reduces to the Pythagorean
(generalized cosine) relation among three points x, x′, x′′ ∈ V:

BΦ(x, x′) +BΦ(x′, x′′)−BΦ(x, x′′) = 〈x′′ − x′, ∂Φ(x)− ∂Φ(x′)〉 .

This is the Pythagorean relation [3] for a dually-flat space. Using this relation, one can state
minimization problems for divergence functions.

The quadrilateral relation can be expressed in terms of the canonical divergence A as follows,

AΦ(x, u) +AΦ(y, v)−AΦ(x, v)−AΦ(y, u) = 〈x− y, v− u〉,

for any four points x, y ∈ V, v, u ∈ Ṽ.
Zhang [5] introduced the α-indexed family of Φ-divergence functions D(α)

Φ on V ×V,

D(α)
Φ (x, y) =

4
1− α2

(
1− α

2
Φ(x) +

1+ α

2
Φ(y)−Φ

(
1− α

2
x +

1+ α

2
y
))

. (47)

Furthermore, D(±1)
Φ (x, y) is defined by taking limα→±1:

D(−1)
Φ (x, y) = D(1)

Φ (y, x) = BΦ(x, y),

D(1)
Φ (x, y) = D(−1)

Φ (y, x) = BΦ(y, x).

Note that D(α)
Φ (x, y) satisfies the relation (called referential duality in [5,19]),

D(α)
Φ (x, y) = D(−α)

Φ (y, x),

that is, exchanging the two points in the directed distance amounts to α↔ −α.

4.3. Hessian Manifolds and Biorthogonal Coordinates

Applying Lemma 1 to the Bregman divergence BΦ induces the following metric,

gij(x) =
∂2Φ(x)
∂xi∂xj ,

and the pair of torsion-free conjugate connections,

Γij,k(x) = 0, Γ∗ij,k(x) =
∂3Φ(x)

∂xi∂xj∂xk .

In this case, M is dually-flat. This yields a Hessian manifold, where g takes the form of the
Hessian of a strictly convex function Φ. More generally, as shown in [5], the Φ-divergence D(α)

Φ of (47),
which degenerates to the Bregman divergence BΦ when α = ±1, induces an α-independent Hessian
metric gij along with the following α-connections

Γ(α)
ij,k(x) =

1− α

2
∂3Φ(x)

∂xi∂xj∂xk , Γ(α)∗
ij,k (x) =

1+ α

2
∂3Φ(x)

∂xi∂xj∂xk .
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Hessian manifolds enjoy a special status in information geometry, as they exhibit biorthogonal
coordinates on M that are globally affine coordinates despite the nontrivial Riemannian (Hessian)
metric on M.

Consider the coordinate transform x 7→ u,

∂i ≡ ∂

∂ui
= ∑

l

∂xl

∂ui

∂

∂xl = ∑
l

Fli∂l,

where the Jacobian matrix F is given by

Fij(x) =
∂ui

∂xj , Fij(u) =
∂xi

∂uj
, ∑

l
FilFlj = δi

j, (48)

where δi
j is the Kronecker delta, which takes the value 1 when i = j and 0 otherwise. If the new

coordinate system u = [u1, · · · , un] (with components denoted by subscripts) is such that

Fij(x) = gij(x), (49)

then the x-coordinate system and the u-coordinate system are said to be biorthogonal to each other,
since, from the definition of the metric tensor (33),

g(∂i, ∂j) = g(∂i, ∑
l

Flj∂l) = ∑
l

Fljg(∂i, ∂l) = ∑
l

Fljgil = δ
j
i .

In this case, we define
gij(u) = g(∂i, ∂j), (50)

which is equal to Fij, the Jacobian of the inverse coordinate transform u 7→ x. We also introduce
the contravariant representation of the affine connection∇with respect to the u-coordinate system,
and denote it by an unconventional notation Γrs

t , which is defined by

∇∂r ∂s = ∑
t

Γrs
t ∂t;

similarly, Γ∗rs
t is defined by

∇∗∂r ∂s = ∑
t

Γ∗rs
t ∂t.

The covariant representation of the affine connections will be denoted by superscripted Γ and Γ∗,

Γij,k(u) = g(∇∂i ∂j, ∂k), Γ∗ij,k(u) = g(∇∗
∂i ∂

j, ∂k). (51)

The representation of the affine connections in the u-coordinate system (denoted by superscripts)
and the x-coordinate system (denoted by subscripts) are related by

Γrs
t (u) = ∑

k

(
∑
i,j

∂xr

∂ui

∂xs

∂uj
Γk

ij(x) +
∂2xk

∂ur∂us

)
∂uk
∂xt , (52)

and

Γrs,t(u) = ∑
i,j,k

∂xr

∂ui

∂xs

∂uj

∂xt

∂uk
Γij,k(x) +

∂2xt

∂ur∂us
. (53)

Similarly relations hold between Γ∗rs
t (u) and Γ∗kij (x), and between Γ∗rs,t(u) and Γ∗ij,k(x).
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Analogous to (39), we have the following identity,

∂2xt

∂us∂ur
=

∂grt(u)
∂us

= Γrs,t(u) + Γ∗ts,r(u).

Therefore, with respect to biorthogonal coordinates, a pair of conjugate connections∇,∇∗ satisfy,

Γ∗ts,r(u) = −∑
i,j,k

gir(u)gjs(u)gkt(u)Γij,k(x), (54)

and
Γ∗ ts

r (u) = −∑
j

gjs(u)Γt
jr(x). (55)

We now investigate conditions for the existence of biorthogonal coordinates on a Riemannian
manifold (M, g). From its definition (49), it can easily be shown that

Proposition 1 ([20]). A Riemannian manifold M with metric gij admits biorthogonal coordinates if and only if
∂gij

∂xk is totally symmetric, i.e.,
∂gij(x)

∂xk =
∂gik(x)

∂xj . (56)

In this case, M is Hessian.

That (56) is satisfied for biorthogonal coordinates is evident by virtue of (48) and (49). Conversely,
given (56), there must be n functions ui(x), i = 1, 2, · · · , n, such that,

∂ui(x)
∂xj = gij(x) = gji(x) =

∂uj(x)
∂xi .

The above identity implies that there exist a function Φ such that ui = ∂iΦ and, by positive
definiteness of gij, Φ would have to be a strictly convex function! In this case, the x- and u-variables
satisfy (45), and the pair of convex functions, Φ and its conjugate Φ̃, are related to gij and gij by

gij(x) =
∂2Φ(x)
∂xi∂xj ←→ gij(u) =

∂2Φ̃(u)
∂ui∂uj

.

It follows from Proposition 1 that a necessary and sufficient condition for a Riemannian manifold
to admit biorthogonal coordinates it that its Levi-Civita connection is given by

Γ̂ij,k(x) ≡
1
2

(
∂gik

∂xj +
∂gjk

∂xi −
∂gij

∂xk

)
=

1
2

∂gij

∂xk .

From this, the following can be shown:

Corollary 1. A Riemannian manifold (M, g) admits a pair of biorthogonal coordinates x and u if and only if
there exists a pair of conjugate connections∇ and∇∗ such that Γij,k(x) = 0, Γ∗rs,t(u) = 0.

In other words, biorthogonal coordinates are affine coordinates for the dually-flat pair of
connections. In fact, we can now define a pair of torsion-free connections by

Γij,k(x) = 0, Γ∗ij,k(x) =
∂gij

∂xk ,
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and show that they are conjugate with respect to g, that is, they satisfy (38). This means that we select
an affine connection ∇ such that x is its affine coordinate system. From (53), when ∇∗ is expressed
in u-coordinates,

Γ∗rs,t(u) = ∑
i,j,k

gir(u)gjs(u)
∂xk

∂ut

∂gij(x)
∂xk +

∂gts(u)
∂ur

= ∑
i,j

gir(u)
(
−∂gjs(u)

∂ut
gij(x)

)
+

∂gts(u)
∂ur

= −∑
j

δr
j
∂gjs(u)

∂ut
+

∂gts(u)
∂ur

= 0.

This implies that u is an affine coordinate system with respect to∇∗. Furthermore,

gij(u) =
∂2Φ̃(u)
∂ui∂uj

, Γij,k(u) =
∂3Φ̃(u)

∂ui∂uj∂uk
,

where Φ̃ is the convex conjugate of Φ. Therefore, biorthogonal coordinates are affine coordinates for a
pair of dually-flat connections. On the manifold of parameterized probability density functions, if the
x-coordinates are the natural parameters, then the u-coordinates are the expectations.

5. Linking Information Geometry with Geometric Mechanics

5.1. Symplectic Structure on Q×Q Induced from the Divergence Function D

We will now establish the connection between information geometry and discrete geometric
mechanics. The divergence function from information geometry can be viewed as a Type I generating
function of a symplectic map, and in particular, it can be viewed as a discrete Lagrangian in the sense
of discrete Lagrangian mechanics. More specifically, let the configuration manifold be the information
manifold, i.e., Q = M, and the discrete Lagrangian be the divergence function, i.e., Ld = D. With this
identification, we observe that the information geometric construction of symplectic structure on
M×M described below is nothing but the discrete symplectic structure on Q×Q given in (28) where
the discrete Lagrangian Ld is replaced with the divergence function D.

From information geometry, a divergence functionD is given as a scalar-valued binary function on
Q (of dimension n). We now view it as a unary function on Q×Q (of dimension 2n) that vanishes along
the diagonal ∆Q ⊂ Q×Q. In this subsection, we investigate the conditions under which a divergence
function can serve as a generating function of a symplectic structure on Q×Q. A compatible metric
on Q×Q will also be derived. When restricted to the diagonal submanifold ∆Q, the skew-symmetric
symplectic form will vanish, so ∆Q, which carries a statistical structure, is actually a Lagrangian
submanifold (see [21,22]).

First, we fix a point x in the first slot and a point y in the second slot of (x, y) ∈ Q×Q – this results
in two n-dimensional submanifolds of Q×Q that will be denoted, Qx = Q× {y} ' Q (with the y
point fixed) and Qy = {x} ×Q ' Q (with the x point fixed), respectively. The canonical symplectic
form ωx on the cotangent bundle T∗Qx is given by

ωx = ∑
i

dxi ∧ dξi.

Given D, we define a map LD from Qy ⊂ Q×Q to T∗Qx, (x, y) 7→ (x, ξ), which is given by,

LD : (x, y) 7→ (x, ∑
i
Di(x, y)dxi).
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Recall that the comma in the subscript of a divergence function D indicates whether it is being
differentiated with respect to a variable in the first or second slot. It is easily checked that there exists a
neighborhood of the diagonal ∆Q ⊂ Q×Q, such that the map LD is a diffeomorphism. In particular,
the Jacobian of the map is given by (

δij Dij
0 Di,j

)
,

which is nondegenerate in a neighborhood of the diagonal ∆Q.
We calculate the pullback by LD of the canonical symplectic form ωx on T∗Qx to Q×Q:

L∗D ωx = L∗D (∑
i

dxi ∧ dξi) = ∑
i

dxi ∧ dDi(x, y)

= ∑
i

dxi ∧∑
j
(Dij(x, y)dxj +Di,jdyj) = ∑

ij
Di,j(x, y)dxi ∧ dyj.

Here, ∑ijDijdxi ∧ dxj = 0, since by the equality of mixed partials, Dij(x, y) = Dji(x, y)
always holds.

Similarly, we consider the canonical symplectic form ωy = ∑i dyi ∧ dηi on T∗Qy and define a map
RD from Q×Q→ T∗Qy, (x, y) 7→ (y, η), which is given by

RD : (x, y) = (y, ∑
i
D,i(x, y)dyi).

Using RD to pullback ωy to Q×Q yields an analogous formula:

R∗Dωy = −∑
ij
Di,j(x, y)dxi ∧ dyj.

Therefore, based on canonical symplectic forms on T∗Qx and T∗Qy, we obtained the same
symplectic form on Q×Q

ωD(x, y) = −∑
ij
Di,j(x, y)dxi ∧ dyj. (57)

Theorem 1 ([22]). A divergence functionD induces a symplectic form ωD (57) on Q×Q which is the pullback
of the canonical symplectic forms ωx and ωy by the maps LD and RD,

L∗D ωy = ∑
ij
Di,j(x, y)dxi ∧ dyj = −R∗D ωx. (58)

With the symplectic form ωD given as above, it is easy to check that ωD is closed:

dωD = ∑
ijk

{
∂3D

∂xk∂xi∂yj dxk ∧ dxi ∧ dyj +
∂3D

∂yk∂xi∂yj dyk ∧ dxi ∧ dyj
}
= 0.

It was Barndorff-Nielsen and Jupp [21] who first proposed (57) as an induced symplectic form on
Q×Q, apart from a minus sign; they called the divergence function D a york.

The fact that this symplectic structure coincides with the one introduced in discrete mechanics
should come as no surprise. The Qx and Qy submanifolds are related to the two ways of viewing
Q × Q as a bundle over Q, depending on whether one chooses π1 : Q × Q → Q, (x, y) 7→ x
or π2 : Q×Q→ Q, (x, y) 7→ y as the bundle projection. Then, the maps LD, RD are, up to a sign,
simply the discrete fiber derivatives FL±d , where the discrete Lagrangian Ld is replaced by the
divergence function D.
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5.2. Divergence as a Type I Generating Function

As we have seen previously, symplectic maps are a natural way of describing the flow of
Hamiltonian mechanics on the cotangent bundle T∗Q. We will now consider the characterization
of symplectic maps in terms of generating functions, and in particular, we review three different
parameterizations based on the classification given in Goldstein [23].

Lemma 2. Given (q0, q1) ∈ Q×Q, then (q0, p0) 7→ (q1, p1) on T∗Q is symplectic if and only if there exists
S1 : Q×Q→ R such that

p0 = −D1S1, p1 = D2S1. (59)

To prove this, observe that

dS1(q0, q1) = (D1S1)dq0 + (D2S1)dq1,

from which, we immediately obtain

−dp0 ∧ dq0 + dp1 ∧ dq1 = 0 = d2S1(q0, q1) = d(D1S1)∧ dq0 + d(D2S1)∧ dq1.

Identifying the corresponding terms yield (59).
Type I generating functions S1 are linked with other types of generating functions via partial

Legendre transforms. Fixing the first or second variable slot leads to, respectively, Type II or III
generating functions, denoted S2, S3 respectively.

Let H+ be a submanifold, with local coordinates (q0, p1), of Q× (T∗Q), with local coordinates
(q0, (q1, p1)), where q1 is dependent on q0 and p1. Then (q0, p0) 7→ (q1, p1) on T∗Q is symplectic if and
only if there exists S2 : H+ → R such that

p0 = D1S2, q1 = D2S2. (60)

Likewise, letH− be a submanifold, whose local coordinates are (p1, q0), of (T∗Q)×Q with local
coordinates ((q0, p0), q1) where q0 is dependent on p0 and q1. Then (q0, p0) 7→ (q1, p1) on T∗Q is
symplectic if and only if there exists S3 : H− → R such that

q0 = −D1S3, p1 = −D2S3. (61)

In the case of discrete mechanics, the Type II generating function is denoted by H+(q0, p1) and
the Type III generating function is denoted by H−(q1, p0). We compute their exterior derivatives:

dH+(q0, p1) = D1H+(q0, p1)dq0 + D2H+(q0, p1)dp1, (62)

dH−(q1, p0) = D1H−(q1, p0)dq1 + D2H−(q1, p0)dp0. (63)

From this, we obtain,

0 = d2H+(q0, p1) = d(D1H+(q0, p1)dq0 + D2H+(q0, p1)dp1) (64)

= d(p0dq0 + q1dp1) = dp0 ∧ dq0 + dq1 ∧ dp1, (65)

0 = d2H−(q1, p0) = d(D1H−(q1, p0)dq1 + D2H−(q1, p0)dp0) (66)

= d(p1dq1 + q0dp0) = dp1 ∧ dq1 + dq0 ∧ dp0. (67)

Therefore, symplectic maps can be defined implicitly in terms of a Type II generating function
H+(q0, p1),

q1 = D2H+(q0, p1), p0 = D1H+(q0, p1),
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and a Type III generating function H−(q1, p0),

q0 = D2H−(q1, p0), p1 = D1H−(q1, p0).

More explicitly, these are related to the discrete Lagrangian Ld(q0, q1), which is a Type I generating
function, by the following partial Legendre transforms:

H+(q0, p1) = ext
q1
{〈p1, q1〉 − Ld(q0, q1)} , (68)

H−(q1, p0) = ext
q0
{〈p0, q0〉 − Ld(q0, q1)} , (69)

or equivalently,

H+(q0, p1)− 〈p1, q∗1〉+ Ld(q0, q∗1) = 0, (70)

H−(q1, p0)− 〈p0, q∗0〉+ Ld(q∗0, q1) = 0. (71)

The upshot of the above discussion is that p0, p1 are Legendre dual variables with respect to q0,
q1, whereas in the fiberwise Legendre transform FL, it is (q0, v0), (q1, v1) which are dual to (q0, p0),
(q1, p0)—the dual correspondence is q ↔ p, instead of v ↔ p. As before, the two discrete Legendre
dualities are due to the two ways of viewing Q×Q as a bundle over Q.

In the context of information geometry, H± is nothing but the partial Legendre transform of the
divergence function D(x, y) with respect to the first or second argument. Consider the Bregman
divergence BΦ(q0, q1),

BΦ(q0, q1) ≡ Φ(q1)−Φ(q0)− 〈∂Φ(q0), q1 − q0〉,

and view it as a discrete Lagrangian Ld(q0, q1). Then, its partial Legendre transform with respect to q1,
the Type II generating function H+, is

H+(q0, p1) =

〈
q1,

∂BΦ(q0, q1)

∂q1

〉
−BΦ(q0, q1) ,

which evaluates to
H+(q0, p1) = BΦ(q1(q0, p1), q0),

where
q1 = (∂Φ)−1(p1 + ∂Φ(q0)),

is obtained by solving

p1 =
∂BΦ(q0, q1)

∂q1
= ∂Φ(q1)− ∂Φ(q0).

By substitution, we obtain,

H+(q0, p1) = BΦ(∂Φ)−1(∂Φ(q0) + p1), q0) = BΦ̃(∂Φ(q0), ∂Φ(q0) + p1).

Note that in this case, the Legendre dual of q1 is no longer p1 = ∂Φ(q1) as given by the fiberwise
Legendre map, but is rather shifted by an amount ∂Φ(q0). It is interesting that H+ still takes the form
of B, as does Ld. This is a special property of taking the Bregman divergence as the generating function.

5.3. D-Divergence for Decoupling L and H

In geometric mechanics, Hamiltonian and Lagrangian dynamics represent one and the same
dynamics–they are coupled; this is because H(q, p) and L(q, v) are related by the fiberwise Legendre
transform FL = (FH)−1–in fact they are a Legendre pair. The conservation properties of the
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Hamiltonian approach with respect to the underlying symplectic geometry and the variational
principles that arise in the Lagrangian and Hamilton–Jacobi theories reflect two sides of the same coin.

TQ FL // T∗Q

Q×Q

Rq

ee

FLd

99

(72)

To appreciate this, we look at the interaction of three manifolds Q×Q, T∗Q and TQ. We take
(qk, qk+1) to be the configuration variable q at successive time-step—it is the dynamical equation that
governs the evolution from qk to qk+1. The Hamiltonian dynamics, which is encoded in the preservation
of ωcan of T∗Q, governs discrete Hamiltonian flow H(qk, pk), through a Type I generating function
Ld(qk, qk+1). On the other hand, the Lagrangian flow is governed by the retraction mapRq, such as
the Dirichlet-to-Neumann map induced by Jacobi’s solution Sq0(q) to the Hamilton–Jacobi equation.
Those two dynamic updates qk → qk+1 need not be identical. In mechanics, the Hamiltonian energy
conservation system and the Lagrangian extremization system lead to one and the same dynamics,
precisely because L(qk, vk) and H(qk, pk) are linked through the fiberwise Legendre transform FL at qk:

L(qk, vk) + H(qk, pk)− 〈vk, pk〉qk ≡ 0.

In other words, L and H are perfectly coupled–with no duality gap.
Information geometry, on the other hand, starts with a divergence (or contrast) function D(q, v, p)

on TQ⊕ T∗Q, which measures the discrepancy between the two systems. Given H(q, p) on T∗Q and
L(q, v) on TQ, we write

D(q, v, p) = L(q, v) + H(q, p)− 〈v, p〉q.

Theorem 2. Let L(q, v) and H(q, p) be strictly convex functions, defined on TQ and T∗Q in terms of the
variables (q, v) and (q, p), respectively. Then, for the following statements, any two imply the rest:

(i) D = 0;
(ii) H(q, ·) and L(q, ·) are (fiberwise) convex conjugate (Legendre dual) to each other;

(iii) p = ∂L
∂v = FL(v) ;

(iv) v = ∂H
∂p = FH(p) .

When D = 0, ωL(ξL, ·) = ιξL ωL = dEL with ξL = (q̇, v̇), and

EL(q, v) = ∑
i

vi ∂L(q, v)
∂vi − L(q, v).

Then,

dEL = ∑
i

(
∑

j

∂2L
∂qi∂vj vj − ∂L

∂qi

)
dqi +∑

ij
vj ∂2L

∂vi∂vj dvi.

The Euler–Lagrange equations are equivalent to

ξL =

(
∂EL
∂q

,
∂EL
∂v

)
.

Our insight here is that D does not have to vanish identically. The consequence is that we do not
require the Lagrangian dynamics (extremization dynamics) and Hamiltonian dynamics (conservation
dynamics) to be coupled; they will be allowed to evolve independently. The function D allows us to
study fiberwise symplectomorphisms of Dirac manifolds.
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Let us consider the case that (ii) holds, i.e., H(q, ·) and L(q, ·) are Legendre duals to each other.
Then, the canonical divergence D can be written as the Bregman divergence BH and BL, after applying
the fiberwise Legendre map FL or FH,

p =
∂L(q, v)

∂v
⇐⇒ v =

∂H(q, p)
∂p

.

This implies that,

BL(q, v0, v1) ≡ D
(

q, v0,
∂L(q, v)

∂v1

)
= L(q, v1)− L(q, v0)−

〈
∂L(q, v0)

∂v0
, v1 − v0

〉
,

BH(q, p0, p1) ≡ D
(

q,
∂H(q, p0)

∂p0
, p1

)
= H(q, p1)− H(q, p0)−

〈
∂H(q, p0)

∂p0
, p1 − p0

〉
,

and they satisfy,
BL(q, v0, v1) = BH(q, p1, p0).

This is the reference-representation biduality [18,19], which is satisfied whenever L and H are
Legendre duals of each other.

5.4. Variational Error Analysis

Recall that we previously defined the exact discrete Lagrangian LE
d (16), which is related to Jacobi’s

solution of the Hamilton–Jacobi equation. The significance of the exact discrete Lagrangian is that it
generates the exact discrete time flow of a Lagrangian system, but in general it cannot be computed
explicitly. Instead, a computable discrete Lagrangian Ld is used instead to construct a discretization of
Lagrangian mechanics, and it induces the discrete Lagrangian map FLd .

Since discrete variational mechanics is expressed in terms of discrete Lagrangians, and the
exact discrete Lagrangian generates the exact flow map of a continuous Lagrangian system, it is
natural to ask whether we can characterize the order of accuracy of the Lagrangian map FLd as
an approximation of the exact flow map, in terms of the extent to which the discrete Lagrangian
Ld approximates the exact discrete Lagrangian LE

d . This is indeed possible, and is referred to as
variational error analysis. Theorem 2.3.1 of [11] shows that if a discrete Lagrangian Ld approximates the
exact discrete Lagrangian LE

d to order p, i.e., Ld(q0, q1; h) = LE
d (q0, q1; h) +O(hp+1), then the discrete

Hamiltonian map, F̃Ld : (qk, pk) 7→ (qk+1, pk+1), viewed as a one-step method, is order p accurate.
As mentioned above, the divergence function D from information geometry can serve as a Type I

generating function of a symplectic map, and hence it can be viewed as a discrete Lagrangian in the
sense of discrete Lagrangian mechanics. A divergence function also generates the Riemannian metric
and affine connection structures on the diagonal manifold (Lemma 1), in addition to generating the
symplectic structure on Q×Q. Viewed in this way, a natural question is to what extent can we view
the divergence function as corresponding to the exact Lagrangian flow of an associated continuous
Lagrangian. We can show that

Theorem 3. The exact discrete Lagrangian LE
d (q(0), q(h), h) associated with the geodesic flow, with respect

to the induced metric g, can be approximated by a divergence function D(q(0), q(h)) up to third order
O(h3) accuracy,

LE
d (q(0), q(h), h) = hL(q(0), v(0)) +D(q(0), q(h)) +O(h3),

if and only if Q is a Hessian manifold, i.e., D is the Bregman divergence BΦ, for some strictly convex function Φ.

Proof. Let us expand the exact discrete Lagrangian to obtain,

LE
d (q(0), q(h), h) = hL(q, q̇) +

h2

2

(
∂L
∂q

(q, q̇) +
∂L
∂q̇

(q, q̇) · q̈
)
+O(h3)
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= hL(q, v) +
h2

2

(
∂L
∂qi vi +

∂L
∂vi ai

)
+O(h3), (73)

where q(0) = q, v = q̇(0), a = q̈(0).
From the definition of a divergence function:

D,j(q, q) = 0.

Differentiating with respect to q,

0 =
∂

∂qiD,j(q, q) = Di,j(q, q) +D,ij(q, q),

so
Di,j(q, q) = −D,ij(q, q).

Differentiating with respect to q again,

∂

∂qkD,ij(q, q) = Dk,ij(q, q) +D,ijk(q, q).

Observe that the left-hand side is the metric induced by the divergence function,

∂

∂qkD,ij(q, q) = −Di,j(q, q) = gij(q).

Expanding D(q, q′) around q = q(0) for q′ = q(h):

q′ = q + vh +
1
2

ah2 +O(h3),

we obtain

D(q, q′) =
h2

2
gij(q) +

h3

4
gij(q)(viaj + vjai) +

h3

6
Γijk(q)vivjvk +O(h4),

where

D(q, q) = 0, D,i(q, q) = 0, D,ij(q, q) ≡ gij(q) = −Di,j(q, q), D,ijk(q, q) ≡ Γijk(q).

Clearly, gij = gji, and
Γijk = Γikj = Γkij = Γkji = Γjki = Γjik.

Comparing the corresponding terms in powers of h, we obtain,

L(q, v) =
1
2

gijvivj, (74)

vi ∂L
∂qi (q, v) + ai ∂L

∂vi (q, v) =
1
2

gij(aivj + ajvi) +
1
3

Γijkvivjvk. (75)

Substituting (74) into (75) yields
∂gij

∂qk = Γijk,

with
∂gij

∂qk =
∂gik

∂qj .
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This, according to Proposition 1, demonstrates that the manifold M is Hessian, and hence dually-flat.
So, for the expansions to agree to O(h3), the inducing divergence function D must be the Bregman
divergence BΦ.

6. Summary

In this paper, we show the differences and connections between geometric mechanics and
information geometry in canonically prescribing differential geometric structures on a smooth manifold
Q. The Legendre transform plays crucial roles in both; however, they serve very different purposes.
In geometric mechanics, the fiberwise Legendre map serves to link the cotangent bundle T∗Q with
tangent bundle TQ, whereas in information geometry, the Legendre transform relates the pair of
biorthogonal coordinates, which are special coordinates on a dually-flat manifold Q. More specifically,
FL (or its inverse FH) is invoked to establish the isomorphism between T∗Q ↔ TQ in geometric
mechanics, whereas in information geometry, a Hessian metric g built upon a convex function on Q is
used for the correspondence between two coordinate systems on Q, and also for potentially (but not
necessarily) establishing a correspondence between TQ and T∗Q.

The link between information geometry and discrete mechanics is much stronger when one
considers the discrete version (as opposed to the traditional, continuous version) of geometric
mechanics. Both endow a symplectic structure ω× on Q×Q, through the use of a discrete Lagrangian
Ld in the case of geometric mechanics and a divergence function D in the case of information
geometry—in fact they are both Type I generating functions for inducing ω× on Q×Q via pullback
from the canonical symplectic structure ωcan on T∗Q. Using the Legendre transform, Type II generating
functions can be constructed, which lead to the (right) discrete Hamiltonian H+ in geometric mechanics
and to the dual divergence function in information geometry.

Our analyses draw a distinction between the fiberwise Legendre map (which is used in continuous
mechanics setting), the Legendre transform between biorthogonal coordinates (which is used in
information geometry), and the Legendre transform between Type I and Type II generating functions
(which is used in the setting of both discrete geometric mechanics and information geometry).
The distinctions are more prominent when one considers the Pontryagin bundle TQ ⊕ T∗Q.
There, we can construct a divergence function that actually measures the duality gap between the
Lagrangian function and the Hamiltonian function that generate a pair of (forward and backward)
Legendre maps. In so doing, we demonstrate that information geometry can be viewed as an extension
of geometric mechanics based on Dirac mechanics and geometry, with a full-blown duality between
the Lagrangian and Hamiltonian components.

7. Discussion and Future Directions

Noda [24] showed that, with respect to the symplectic structure ω× on Q×Q, the Hamiltonian
flow of the canonical divergence A induces geodesic flows for∇ and∇∗. He interpreted biorthogonal
coordinates as a single coordinate system on Q×Q, in a way that is consistent with treating A as the
Type I generating function on Q×Q. It remains unclear how the resulting Hamiltonian flow is related
to dynamical flow on the Dirac manifold.

In another related work, Ay and Amari [25] sought to characterize the canonical form of
divergence functions for general (non dually-flat) manifolds. They investigated the retraction map
Rq : {q} ×Q→ TqQ which we discussed in Section 2.5, and used the exponential map associated
to any torsion-free affine connection ∇ on TQ. This approach, based on parallel transport, in essence
generates a semispray on TQ, and is quite different from characterizing the dynamics using the Hamilton
flow on T∗Q. Note that even though one may define a symplectic structure (through pullback) on
TQ as well, Ay and Amari [25] treats the semispray on TQ as the primary geometric object. Future
research will clarify its relation to our approach, which is based on defining a symplectic structure on
Q×Q directly.



Entropy 2017, 19, 518 30 of 31

Finally, comparing information geometry with geometric mechanics may shed light on universal
machine learning algorithms. In machine learning or state estimation applications, we wish to
have the estimated distribution be influenced by the observations, so that the estimated distribution
eventually becomes consistent with the observed data. Let {xi} denote the sequence of predictions
by (possibly a series of) model distributions X , and let {yi} denote the actual data generated by
an unknown distribution Y that we are trying to estimate. In practice, the divergence functions are
constructed so that the pseudo-distance between two distributions X and Y can be computed using only
complete information about X and samples from Y . As such, we can measure the mismatch between
the current prediction xi and the actual data yi using D(xi, yi), since the asymmetry in the definition
of D is such that we only require samples yi from the true but unknown distribution. So, adding
a momentum term to ensure gentle change in model predictions, a possible choice of a discrete
Lagrangian for generating the discrete dynamics for the machine learning application might be given
by

L(xi, xi+1) = D(xi, xi+1) +D(xi+1, yi+1),

where the first term can be interpreted as the action associated with the kinetic energy, and the
second term is the action associated with the potential energy. By construction, the term D(xi, yi)

vanishes when the prediction xi is consistent with the actual observation yi, and it is positive otherwise,
so the term D(xi, yi) can be viewed as a potential energy term that penalizes mismatch between the
estimated distribution and the observational data. Our variational error analysis may thus shed light
on an asymptotic theory of inference where sample size N → ∞ is akin to discretization step h→ 0.

The link between geometric mechanics and information geometry, as revealed through our
present investigation, is still rather preliminary. The possibility of a unified mathematical framework
for information and mechanics is intriguing and remains a challenge for future research.
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