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Abstract: This paper considers a two-way relay network, where two legitimate users exchange
messages through several cooperative relays in the presence of an eavesdropper, and the Channel
State Information (CSI) of the eavesdropper is imperfectly known. The Amplify-and-Forward (AF)
relay protocol is used. We design the relay beamforming weights to minimize the total relay transmit
power, while requiring the Signal-to-Noise-Ratio (SNRs) of the legitimate users to be higher than
the given thresholds and the achievable rate of the eavesdropper to be upper-bounded. Due to
the imperfect CSI, a robust optimization problem is summarized. A novel iterative algorithm is
proposed, where the line search technique is applied, and the feasibility is preserved during iterations.
In each iteration, two Quadratically-Constrained Quadratic Programming (QCQP) subproblems
and a one-dimensional subproblem are optimally solved. The optimality property of the robust
optimization problem is analyzed. Simulation results show that the proposed algorithm performs
very close to the non-robust model with perfect CSI, in terms of the obtained relay transmit power;
it achieves higher secrecy rate compared to the existing work. Numerically, the proposed algorithm
converges very quickly, and more than 85% of the problems are solved optimally.

Keywords: physical layer security; amplify-and-forward two-way relay; imperfect CSI; robust
optimization; line search technique

1. Introduction

Due to the openness and the broadcast property of wireless communication, network security
becomes a challenging issue. The physical layer security technique becomes appealing, because it
guarantees the information being only accessed by the legitimate users rather than eavesdroppers.
It makes use of the physical characteristics of wireless channels and is free of a security key, so that
the information is transmitted securely in the sense that it can be decoded by legitimate users,
but not eavesdroppers.

Physical layer security is widely studied from both the information theory aspect and
the signal processing aspect for wiretap channels, like broadcast wiretap channels and
Multiple-Input-Multiple-Output (MIMO) wiretap channels. The secure communication is managed
through multiple-antenna system [1–9] or node cooperation [10,11]. Research works on node
cooperation are well explored. It is suitable for low-complexity networks, which cannot afford multiple
antennas. Cooperative relay networks with Amplify-and-Forward (AF) [12–15] or Decode-and-Forward
(DF) [16,17] protocols are mostly investigated. For one-way relay networks, the authors in [18,19] design
the relay beamforming weights to maximize the secrecy rate and to minimize the relay transmit power;
the secrecy outage probability is analyzed for both half-duplex [20] and full-duplex relay networks [21];
in [22], the optimal relay selection schemes are considered, for both AF and DF protocols; the secure
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energy efficiency maximization model is proposed in [23]; the asymptotic secrecy performance for
the large-scale MIMO relaying scenario is analyzed in [24], which concludes that the AF protocol is
a better choice compared to DF under large transmit powers. Compared to one-way relay, two-way
relay networks are more efficient for communications between user pairs. In [25], the minimum
per-user secrecy rate is maximized, and the source power allocation is analyzed, where the relay
beamforming vector lies in the nullspace of the equivalent channel of the relay link from user nodes to
the eavesdropper.

All the aforementioned references suppose that the CSI from users and from relays to
eavesdroppers are perfectly known. In fact, it is very difficult to obtain the perfect CSI of the
eavesdroppers. Assuming that no CSI of eavesdroppers is known, artificial noise is introduced in the
literature, and enhances security: Wang et al. proposes a cooperative artificial noise transmission-based
secrecy strategy and summarizes the relay beamforming design and power allocation problems as
second order cone programming and linear programming problems [14], respectively; Salem et al.
sends the artificial noise in the nullspace of the legitimate channel and compares the cases in which that
all relays are working and that only the best relay is used [15]. In [26], no CSI of eavesdroppers and
imperfect CSI between users and jammers are assumed, and the secrecy performance is analyzed for
the Cooperative Jamming (CJ) technique. Networks with imperfect CSI are often considered, as well.
The multi-user downlink channel is considered in [27], where the lower bound of the sum secrecy
rate is maximized, and semi-definite relaxation and first order Tailor extension techniques are applied.
In [28], a multiple-antenna AF relay network with partial CSI and a bounded error region is considered,
which maximizes the worst case secrecy rate, where a rank two relay beamformer is constructed via
singular value decomposition. The secure communication switches between the DF relay protocol
and the CJ technique in [29], and the authors provide robust designs for the secrecy rate maximization
and secrecy outage probability minimization problems. In [30], both the source and the relay have
multiple antennas, where they jointly design source and relay beamforming matrices, to minimize
the relay power with Quality of Service (QoS) constraints. The worst case SNR at the eavesdropper is
considered, which is approximated by its upper bound. For a two-way relay network with two users
and one eavesdropper, Wang et al. assumes no CSI of the eavesdropper is available [31]. The artificial
noise technique is applied, and the relay transmit power for signals is minimized, while the QoS of
two users are guaranteed. A second order cone programming problem is formed and solved by the
interior point method.

In this paper, we consider the same communication model as [31]. Differently, we assume that
there is imperfect CSI from users and relays to the eavesdropper. By designing the relay beamforming
weights, we build up the model to minimize the relay transmit power, while the QoS of the legitimate
users are guaranteed, and the worst case achievable rate of the eavesdropper is upper bounded.
Compared to [31], the proposed model makes use of the imperfect CSI, and guarantees that the
achievable rate of the eavesdropper is very low. Compared to the optimization model in [31],
the proposed model has an extra robust constraint for the eavesdropper, which leads to a much
more difficult robust optimization problem [32]. Usually, such problem is NP-hard. There is a lack of
an efficient method to solve this kind of problem. We propose an efficient iterative algorithm to solve
the problem with the line search technique. In each iteration, two Quadratically-Constrained Quadratic
Programming (QCQP) subproblems and a one-dimensional subproblem are solved optimally; the iterative
points always remain feasible. The optimality conditions of the robust optimization problem are also
analyzed. Simulation results show that compared to [31], our algorithm achieves a higher secrecy rate;
the proposed algorithm is efficient and converges very quickly; numerically, more than 85% of the
problems are solved optimally. The main contributions of our paper are listed as follows:

1. A new model to design the relay beamforming weights is proposed with the assumption of
imperfect CSI and summarized as a robust optimization problem.
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2. A novel algorithm is proposed, where the line search technique is applied. A sequence of QCQP
subproblems and one-dimensional subproblems is solved optimally. The feasibility is preserved
during iterations. Simulation results verify the efficiency of the proposed algorithm.

3. The optimality properties of the robust optimization problem are analyzed. Numerically, most
problems are solved optimally.

The rest of the paper is organized as follows. The system model of the two-way relay network
with one eavesdropper is shown in Section 2. In Section 3, the corresponding optimization problem
is summarized, and a novel algorithm is proposed. Simulation results are shown in Section 4.
The conclusion is summarized in Section 5.

Notations: Uppercase and lowercase bold-faced letters denote matrices and column vectors,
respectively. R and C represent the real and complex domain, respectively. (·)H , (·)T and (·)∗
represent the Hermitian, transpose and conjugate of a matrix, respectively. | · | represents the absolute
value. By default, ‖ · ‖ is the two-norm of a vector. ‖ · ‖F is the Frobenius norm of a matrix. E(·) is the
mathematical expectation of a random variable. Tr(·) represents the trace of a matrix. Re(·) means
the real part of a scaler, a vector or a matrix. λmax(·) represents the largest eigenvalue of a Hermitian
matrix. Diag(a) is the diagonal matrix with diagonal entries as the elements of vector a; Diag(A) is the
diagonal matrix with the same diagonal entries as matrix A. x ∼ N (µ, σ2) represents that the random
variable x obeys a Gaussian distribution with the mean as µ and variance as σ2.

2. System Model

We consider a half-duplex wireless communication system where two legitimate users Alice
(U1) and Bob (U2) exchange messages with N relay nodes Rn, n = 1, 2, . . . , N, in the presence of an
eavesdropper Eve, who eavesdrops signals from the two users and relays passively, as illustrated in
Figure 1. Suppose each user, each relay and Eve have a single antenna. The AF relay protocol is applied.

Alice

Relay 1
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Bob

Relay 2

Relay N

1
f

2
h

1
h

2
f
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Figure 1. Secure communication model for the two-way relay network.

We assume that the perfect CSI between two users and relays is known, as hj ∈ CN×1, j = 1, 2.
However, due to limited feedback, it is difficult to obtain perfect CSI of Eve. Thus we assume the
imperfect CSI for the channels from users and relays to the eavesdropper, and the norm-bounded error
channel estimation is considered. The CSI between the users and the eavesdropper, f j ∈ C, and that
between relays and the eavesdropper, c ∈ CN×1, are assumed to be imperfect and are estimated with
bounded errors:

f j = f 0
j + ∆ f j, |∆ f j| ≤ ε j, j = 1, 2; (1)

c = c0 + ∆c, ‖∆c‖ ≤ ε. (2)

Here, f 0
j and c0 are the estimations, which are achievable; ∆ f j and ∆c are the bounded errors,

j = 1, 2. Such assumptions are practical in scenarios where some users and relays are turned into
eavesdroppers and their CSI have already been partially estimated.
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In the first phase, Alice and Bob transmit
√

Pjsj, j = 1, 2 to all relays, respectively, where Pj is the
fixed transmit power and sj ∈ C is the information symbol with E(|sj|2) = 1. Then, relays receive:

yR =
2

∑
j=1

√
Pjhjsj + nR,

where nR ∈ CN×1 is the noise at relays with zero mean and covariance matrix as σ2
RIN .

In the second phase, the n-th relay multiples its received signal by its beamforming weight wn

and then broadcasts the signal to both users. Thus, the vector transmitted by relays is represented as
xR = WHyR, where W = Diag(w) and w = (w1, w2, . . . , wN)

T . Alice receives:

y1 = hT
1 xR + z1 = hT

1 WHh1
√

P1s1︸ ︷︷ ︸
self-canceled signal

+hT
1 WHh2

√
P2s2︸ ︷︷ ︸

desired signal

+hT
1 WHnR + z1︸ ︷︷ ︸

noise

,

where z1 ∼ N (0, σ2
1 ) is the local noise. It consists of the self-canceled signal, which is perfectly known

by Alice and is canceled locally, the desired signal from Bob and the noise. The received signal at Bob
has a similar expression.

Since the two source nodes subtract their self-canceled terms, the SNRs achieved at Alice and Bob
can be respectively expressed as:

SNR1 =
P2|hT

1 WHh2|2

σ2
R‖hT

1 WH‖2 + σ2
1
=

P2|wHH1h2|2

σ2
R‖wHH1‖2 + σ2

1
, (3)

SNR2 =
P1|hT

2 WHh1|2

σ2
R‖hT

2 WH‖2 + σ2
2
=

P1|wHH2h1|2

σ2
R‖wHH2‖2 + σ2

2
, (4)

where Hj = Diag(hj), j = 1, 2.
In both phases, Eve listens to the users and relays and receives signals as:

yE1 =
2

∑
j=1

√
Pj f jsj + nE1,

yE2 = cTWHyR + nE2 = cTWH
2

∑
j=1

√
Pjhjsj + (cTWHnR + nE2),

where nE1 ∼ N (0, σ2
E1) and nE2 ∼ N (0, σ2

E2) are the noise at Eve in the two phases, respectively.
Suppose Eve is intelligent and tries to decode signals by combining the information received in both
phases, which is expressed as:

yE = HEs + nE,

where:

HE =

( √
P1 f1

√
P2 f2√

P1wHCh1
√

P2wHCh2

)
, s =

(
s1

s2

)
, nE =

(
nE1

wHCnR + nE2

)
, and C = Diag(c). (5)

Suppose all the transmit signals and all the noises are independent of each other. The achievable
rate of Eve is denoted as:

RE =
1
2

log2|I2 + K−1
E HEHH

E | =
1
2

log2(1 + R0). (6)
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Here, KE = Diag(σ2
E1, σ2

E2 + σ2
RwHCCHw), and:

R0(∆c, ∆ f1, ∆ f2; w) =
∑2

j=1 Pj| f j|2

σ2
E1

+
∑2

j=1 Pj|wHChj|2

σ2
E2 + σ2

RwHCCHw
+

P1P2| f1wHCh2 − f2wHCh1|2

σ2
E1(σ

2
E2 + σ2

RwHCCHw)
.

The detailed deduction is shown in Appendix A. The definitions of C and f j, j = 1, 2 are shown
in (5) and (1).

We want to design the relay beamforming vector w, to minimize the total relay transmit power,
while requiring the SNRs of two legitimate users to be guaranteed and the achievable rate of Eve
to be upper-bounded. Due to the imperfect CSI of Eve, the worst case achievable rate is considered.
The model is summarized as follows:

min
w∈CN×1

PR(w) (7a)

s. t. SNRj(w) ≥ γj, j = 1, 2; (7b)

RE(∆c, ∆ f1, ∆ f2; w) =
1
2

log2(1 + R0) ≤ rE,

for all ‖∆c‖2 ≤ ε, |∆ f j| ≤ ε j, j = 1, 2. (7c)

where the relay transmit power is:

PR = E(xH
R xR) = Tr(E((WHyR)(WHyR)

H))

= P1wHH1HH
1 w + P2wHH2HH

2 w + σ2
RwHw,

and γ1, γ2, rE are the given thresholds. Here the achievable rate of Eve is required to be below the given
threshold under any variation of channel coefficients. Due to the constraint (7c), we can guarantee that
the achievable rate of Eve is very low. Because of this constraint, problem (7) is a robust optimization
problem. It is equivalent to a QCQP problem with infinite constraints, which is usually NP-hard. In the
following section, the problem is solved by a novel algorithm.

Remark 1. The model with perfect CSI and that with no CSI [31] are two extreme cases of the model (7). If we
let ε = ε1 = ε2 = 0, then the model degenerates to that with perfect CSI; if the parameters ε and ε j, j = 1, 2 and
rE go to infinity, then it becomes the model with no CSI.

3. Robust Optimization Model

In this section, we first approximate Problem (7) by a new robust optimization problem, where there
are less parameters with uncertainty. Then, we propose a novel efficient algorithm to solve the
approximated problem.

3.1. Robust Model Formulation

In Problem (7), there are several parameters with uncertainty, which are coupled together and
thus make the problem intractable. We tighten the constraint (7c) by replacing R0 with its upper bound

R1, where a0 =
P1P2 ∑2

j=1(| f 0
j |+ε j)

2

σ2
E1

,

R2(∆c; w) =
∑2

j=1(Pj + a0)|wHChj|2

σ2
E2 + σ2

RwHCCHw
and R1(∆c; w) =

∑2
j=1 Pj(| f 0

j |+ ε j)
2

σ2
E1

+ R2.

It holds that:

R0(∆c, ∆ f1, ∆ f2; w) ≤ R1(∆c; w), (8)
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for any |∆ f j| ≤ ε j, j = 1, 2. The detailed deduction is shown in Appendix B. Problem (7) is tightened as
the following robust optimization problem:

min
w∈CN×1

PR(w) (9a)

s.t. SNRj(w) ≥ γj, j = 1, 2; (9b)

R2(∆c; w) ≤ γE, for all ‖∆c‖2 ≤ ε, (9c)

Here, γE = 22rE − 1− ∑2
j=1 Pj(| f 0

j |+ε j)
2

σ2
E1

, and in Constraint (9c), R2 ≤ γE is the equivalent form as
1
2 log2(1 + R1) ≤ rE. The parameters ∆ f j, j = 1, 2 in Problem (7) have been eliminated. Accordingly,
any feasible point of Problem (9) is a feasible point of Problem (7).

In the rest of this section, we focus on solving the tightened Problem (9).

3.2. Algorithm Preserving Feasibility

As a robust optimization problem, Problem (9) is still difficult to solve and generally NP-hard.
Usually, robust optimization problems are approximated, and the parameters with uncertainty are
eliminated. Then, the classical optimization technique is used, and the approximated problem is solved
directly. However, sometimes, the approximated problem is not a “good” approximation. It may cut
off parts of the feasible region of the original problem and consequently lose the optimality property
or even feasibility. To avoid these disadvantages, we propose an efficient iterative algorithm to solve
Problem (9). In each iteration, the iterative point is updated by the line search technique, and it is
always a feasible point of Problem (9). The optimality properties of Problem (9) are analyzed, as well.

3.2.1. Initialization

First, we initialize the algorithm by solving the following subproblem:

min
w∈CN×1

PR(w) (10a)

s.t. SNRj(w) ≥ (1 + βδ)γj, j = 1, 2; (10b)

R3(w) ≤ (1− βδ)γE. (10c)

Here, R3(w) = 1
σ2

E2
[wHC0QCH

0 w + 2ε‖c0‖2‖Q‖F‖w‖2
2 + ε2wHDiag(Q0)w]. C0 = Diag(c0),

∆C = Diag(∆c), Q0 = ∑2
j=1(Pj + a0)hjhH

j and Q = Q0 − σ2
RγEIN ; 0 < β < 1 is a scalar, and δ ≥ 1 is a

positive integer. β and δ are two parameters to keep the initial point as an interior point of Problem (9).
By transformation, Equation (10) is equivalent to the following QCQP subproblem.

min
w∈CN×1

wHA0w

s.t. wHAjw ≤ aj, j = 1, 2, 3, (11)

where A0 = P1H1HH
1 + P2H2HH

2 + σ2
RIN , A1 = H1[(1 + βδ)γ1σ2

RIN − P2h2hH
2 ]HH

1 , A2 = H2[(1 +

βδ)γ2σ2
RIN − P1h1hH

1 ]HH
2 , A3 = C0QCH

0 + 2ε‖c0‖2‖Q‖FIN + ε2Diag(Q0), a3 = σ2
E2(1− βδ)γE, aj =

−σ2
j (1 + βδ)γj and Hj are defined below (3), j = 1, 2. Since Subproblem (11) only has three constraints,

it is solved optimally by the Semi-Definite Relaxation (SDR) method [33,34].
Here, the constraints in Problem (9) are tightened as (10b) and (10c). The following lemma shows

that solving (10) provides an initial feasible point of Problem (9).

Lemma 1. The optimal solution of subproblem (10), w0, is an interior point of problem (9).

The proof is shown in Appendix C. w0 is a strictly feasible rather than a feasible point of
Problem (9), thanks to the control parameters β and δ in Subproblem (10).
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3.2.2. Iterations Applying the Line Search Technique

In the k-th iteration, suppose the iterative point wk is an interior point of Problem (9) satisfying:

SNRj(w) ≥ (1 + βδ)γj, j = 1, 2; (12a)

R2(∆c; w) ≤ (1− βδ)γE, for all ‖∆c‖2 ≤ ε. (12b)

We will update wk using the line search technique [35] and preserve its feasibility according to
Problem (9).

First, we solve two QCQP subproblems to obtain the search direction. The following subproblem
is formulated:

max
∆c

R2(∆c; wk) s. t. ‖∆c‖ ≤ ε. (13)

It is equivalent to the subproblem below:

min
∆c,r

σ2
E2 + σ2

R(c0 + ∆c)TWH
k Wk(c0 + ∆c)∗

r2

s. t.
2

∑
j=1

(Pj + a0)|(c0 + ∆c)TWH
k hj|2 = r2,

‖∆c‖ ≤ ε, (14)

where Wk = Diag(wk). Let x = ((c0 + ∆c)H , 1)T/r, and it is further transformed into the following
QCQP subproblem:

min
x∈CN+1

xHB0x

s. t. xHB1x = 1,

xHB2x ≤ 0.

Here:

B0 =

[
σ2

RWH
k Wk 0N×1

01×N σ2
E2

]
, B1 =

[
∑2

j=1(Pj + a0)WH
k hjhH

j Wk 0N×1

01×N 0

]
, B2 =

[
IN −c∗0
−cT

0 −‖c0‖2
2 − ε2

]
.

It is solved optimally by the SDR method. Let ∆ck be the optimal solution of (13). Then,
R2(∆ck; wk) ≤ (1− βδ)γE, as wk satisfies (12b).

Taking ∆ck into Problem (9) and introducing the parameters β and δ, we obtain the
subproblem below:

min
w∈CN×1

PR(w)

s.t. SNRj(w) ≥ (1 + βδ)γj, j = 1, 2;

R2(∆ck; w) ≤ (1− βδ)γE. (15)

It is equivalent to the QCQP subproblem with three constraints:

min
w∈CN×1

wHA0w

s.t. wHAjw ≤ aj, j = 1, 2;

wHCkQCH
k w ≤ a3,
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where Ck = Diag(ck) and ck = c0 + ∆ck. A0, a3, Aj and aj, j = 1, 2 are defined below (11). It is solved
optimally by the SDR method. Let w̃k+1 be the optimal solution of Subproblem (15). Apparently w̃k+1
satisfies (12a), but it may not satisfy (12b). Thus, we search along the line (w̃k+1 −wk) to find a new
iterative point wk+1, which satisfies (12).

Next, we solve a one-dimensional subproblem to obtain the stepsize. Denote t as the stepsize.
We calculate the stepsize t, so that the new iterative point wk+1(t) := wk + t(w̃k+1 −wk) satisfies (12)
and improves the objective function value of (9). The corresponding subproblem to obtain the stepsize
is as follows:

min
t∈R

PR(wk+1(t)) (16a)

s.t. SNRj(wk+1(t)) ≥ (1 + βδ)γj, j = 1, 2; (16b)

gk(t) = m1t2 + m2t + m3|t|+ m4 ≤ 0, (16c)

For simplicity, we let v0 and v1 represent wk and w̃k+1, respectively. Denote Vi = Diag(vi), for
i = 0, 1. Then, the parameters are defined as:

m1 = cT
0 (V1 −V0)

HQ(V1 −V0)c∗0 + 2ε‖(V1 −V0)
HQ(V1 −V0)c∗0‖

+ε2λmax[(V1 −V0)
HQ(V1 −V0)],

m2 = 2Re[cT
0 VH

0 Q(V1 −V0)c∗0 ],

m3 = 2ε[‖VH
0 Q(V1 −V0)c∗0‖+ ‖(V1 −V0)

HQV0c∗0‖]
+ε2λmax[VH

0 Q(V1 −V0) + (V1 −V0)
HQV0],

m4 = cT
0 VH

0 QV0c∗0 + 2ε‖VH
0 QV0c∗0‖+ ε2λmax(VH

0 QV0)− (1− βδ)σ2
E2γE.

Theorem 1. For any t satisfying Constraints (16b) and (16c), wk+1(t) satisfies (12). Let tk be the optimal
stepsize obtained from Subproblem (16), then the iterative point is updated as wk+1 := wk+1(tk). By such an
update strategy, wk+1 is a feasible point of Problem (9), and the objective function of (9) decreases monotonically
in each iteration.

The detailed proof is shown in Appendix D. As a one-dimensional QCQP problem, Subproblem (16)
is solved optimally by the analysis of line segment intersections, which is omitted due to the limited
space. We might encounter the situation that tk = 0, where the iterative point gets stuck at some
point. In this case, we increase the parameter δ in Subproblem (16), hoping that the iterations continue,
and the objective function is further improved.

3.2.3. Algorithm Framework and Optimality Analysis

The complete algorithm framework is described in Algorithm 1 on the next page.
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Algorithm 1: Robust optimization algorithm
input : the control parameters β, δ; the stopping parameters δ0 and η.
output : the relay beamforming vector wk
0. Solve Subproblem (10), and obtain its solution w0. k = 0.
repeat

1. Obtain ∆ck by solving Subproblem (13);
2. Obtain w̃k+1 by solving Subproblem (15);
if δ ≥ δ0 and ‖w̃k+1 −wk‖ ≤ η‖wk‖ then

Stop the algorithm;
end
3. Obtain tk by solving Subproblem (16);
4. if tk = 0 then

if δ ≥ δ0 then
Stop the algorithm;

end
Let δ := δ + 1. Go back to Step 3;

end
Let wk+1 := wk + tk(w̃k+1 −wk), k := k + 1;

until The objective function value converges;

In Algorithm 1, since the iterative points are all feasible for Problem (9) and the objective function
decreases monotonically, the objective function value converges eventually. The obtained solution of
Algorithm 1 is at least a feasible point of Problem (9) and, thus, is a feasible point of Problem (7).
The following theorem shows the optimality property of Problem (9), whose proof is given in Appendix E.

Theorem 2. If δ goes to infinity and w̃k+1 = wk, then wk is the optimal solution of Problem (9).

Further numerical analysis for the optimality property is shown in Section 4.

4. Simulations

In this section, the performance of the proposed algorithm is evaluated. Each element of the
channel coefficients between each user and relays hj, j = 1, 2 is randomly generated according to
the complex Gaussian distribution CN (0, 1). The channel coefficients from users to Eve f 0

j , j = 1, 2,
obey CN (0, 0.01). The channel coefficient from each relay to Eve is randomly generated according to
CN (0, σ2

c ), where different values of σ2
c represent different distances between relays and Eve. The CSI

estimated error bound from relays to Eve is ε = 0.1, and that from each user to Eve is ε j = 0.01, j = 1, 2.
Let all the local noise covariance be the same: σj = σE1 = σE2 = 1. Let the SNR thresholds for both
legitimate users be the same: γj = γ, j = 1, 2. In the proposed algorithm, the stopping parameter η

and the initial value of the parameter δ are set as 10−4 and one, respectively; if there is no specific
explanation, the stopping parameter δ0 and the parameter β are set as 15 and 0.1, respectively. In the
proposed algorithm, parameters β and δ are used to keep the iterative points as the interior points of
Problem (9). For each plotted point, 1000 realizations are generated, and the average result is shown.
Each QCQP subproblem with dimension higher than one is solved by the SDR method, which is
implemented based on the software CVX (Version 2.0) [36].

First we compare our proposed algorithm and the non-robust model with perfect CSI.
The non-robust model is problem (7) with given ∆c, ∆ f j, for j = 1, 2, which is a QCQP problem
and solved optimally by the SDR method. In Figure 2, the relay transmit power obtained by both
algorithms are depicted, with respect to different relay numbers and different SNR thresholds γ.
It indicates that the performance of the proposed algorithm is very close to the non-robust model,
which verifies the efficiency of the proposed algorithm. Our proposed model works better to balance
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the performance and the feedback overhead, because the perfect CSI requires more feedback. It is
observed that relays use less total power when more relays are involved in the transmission process.
This illustrates the effectiveness of node cooperation. Also, more relay transmit power is used when
γ increases.
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Figure 2. Comparison between the proposed algorithm and the non-robust model with perfect CSI,
with respect to different relay numbers and different γ. The same colored circle and star marks represent
for the proposed algorithm and the non-robust model, respectively. Here, σc = 1 and rE = 1.5.

Second, we compare our proposed algorithm with the model in [31] (Section V), where both
algorithms are designed for the same communication model. In [31], no CSI of Eve is assumed, and the
artificial noise technique is applied. Assuming that the total relay power is fixed, the model in [31] is
to minimize the relay transmit power for signals and let relays use the rest of the power to send the
artificial noise. The corresponding optimization problem is just Problem (7) without Constraint (7c):

min
w∈CN×1

PR(w) (17)

s.t. (7b).

Let Pa and Pb be the relay power for signals obtained by our proposed algorithm solving (7) and
by the method in [31] solving (17), respectively. Apparently, Pa ≥ Pb. In the comparison, for fairness,
we suppose that both algorithms use the same total relay transmit power Pa: the proposed algorithm
uses all the power to transmit signals; Wang et al. uses power Pb to transmit signals and power Pa − Pb
to transmit the artificial noise [31]. This is illustrated in Table 1.

Table 1. Illustration of relay power allocation of Algorithm 1 and [31].

Method Relay Power for Signals Relay Power for the Artificial Noise Total Relay Power

Algorithm 1 Pa 0 Pa
Reference [31] Pb Pa − Pb Pa

In this case, the achievable rate of Eve by [31] is calculated as:

1
2

log2|I2 + K̃−1
E HEHH

E |,

where K̃E = Diag(σ2
E1, σ2

E2 + σ2
RwHCCHw+ (Pa − Pb)‖c‖2) and HE is defined below (6). Based on the

above assumptions, we plot the achieved secrecy rate SR = ∑2
j=1

1
2 log2(1 + SNRj)− RE by the two

algorithms with respect to different relay numbers and different rE in Figure 3. The parameter rE is
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the upper bound of the achievable rate of Eve in Algorithm 1. It does not appear in the model of [31],
but affects its achieved secrecy rate through Pa. We observe that the achieved secrecy rate by the
proposed algorithm is higher than that of [31], and the difference becomes larger with the increment of
relay numbers. This shows the beneficial effect of using CSI.
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Algorithm 1

Model with no CSI

r
E
=0.1

r
E
=0.2

Figure 3. Comparison between Algorithm 1 and [31] which has no CSI, with respect to different relay
numbers and different rE. Here, σc = 0.1 and γ = 6.

Third, we test the sensitivity of the proposed algorithm according to parameters β and δ0. The two
parameters are used to keep the iterative points as the interior point of Problem (9) and control the
accuracy of the achieved solution. Figure 4 shows the results by the proposed algorithm with three
groups of parameters: β = 0.1, δ0 = 15; β = 0.1, δ0 = 20; β = 0.01, δ0 = 15. The three curves representing the
three groups are close to each other, which implies that the algorithm is not sensitive to the parameters.

Fourth, the achieved relay transmit power with respect to the iterations is plotted in Figure 5.
From top to bottom are the curves representing the relay number N = 4, 8 and 12. The three convergence
curves show similar trends, regardless of N. Figure 5 shows that the objective function reduces rapidly
in the first three iterations and converges in about five iterations. The observation coincides with the
conclusion in Theorem 1 that the objective function value decreases monotonically. It also provides
numerical evidence that our proposed algorithm converges very quickly.
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Figure 4. Achieved relay transmit power by the proposed algorithm with different parameters. Here,
σc = 0.5, γ = 6, rE = 0.8.
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Figure 5. Convergence curves for N = 4, 8, 12. Here, σc = 1, γ = 6 and rE = 1.5.

Fifth, we analyze the optimality of the achieved solutions by our proposed algorithm. In the
algorithm framework, there are two stopping criteria. The first criterion is that δ ≥ δ0, and wk and
w̃k+1 are sufficiently close to each other. According to Theorem 2, the iterative point satisfying this
criterion is roughly the optimal solution of Problem (9). The second stopping criterion is simply
that δ ≥ δ0. It only guarantees feasibility rather than optimality. In Table 2, we list the number of
realizations out of the 1000 that exit the algorithm by satisfying the first stopping criterion, with respect
to different relay numbers. It indicates that more than 85% of the realizations obtain the optimal
solution of Problem (9). This shows that our proposed algorithm is efficient to solve the problem.

Table 2. Number of realizations out of 1000 to exit Algorithm 1 by satisfying the first stopping criterion,
with σc = 0.1, γ = 4 and rE = 0.2.

relay number 4 8 12 16 20

number of realizations 882 863 870 861 877

From the above simulation results, we can see that our proposed algorithm is efficient and
converges very quickly.

5. Conclusions

In this paper, we consider the two-way relay wiretap channel, with two users, N relays and
one eavesdropper. The CSI from users and from relays to Eve is estimated with bounded error.
We design the relay beamforming weights to minimize the total relay transmit power, while requiring
the users’ SNRs to be higher than the given thresholds and guaranteeing Eve’s worst case rate to be
upper bounded. For the robust optimization problem, we propose an algorithm to solve it iteratively
and preserve feasibility during iterations. In each iteration, the line search technique is applied.
We update the search direction and the stepsize by optimally solving two QCQP subproblems and
a one-dimensional subproblem, respectively. The optimality property of the robust optimization
problem is analyzed, as well. Simulations show that our proposed algorithm obtains very close relay
transmit power to the non-robust model; compared to [31], the proposed algorithm achieves higher
secrecy rate. Numerically, the proposed algorithm converges very quickly, and more than 85% of the
problems are solved optimally.
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Appendix A. Deduction of (6)

RE =
1
2

log2|I2 + K−1
E HEHH

E |

=
1
2

log2

[
(1 +

∑2
j=1 Pj| f j|2

σ2
E1

)(1 +
∑2

j=1 Pj|wHChj|2

σ2
E2 + σ2

RwHCCHw
)−

|∑2
j=1 Pj f jhH

j CHw|2

σ2
E1(σ

2
E2 + σ2

RwHCCHw)

]
=

1
2

log2

{
1 +

∑2
j=1 Pj| f j|2

σ2
E1

+
∑2

j=1 Pj|wHChj|2

σ2
E2 + σ2

RwHCCHw

+
[ (P1| f1|2 + P2| f2|2)(P1|wHCh1|2 + P2|wHCh2|2)

σ2
E1(σ

2
E2 + σ2

RwHCCHw)
−
|P1 f1hH

1 CHw + P2 f2hH
2 CHw|2

σ2
E1(σ

2
E2 + σ2

RwHCCHw)

]}
=

1
2

log2(1 + R0)

The last equality holds due to the following lemma:

Lemma A1. The following equality holds for any aj ∈ C and bj ∈ C, j = 1, 2:

(|a1|2 + |a2|2)(|b1|2 + |b2|2)− |a1b∗1 + a2b∗2 |2 = |a1b2 − a2b1|2.

It is trivial to prove this lemma by expanding the left term.

Appendix B. Deduction of (8)

First, we show a lemma that will be used next.

Lemma A2. Suppose x and y are two n-dimensional complex vectors. Then, Re(xHy) ≤ η‖y‖2 holds for any
‖x‖2 ≤ η. The equality holds if and only if x = ηy/‖y‖2.

Proof. Let xR and xI be the real and imaginary part of x, respectively, and define yR and yI similarly.
Then:

xHy = (xR + ixI)
H(yR + iyI) = (xT

RyR + xT
I yI) + i(xT

RyI − xT
I yR).

Thus, Re(xHy) = xT
RyR + xT

I yI . The necessary condition to maximize Re(xHy) is that xR and xI
are parallel to yR and yI , respectively. This means that x should be parallel to y. Further with the
condition ‖x‖2 ≤ η, we can deduce the conclusion.

From Lemma A2, we deduce that:

| f j|2 = | f 0
j + ∆ f j|2 = | f 0

j |
2 + 2Re[(∆ f j)

∗ f 0
j ] + |∆ f j|2 ≤ | f 0

j |
2 + 2ε j| f 0

j |+ ε2
j = (| f 0

j |+ ε j)
2
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holds for all |∆ f j| ≤ ε j, j = 1, 2, and that:

| f1wHCh2 − f2wHCh1|2 =
∣∣∣( f1, f2)

(
wHCh2

−wHCh1

) ∣∣∣2 ≤ ‖( f1, f2)‖2 ·
∥∥∥( wHCh2

−wHCh1

)∥∥∥2

= (| f1|2 + | f2|2)(|wHCh1|2 + |wHCh2|2)

Then, we have:

R0 =
P1| f1|2 + P2| f2|2

σ2
E1

+
P1|wHCh1|2 + P2|wHCh2|2

σ2
E2 + σ2

RwHCCHw
+

P1P2| f1wHCh2 − f2wHCh1|2

σ2
E1(σ

2
E2 + σ2

RwHCCHw)

≤
∑2

j=1 Pj(| f 0
j |+ ε j)

2

σ2
E1

+
P1|wHCh1|2 + P2|wHCh2|2

σ2
E2 + σ2

RwHCCHw

+
P1P2 ∑2

j=1(| f 0
j |+ ε j)

2

σ2
E1

· |w
HCh1|2 + |wHCh2|2

σ2
E2 + σ2

RwHCCHw

=
∑2

j=1 Pj(| f 0
j |+ ε j)

2

σ2
E1

+
∑2

j=1(Pj + a0)|wHChj|2

σ2
E2 + σ2

RwHCCHw

=
∑2

j=1 Pj(| f 0
j |+ ε j)

2

σ2
E1

+ R2 = R1,

which holds for any |∆ f j| ≤ ε j, j = 1, 2.

Appendix C. Proof of Lemma 1

We prove the conclusion by showing that any feasible point of Subproblem (10) is a strictly feasible
point of Problem (9). Suppose w is a feasible point of Subproblem (10), which satisfies Constraints (10b)
and (10c).

1. It holds that:
SNRj(w) ≥ (1 + βδ)γj > γj,

for j = 1, 2. Thus, w strictly satisfies Constraint (9b).

2. First, we prove that wHCQCHw ≤ σ2
E2R3(w) holds for all ‖∆c‖2 ≤ ε. Given that C = Diag(c) and

c = c0 + ∆c, it holds that:

wHCQCHw = wH(C0 + ∆C)Q(C0 + ∆C)Hw

= wHC0QCH
0 w + cT

0 WHQW(∆c)∗ + (∆c)TWHQWc∗0 + (∆c)TWHQW(∆c)∗

≤ wHC0QCH
0 w + 2‖∆c‖2‖c0‖2‖Q‖F‖W‖2

F + ε2λmax(WHQW)

≤ wHC0QCH
0 w + 2ε‖c0‖2‖Q‖F‖w‖2

2 + ε2wHDiag(Q0)w

= σ2
E2R3(w), (A1)

for all ‖∆c‖2 ≤ ε. Here, W = Diag(w); the first inequality applies the norm inequality and the property
of the Rayleigh quotient; the second inequality comes from that:

λmax(WHQW) ≤ λmax(WHQ0W) ≤ tr(WHQ0W) = wHDiag(Q0)w,

with Q and Q0 defined below (10).
As w satisfies Constraints (10c), it holds that:

wHCQCHw ≤ σ2
E2R3(w) ≤ σ2

E2(1− βδ)γE < σ2
E2γE, (A2)
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for all ‖∆c‖2 ≤ ε. (A2) is an equivalent form as R2(w) < γE. Thus, w strictly satisfies Constraint (9c).
Summarizing the two points, we obtain the conclusion that any feasible point of Subproblem (10)

is a strictly feasible point of Problem (9). Consequently, Lemma 1 holds. �

Appendix D. Proof of Theorem 1

Our proof is divided into two parts. The first part is to prove that wk+1(t) satisfies (12), for any
stepsize satisfying (16b) and (16c); wk+1 is an interior point of Problem (9). Suppose t is any stepsize
satisfying (16b) and (16c). Due to Constraint (16b), wk+1(t) satisfies Constraint (12a).

Next, we prove that wk+1(t) satisfies Constraint (12b). Let:

[v0 + t(v1 − v0)]
HCQCH [v0 + t(v1 − v0)] = t2s1 + ts2 + s3,

where v0 and v1 are defined below (16), s1 = (v1− v0)
HCQCH(v1− v0), s2 = 2Re[vH

0 CQCH(v1− v0)]

and s3 = vH
0 CQCHv0.

1. For all ‖∆c‖2 ≤ ε, we deduce that:

s1 = cT
0 (V1 −V0)

HQ(V1 −V0)c∗0 + 2Re[cT
0 (V1 −V0)

HQ(V1 −V0)(∆c)∗]

+(∆c)T(V1 −V0)
HQ(V1 −V0)(∆c)∗

≤ cT
0 (V1 −V0)

HQ(V1 −V0)c∗0 + 2ε‖(V1 −V0)
HQ(V1 −V0)c∗0‖

+ε2λmax[(V1 −V0)
HQ(V1 −V0)]

= m1.

Here, V0 and V1 are defined below (16). The inequality applies Lemma A2 and the property of
the Rayleigh quotient.

2. Similarly, we deduce that:

s3 ≤ cT
0 VH

0 QV0c∗0 + 2ε‖VH
0 QV0c∗0‖+ ε2λmax(VH

0 QV0) = m4 + (1− βδ)σ2
E2γE.

for all ‖∆c‖2 ≤ ε.

3. For simplicity, denote Qv = VH
0 Q(V1 −V0). Then, we have:

ts2 = t · 2Re(cT
0 Qvc∗0) + t · 2Re[(∆c)TQvc∗0 ] + t · 2Re[cT

0 Qv(∆c)∗] + t · 2Re[(∆c)TQv(∆c)∗].

Then, we deduce that:

t · 2Re[(∆c)TQvc∗0 ] = t[(∆c)TQvc∗0 + cT
0 QH

v (∆c)∗] ≤ |t| · 2ε‖Qvc∗0‖2,

t · 2Re[cT
0 Qv(∆c)∗] ≤ |t| · 2ε‖QH

v c∗0‖2,

t · 2Re[(∆c)TQv(∆c)∗] = t(∆c)T(Qv + QH
v )(∆c)∗ ≤ |t|ε2λmax(Qv + QH

v ).

Thus, ts2 ≤ tm2 + |t|m3, for all ‖∆c‖2 ≤ ε.
Due to Constraint (16c), we have that gk(t) ≤ 0. Besides, combining 1–3, we can deduce that:

t2s1 + ts2 + s3 ≤ t2m1 + tm2 + |t|m3 + m4 + (1− βδ)σ2
E2γE

= gk(t) + (1− βδ)σ2
E2γE ≤ (1− βδ)σ2

E2γE.

That is, [v0 + t(v1 − v0)]
HCQCH [v0 + t(v1 − v0)] ≤ (1 − βδ)σ2

E2γE, for all ‖∆c‖2 ≤ ε.
Through equivalent reformulation, we deduce that wk+1(t) satisfies Constraint (12b). Thus, it satisfies (12),
and it is an interior point of Problem (9). Let t be tk, then wk+1 := wk+1(tk) is an interior point
of Problem (9).
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In the second part, we prove that the objective function of Problem (9) decreases monotonically in
each iteration. First, we prove that t = 0 is always feasible for Subproblem (16) in any iteration. Let k be
the iteration index. In the initial iteration (k = 0), t = 0 corresponds to w0, which is the optimal solution
of the initial Subproblem (10). As w0 satisfies (10b), we have that t = 0 satisfies Constraint (16b). Since
w0 satisfies (10c), we deduce that:

m4 + (1− βδ)σ2
E2γE = cT

0 WH
0 QW0c∗0 + 2ε‖WH

0 QW0c∗0‖+ ε2λmax(WH
0 QW0)

≤ cT
0 WH

0 QW0c∗0 + 2ε‖c0‖2‖Q‖F‖w0‖2
2 + ε2wH

0 Diag(Q0)w0

≤ (1− βδ)σ2
E2γE.

Here, W0 = Diag(w0). The deduction is similar to (A1). Then, we have g0(0) = m4 ≤ 0, that is
t = 0 satisfies (16c). Thus, t = 0 is feasible for Subproblem (16) in the initial iteration (k = 0).

When k > 0, t = 0 represents wk+1(0) = wk, which was updated in the (k− 1)-th iteration:
wk = wk−1 + tk−1w̃k. In this case, it is trivial to show that t = 0 satisfies Constraints (16b) and (16c).
The detailed proof is omitted.

Thus, t = 0 is always feasible for Subproblem (16) in any iteration. Since tk is the optimal solution
of (16), it holds that PR(wk+1(tk)) ≤ PR(wk+1(0)), that is PR(wk+1) ≤ PR(wk). This means the objective
function of Problem (9) decreases monotonically in each iteration. �

Appendix E. Proof of Theorem 2

For w0, as any feasible point of Problem (9), there exists a vector ∆c0, such that R2(∆c; w0) ≤
R2(∆c0; w0) ≤ γE holds for all ‖∆c‖2 ≤ ε. We define such w0 and ∆c0 as “a robust pair”.

Obviously, in Algorithm 1, wk and ∆ck consist of a robust pair, for any k. If δ goes to infinity and
w̃k+1 = wk, then βδ goes to zero, and wk is the optimal solution of the following subproblem:

min
w∈CN×1

PR(w)

s.t. SNRj(w) ≥ γj, j = 1, 2;

R2(∆ck; w) ≤ γE. (A3)

Next, we shall prove the conclusion by contradiction. Suppose wk is not the optimal solution
of Problem (9), then there must exist another feasible point of (9), w∗, and PR(w∗) < PR(wk). Let w∗
and ∆c∗ be a robust pair. Then, the following inequalities hold:

SNRj(w∗) ≥ γj, j = 1, 2;

R2(∆ck; w∗) ≤ R2(∆c∗; w∗) ≤ γE.

This shows that w∗ is a feasible point of Subproblem (A3). Further the relation PR(w∗) < PR(wk)

shows that w∗ has a lower objective function value of (A3) compared to wk.
This contradicts the fact that wk is the optimal solution of (A3). Thus, the assumption is incorrect.

wk must be the optimal solution of Problem (9). �
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