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Abstract: In the clinical electrophysiological practice, reading and comparing electroencephalographic (EEG)
recordings are sometimes insufficient and take too much time. Tools coming from the information
theory or nonlinear systems theory such as entropy and complexity have been presented as an
alternative to address this problem. In this work, we introduce a novel method—the permutation
Lempel–Ziv Complexity vs. Permutation Entropy map. We apply this method to the EEGs of two
patients with specific diagnosed pathologies during respective follow up processes of pharmacological
changes in order to detect alterations that are not evident with the usual inspection method.
The method allows for comparing between different states of the patients’ treatment, with a healthy
control group, given global information about the signal, supplementing the traditional method of
visual inspection of EEG.

Keywords: permutation entropy; permutation complexity; pharmacological treatment;
electroencephalography

1. Introduction

The present work arises from the need to have signal analysis tools that allow a more
accurate description of the changes observed in the electrophysiologic time series of patients
who receive some kind of treatment with psychotropic drugs. From the perspective of Clinical
Neurophysiology, the electroencephalogram (EEG) is an instrument of observation and monitoring
of the electrophysiological activity of the brain. It has the advantages of being low cost, possible to
replicate and does not imply greater risk for patients. It may also be used in any age range, from
infants to older adults [1], in addition to being highly sensitive to temporal changes in the electrical
dynamics of the cerebral cortex. This is why it is considered an adequate instrument for the study of
the global electrophysiological activity of the brain. The use of electroencephalogram is incorporated
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into new clinical fields, for example in anesthesiology studies such as [2,3] that show similar objectives
in relation to the assessment of the pharmacological effects of anesthetics in the use of EEG monitoring.

With the idea of developing new tools for the EEG analysis, a new method of Complexity
vs. Entropy map is introduced. For this map, two measures coming from Information Theory are
introduced: the Permutation entropy (HPE) [4] and Permutation Lempel–Ziv complexity [5]. Both methods
have been widely used in the analysis of EEG signals to obtain relevant information that is not possible
to get by conventional methods—for example, power spectrum or wavelets [6,7]. Particularly in this
article, a parallel analysis of both methods on EEG signals is used, and we present the results on a
Complexity vs. Entropy map. This kind of representation analysis has been used in chaos versus
noise analysis, text authoring analysis, and electrophysiological evolution of EEG in chickens, among
others [8–10]. One of the most important novel aspects of the method is the analysis of the same
signal through two different perspectives, one statistical (Shannon entropy) and the other deterministic
(Lempel–Ziv complexity). This joint analysis allows us to gather information that is not possible to
be carried out with a separate analysis. The usefulness of this combined method of analysis has been
described in [11].

The clinical objectives proposed for this study were: (a) to shorten the latency in the
identification of the pharmacological effects on the global neurophysiological activity of the encephalon;
(b) to facilitate the evolutionary reading in different instances of pharmacological treatment and the
comparison with the respective control groups in order to enrich the epidemiological approach of
clinical neurophysiology; (c) to shorten the interpretation of the time of long-term studies with a large
number of channels, which usually causes the time of the care task to increase significantly.

The paper is presented as follows: the notions of Permutation Entropy, Permutation Lempel–Ziv
Complexity and the parallel analysis applied to the EEG recording are desribed in Section 2.1.
The presentation of the control group and clinical description of the cases with specific pathologies
are explained in Section 2.3. The main results are shown in Section 3. The discussions are in Section 4.
Finally, the conclusions and proposals for further developments are presented in Section 5.

2. Method

2.1. Signal Analysis

The notion of permutation vectors as quantifiers of the continuous signal are introduced in this section.
In addition, we explain how to calculate the permutation Shannon entropy and the permutation
Lempel–Ziv complexity. Finally, we summarize the steps to apply this method to EEG recordings.

2.1.1. Data Quantification

When you have to deal with continuous data such as a electroencephalogams (EEG),
magnetoencefalograms (MEG) or electrocardiograms (ECG) recordings, an important issue is how
to quantify these data. In the bibliography, there are many methods to discretize continuous series
such as histograms, binarizations, etc. Here, we have used the method introduced by Bandt and
Pompe called permutation discretization [4]. This method is based on the relative values of the neighbors
belonging to the series. More precisely, consider a real-valued discrete-time series {Xt}t≥0 assumed to
be a state of a multivariate trajectory. Given two integers d ≥ 2 and τ ≥ 1, a trajectory is defined in the
d-dimensional space as

Y(d,τ)
t =

[
Xt−(d−1)τ · · · Xt−τ Xt

]
, t ≥ (d− 1)τ, (1)

where the dimension d is called embedding dimension while τ is called delay.
Now, a vector Πd,τ can be defined called permutation vector, as follows. Each component

is defined as the relative values of the vector Y(d,τ)
t . The number of possible motives or patterns

(Πd,τ) is given by the factorial of the embedding dimension d! (see Figure 1A). To clarify all these
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technicalities, let us show how all this works in an example. Suppose we have a continuous series
such as {Xt = 0.25, 1.5, 3.4, 0.35, 2.2} and take the parameters d = 3 and τ = 1. The embedding vectors
Y(d,τ) in this case are defined as Y(3,1)

1 = (0.25, 1.5, 3.4); Y(3,1)
2 = (1.5, 3.4, 0.35); Y(3,1)

3 = (3.4, 0.35, 2.2),

and the respective permutation vectors are Π(3,1)
1 = (0, 1, 2), Π(3,1)

2 = (1, 2, 0) and Π(3,1)
3 = (2, 0, 1).

A graphical example of the procedure is shown in Figure 1.
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Figure 1. Example of the permutation vector discretization. (A) for the parameter d = 3, we have d! = 6
possible patterns; (B) to each data point t = 1, ..., n− (d− 1) is assigned the corresponding pattern,
depending on the relative values of the neighbors; (C) the quantified sequence to the original signal.

2.1.2. Permutation Entropy

From a stationary process, the entropy can then be estimated via the frequencies of occurrence
of any possible permutation vectors. In their work, Bandt and Pompe defined the permutation
entropy (HPE) as the Shannon entropy of the probability distribution of the permutation vectors,
PΠi = Pr(Πd,τ

i ) for i = 1, ..., d! [4] . The normalized permutation entropy is defined as

hpe = −
1

log(d!)

d!

∑
i=1

PΠi log(PΠi ) . (2)

The HPE is able to capture the dynamic of the process underlying the data. More precisely,
the idea behind HPE is that the possible permutation vectors may not have the same probability of
occurrence, and, thus, this probability may provide knowledge about the underlying system.

2.1.3. Lempel–Ziv Complexity

Now, we will see a different way to analyze a sequence; in this case, it is not based on the
probability of the symbols, but in the way that these symbols are repeated along the sequence. This is
based on the Kolmogorov complexity idea—what is the minimal “information” contained in the
sequence [12]—Lempel and Ziv developed a method to deal with complexity of a sequence restricting
this notion to the “ programs ” based only on two recursive operations: copy and paste. Their definition
lies on the two fundamental notions of reproduction and production. Let us consider a finite size
sequence Sn = s1, ..., sn of symbols out of a finite alphabet A of α letters. Now,

• Reproduction: it consists of extending a sequence S1:T to a sequence Q1:N via recursive copy–paste
operations, which leads to S1:T+N = S1:TQ1:N , i.e., where the first letter Q1 is in S1:T , that is to
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say Q1 = Si, the second one is the following one in the extended sequence of size T + 1, i.e.,
Q2 = Si+1, etc.: Q1:N is a subsequence of S1:T+N−1. In a sense, all of the “information” of the
extended sequence S1:T+N is in S1:T .

• Production: the extended sequence S1:T+N is now such that S1:T+N−1 can be reproduced by S1:T ,
but the last symbol of the extension can either follow the recursive copy–paste operation (thus is a
reproduction) or can be “new”. Note that a reproduction is a production, not the other way round.
Let us denote a production by S1:T ⇒ S1:N+T .

Any sequence can be viewed as constructed through a sequence of production processes, which
is called history H. In the example ∅ ⇒ s1 ⇒ s1s2 ⇒ s1s2s3 ⇒ .... starting from the empty string,
we have n production operations: the size of the history is n. However, a sequence does not have a
unique history. Indeed, in the case where s2 = s1, one can reduce the number of production processes
since ∅⇒ s1 ⇒ s1s2s3 ⇒ ...

Then, for a given historyHi of the sequence, let us define by CHi (Sn) the number of production
processes in a given history clearly: min{2, n} ≤ CHi (Sn) ≤ n. Lempel–Ziv define the complexity of
the sequence as the minimal number of production processes needed to generate it:

CLZ(Sn) = min
Hi∈{histories of Sn}

CHi (Sn). (3)

A drawback of this complexity is that it is defined only for sequences of symbols taken in a discrete
finite size alphabet. Dealing with “real life” sequences, a quantization has to be performed before its
use, as done in many of the studies dealing with data analysis via the Lempel–Ziv complexity [13–15].
Using the same idea as in permutation entropy, the alphabet can be taken as the set of permutation
vectors A = {Πd,τ

n } and the alphabet length α = d!. This is called Permutation Lempel–Ziv complexity
(PLZC) [5].

Surprisingly, although we are analyzing a sequence from a completely deterministic point of
view, it appears that CLZ(Sn) sometimes also contains a notion of information in a statistical sense.
This makes a relation emerge between the Lempel–Ziv complexity and the Shannon entropy [16–18].
Using this relation, we define the permutation Lempel–Ziv Complexity vs. Permutation Entropy map.
The idea behind this approach is that the analysis of a signal by means of this map gives us more
information than the separate use of each measure. One example of this can be seen in the analysis
of seizure dynamics in this map, where, depending on the episode, the changes in the complexity
are more remarkable than in the entropy one, and vice versa [19]. Another example is seen in the
characterization and differentiation of the chaotic and random signals, where the analysis under
the map shows a better result than the use of each measure separately [11]. On the other hand,
the visualization of the data in a graph entropy–complexity permits a better understanding of the
results, especially for people who are not so familiar with this kind of analysis.

2.1.4. Complexity vs. Entropy Map

Now, we will explain the step to analyze the EEG recording data and the representation in the
result in the Complexity vs. Entropy map.

• Step 1: Record and reprocess the signal—using band pass filter and notch filter at 60 Hz
(Figure 2A).

• Step 2: Discretize the raw signal using a permutation vector approach (Figure 2B).
• Step 3: Calculate the Lempel–Ziv complexity for the sequence taken from step 2 (Figure 2C).
• Step 4: Take the sequence from step 2 and, using a histogram, estimate the probability

distribution (PD) of permutation vectors. Then, calculate the Shannon entropy related with this PD.
• Step 5: Finally, with the two measures, we have the coordinates (hPE, CLZ) of the map

corresponding to the recorded signal.
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To make a statistical analysis, for example, determine the mean value and standard deviation of
different channels, or, for a group of people, it is required to calculate the covariance matrix Σh,c. For a
group of measure hPE{h1, ..., hn} and CLZ{c1, ..., cn}. The matrix entries are given by:

Σi,j = E[(hi − µc)(ci − µh)] i, j = 1, ..., n, (4)

where E is the expectation value and µc, µh are the mean value of the entropy and the
complexity, respectively.
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Figure 2. The steps to analyze a recording signal through the Complexity vs. Entropy map.
(A) signal recording and preprocessing; (B) quantify the signal using the permutation vector
approach; (C) calculate the permutation Lempel–Ziv complexity and the permutation entropy for the
quantify sequence.

2.2. Patient Recording

The present work has a comparative, observational and retrospective design between a control
group versus two clinical cases of patients with diagnosed pathologies, who were studied and followed
for more than one year of evolution in a laboratory of clinical neurophysiology. During the study period,
the patients with diagnosed pathologies followed the therapeutic indications of their treating physician
and electroencephalographic studies were carried out in different instances of their treatment. In both
cases, these patients were undergoing treatment with psychotropic drugs. The electroencephalographic
studies were analyzed retrospectively and compared to the parameters obtained after applying the
same methods to the control group.

Technical Procedures and Clinical Description

For the conformation of the control group, N = 20 EEG recordings were selected from a database
of a clinical neurophysiology laboratory (IACCo). Inclusion–exclusion criteria were: (a) the records
should be adult individuals (18–50 years) with no medical history; (b) the individuals should not be
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taking psychotropic medication at the time of the study; (c) the study should be performed without
facilitator medication like chloral hydrate and/or similar; (d) EEG records have to be reported as
normal pathways by the specialist physician; (e) records should not contain non-physiological artifacts;
(f) studies that conformed to the control group should have a similar duration; (h) the studies of the
control group should be performed under equal conditions (closed eyes and similar number of samples
and electrodes) than the pathological cases studied.

Each record analyzed here was performed according to the standards of the International
Federation of Clinical Neurophysiology [20], following the international system 10–20 for the placement
of electrodes. The records are presented in monopolar montages, with bimastoid reference for a total of
20 channels. The signal was taken with a low resolution sampling of 65 Hz, with conventional hospital
use equipment, according to local regulations. The number of individuals was N = 20 and the mean
age was 33± 10 of both sexes and the duration of the records was 37± 9 min for all cases in the control
group. All of the information about the Control group is summarized in Table 1.

Table 1. Control group information.

Subject Time Record (MIN) Segment Time Analyzed (MIN) Gender Age

1 60 44 M 24
2 60 49 M 20
3 60 44 M 31
4 60 44 M 48
5 60 44 M 25
6 60 48 M 38
7 30 30 F 27
8 30 30 F 28
9 30 30 M 19

10 60 30 F 32
11 30 30 F 44
12 30 25 F 40
13 30 25 F 38
14 60 48 M 48
15 60 39 M 34
16 60 50 M 50
17 60 40 M 23
18 30 30 M 23
19 60 41 M 31
20 60 45 F 27

2.3. Clinical Description of the Cases

2.3.1. Case I

The records in this case correspond to a 22-year-old female patient whose clinical diagnosis was
Idiopathic Generalized Epilepsy (ICD-10 G 40.3). She had clinical follow-up for a period of two years.
During this time, four EEG recordings were performed. The references of these studies will be T0, T1,
T2 and T3, respecting the chronological order in which they were realized.

The initial condition from which the case description starts is T0. The study was performed when
the patient was taking 1200 mg/day of carbamazepine, without any improvement. The situation
led to an average of 10 seizures per week. After her first EEG recording (T0), the pharmacological
scheme was changed to carbamazepine 400 mg/day and valproic acid 1000 mg/day. The change
improved the clinical state and the number of seizures reduced to two per month. The improvement
persisted throughout the first year of follow-up, and it is reflected in the following EEG recording T1

taken 10 months after T0. Immediately after T1, a new pharmacological scheme was implemented,
including Lamotrigine 400 mg/day and 1500 mg/day of Levetiracetam. The change brought the
seizure frequency to a seizure every three months. After seven months of the new pharmacological
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scheme, T2 was recorded. The latter improvement observed in the clinic could not be discriminated by
the method of visual inspection of the signal, and the neurophysiological report of T2 was described
as an evolution without significant changes. At this point, the dose of one of the drugs of the last
implemented scheme was increased, that is, Levetiracetam 2000 mg/day and maintaining Lamotrigine
400 mg/day. After the change, the patient remained for more than six months without any seizures.
Seven months later, T3 was recorded. The time elapsed between T0 and T3 is approximately two years
of treatment. In all studies, there were no seizures during the recording, so the tracings correspond to
intercritical records.

Electroencephalographic records in Figure 3 were reported as: T0, severe Bilateral Disorganization;
T1 and T2 records were reported as moderate Bilateral Disorganization, in which no significant
differences were found between both registries and a favorable evolution between both in comparison
with T0. The last one, T3, was described as a Bilateral Disorganization leading to frontal predominance,
with a significant improvement in relation to the previous tracings.

A B

C DC

T0

T2

T1

T3

Figure 3. EEG recording for the four states of treatment (Case I). (A) T0 corresponds to the first
monitoring performed, and it can be observed that before the time 5:52 and after the time 5:55,
the discharges occur in both hemispheres and had a duration greater than 10 s. (B,C) In the
studies T1 and T2, bilateral short-term discharges of 2–3 s are observed. There is little clinical
differentiation between studies T1 and T2. (D) In the study T3, a trace with a normal voltage with a
predominance of bilateral slow rhythms in the frequency domain is observed. All studies correspond
to intercritical records.

2.3.2. Case II

The second case corresponds to a 41-year-old man diagnosed with narcolepsy ( CIE-10 G47.4) and
morbid obesity as co-morbidity. In this case, three follow-up studies were made, namely T0, T1 and T2

in an overall period of 16 months. Again, the subindexes represent the chronological order in which
the studies were performed.

At the initial condition T0, the patient was medicated with Topiramate 250 mg/day because
of his eating disorder. However, the medication provoked no changes in symptoms related with
narcolepsy. After T0, the pharmacological scheme was changed and Modafinil 200 mg/day was added.
After nine months with the new scheme (Topiramate 250 mg/day, plus Modafinil 200 mg/day),



Entropy 2017, 19, 540 8 of 13

a clinically significant change was achieved in relation to nocturnal rest and a marked decrease in
daytime sleepiness, which also improved the patient’s performance in daily life activities. At this
point, T1 was recorded and no pharmacological changes were introduced. Seven months later, T2 was
performed just to check the evolution of the patient. In this last evaluation, the recording time was
doubled in order to record sleep activity in the EEG. Nevertheless, the patient remained awake with
his eyes closed during the two hours of the study. As expected from its favorable evolution, daytime
sleepiness continued to decline as treatment time advanced.

The electroencephalographic records in Figure 4, T0 were reported as a Severe Sleep Cycle-Vigil
Disorder with a Normal Vigil plot. Here (Figure 4A), K complexes and sleep spindles can be observed,
which are characteristic of Phase II, non-Rapid eye movement (non-REM) sleep. These patterns are
best presented at the electrodes near the electrode Cz. In T1 (Figure 4B) and T2 (Figure 4C), tracings
were reported as tracings within normal limits. In the retrospective evaluation between the T1 and T2,
no significant clinical differences were found. Both traces correspond to closed eyes awake records.

A

C

B

D

T0 T0

T1 T2

Figure 4. EEG traces belonging to patient diagnosed with narcolepsy (Case II). (A,B) T0 corresponds
to sleep paths, and in both can see the slow waves between 3 and 5 Hz. In addition, K and spindle
complexes, characteristic of phase 2 of non-REM sleep, are observed. (C,D) The T1 and T2 traces
correspond to normal records in the waking eyes closed condition. T2 trace corresponds to the second
hour of the monitoring. A trace of low voltage with alpha and theta rhythms is observed in both records.

3. Results

We analyze our two specific cases and each of the 20 subjects that conform to the control group
explained in Section 2.2. We analyze the EEGs under the Permutation Entropy (PE) and the Permutation
Lempel–Ziv complexity (PLZC), using the same permutation vector parameters. The data were
preprocessed with the usual removal of signal artifacts and application of band pass filters [0.5, 45] Hz,
prior to applying our method.

Every EEG channel was analyzed separately and using the whole recording. The results were
presented in a complexity–entropy map. The parameters used for the permutation quantification were
d = 3, 4, 5, 6 and τ = 1, giving similar results (for different d, the absolute value of HPE and PLZC
is not the same, but the relative values between them were almost similar). The center of the ellipse
corresponds to the mean value of the corresponding studies of the control group, and the ellipse itself
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to the joint error of PE and PLZC of this group. The values of embedding (d) were chosen since they
are suggested in most of the literature about PE analysis for EEG signal analysis [3,21]. For the τ

value, we consider a study of PE done in the Rossler, Lorenz and B attractor [22], in which the authors
emphasize that when the signal has large lag time, the correlation between the signals is lost, with low
values of τ being the best option. Because our sampling frequency is low, we choose to use τ = 1.

Regarding our first patient (case I, see Section 2.2), Figure 5 shows the results of the four EEG
monitoring sessions performed in an evolutionary follow-up of a 22-year-old woman diagnosed with
Generalized Idiopathic Epilepsy. Here, a clear displacement in the plane between the T0 and T1 is
observed. The interval between the two studies was 10 months, and it corresponds to a large decrease
in the frequency of seizures.
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Figure 5. PLZC vs. HPE map analysis belonging to a patient diagnosed with Generalized Idiopathic
Epilepsy, in four different stages of treatment (square and triangles), compared to the mean value of
a control group and their respective errors (circle and ellipse). Each subplot shows the analysis for a
particular EEG channel (despite starting in the inner plot). The parameters used were d = 4 and τ = 1.

The time elapsed between T1 and T2 was seven months. This corresponds to the change in
the pharmacological scheme that sought to prevent the patient from having seizures, not only to
reduce their frequency. Here, the neurophysiological report of the electroencephalogram by visual
inspection found no significant change between them. However, there was an improvement in the
clinical aspect of the condition. Finally, in T3, the optimization of the pharmacological scheme used
until T2 can be observed. This achieves a new significant change both in the clinical aspect and in the
electroencephalographic tracing. This can be seen in the approaching, in many channels to the center
of the ellipse, that corresponds to the mean value of the studies of the control group.

Figure 6 (case II, see Section 2.2) shows the results of the evolutionary follow-up of a 41-year-old
male with a diagnosis of narcolepsy and morbid obesity. Here, the three electroencephalographic
monitoring sessions can be observed, comparing the differences between the abnormal study
T0 (Severe Sleep Cycle-Vigil Disorder) with T1 and T2, which are reported as normal. However, between
T1 and T2, there is little difference: T1 lasted one hour and T2 lasted two hours with a previous sleep
deprivation. Calculations for T2 were analyzed for each hour separately and similar results were found
between the two halves, so the graph shows the values of the complete study (2 h). It is also possible to
identify that the values of the plane for the study T0 are lower in the electrodes near Cz.
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Figure 6. PLZC vs. HPE map analysis belonging to a patient diagnosed with generalized narcolepsy,
in three different stages of treatment (square and triangles), compared to the mean value of a control
group and their respective errors (circle and ellipse). Each subplot shows the analysis for a particular
EEG channel (despite starting in the inner plot). The parameters used were d = 4 and τ = 1.

4. Discussion

The results allow us to compare the values obtained for each channel of an EEG, with the mean
value of the control group and the corresponding error (ellipse). These give global information
about the signal, supplementing the traditional method of visual inspection of EEG, which is usually
performed on a time scale of a few seconds and whose reading is done sequentially.

In the first case, the map is used as a tool that allows us to show the effectivity of pharmacological
treatment in patients treated with psychotropic drugs. In a pathology such as epilepsy, the EEG signal
tends to be more regular. This regularity gives less number of different permutation vectors and it
provokes a decrease in the entropy and complexity values. Similar results were shown comparing
awake people with people in altered states of consciousness such as sleep, seizures, and comas [19].
Analogous results are shown in other epilepsy syndromes, such as absence crises [23]. In our first case,
although there is an interelectrode difference that can be observed in the plane, there is evidence of
a common trend in all channels—the pathological values approach to the control group, reflecting a
change in the functional state of the nervous system that correlates with the favorable evolution after
each pharmacological intervention. Moreover, when the visual inspection method of EEG did not
show significant changes between the T1 and T2 studies, the pharmacological scheme was changed
and it corresponded to an improvement in the clinic. The complexity–entropy plane was able to detect
such a change from the global evaluation of the entire record for each electrode. As it can be seen in
Figures 5 and 6, the nine channels showed smaller distances to the center of the ellipse in T2 compared
with T1. This subtlety, which had clinical value, could not be detected by the human eye. In addition,
by optimizing the dose, a major change was achieved, and it is visible in T3. EEG records in epilepsy
are now described as critical and intercritical records. However, most of the studies that are done
in clinical practice are intercritical records because there is no way to predict a seizure and only in
some cases can the crises be reproduced. The cases are those that respond to sensitization methods,
such as intermittent light stimulation, and usually they have a genetic or syndromic association
that is still unknown [24]. Therefore, a quantitative evaluation of the intercritical records opens the
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possibility of comparing studies, in which it is not possible to perform a semiologic description of the
seizure, but from which it is possible to obtain valuable information about the clinical evolution of the
epileptic patient.

In the second case, which corresponds to the 41-year-old patient with narcolepsy, the CLZ vs.
HPE method of analysis is also used. It should be recalled that the EEG sleep pattern is different
from the awake pattern, and these differences in paths are observed by the visual inspection method
(Figure 4) and also identified by the CLZ vs. HPE plane. In the images of T0 in Figure 4, some patterns
of the characteristic pattern of non-REM sleep phase 2 such as K-complexes and spindles [25,26] can be
found. During this study, the patient was able to maintain the waking state during very short periods
of time and most of the EEG tracing corresponds to a sleep pattern. Here, PCLZ vs. HPE values are
very low values for most electrodes; nonetheless, in daily clinical practice, low values in the plane are
unusual for short studies, since most patients usually maintain a vigil or enter a light sleep state in
records of an hour or less duration. This is related to the low values found in individuals with altered
states of consciousness such as those presented in [19].

After the administration of Modafinil, the tracings present normal patterns of the vigil state with
closed eyes. In Figure 4, segments of these studies are shown and correspond to T1 and T2. The values
found in the PCLZ vs. HPE plane for such studies are similar to the values found in control individuals.

The similarity of these values in both studies correspond to the fact that the patient treated with
Modafinil managed to stay awake during the whole records. In the channels F3–C3–F4–C4–F8 of
Figure 6, it is possible to observe the small difference between the values obtained in the plane for the
T1 and T2 studies. Note that the time elapsed between these studies is seven months and T2 is twice
as long as T1. The approximation of the values of both studies to the center of the ellipse shows an
improvement of the patient with respect to T0. The fact that there is a proximity in the values of the
channels between the two studies (T1 and T2) indicates a certain stability in the improvement, which
correlates to the clinical evolution that the picture had.

Note that, in this work, low values in the plane correspond to pathological clinical conditions
or changes in the state of consciousness. [19,23]. For example, as shown in the first case, the low
values correspond to changes found in the signal given by patterns (graphs) of pathological discharges
in intercritical studies of a patient with epilepsy. However, in the second case, in the EEG, there
are pathological patterns (graphemes), but there are not physiological patterns of normal sleep that
should not appear in a closed-eyes waking study if the patient could maintain alertness during a short
duration EEG and without facilitating medication.

In this way, the PCLZ vs. HPE map would provide new information to methods like MSLT
(the Multiple Sleep Latency Test) and polysomnography for the evolutionary and/or diagnostic studies
of narcolepsy. In addition, as shown in case I, the evolutionary study of patients with neuropsychiatric
pathologies, relevant information is provided by the plane. This is found by the fact that there is an
individual variation in the response to psychotropics, an aspect that, if taken into account, would
achieve in the future the development of a more personalized drug therapy.

5. Conclusions

In this work, we show one application of the “PLZC vs. HPE” map for electroencephalographic
interpretation in clinical neurophysiology. This method allows us to look at the changes that occur in
long-term treatments from a single perspective, something that the method of visual inspection can
not provide. We have applied the analysis to a control group in order to have a statistical reference.
In a dynamic interpretation of the results, we find that, for healthy people, the permutation entropy
and permutation Lempel–Ziv complexity tend to be at a maximum, decreasing when the person
has a pathology. This is because, for a normal awake state, the EEG signal tends to be similar to a
discorrelate white noise [27], which has the highest entropy and complexity [19].

The instrument presented here has been used as a global assessment tool, sacrificing short-term
signal changes, that is, its non-stationary behavior. However, we could see that reducing the signal
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length to 10 min shows that the results do not vary widely. It is also possible to apply the instrument
with smaller sliding windows and retrieve this information if it is considered relevant as done in [19].
The method also allows one to compute the entropy and complexity of a signal using just the waveform
of the EEG. Because of this, it is not necessary to select a specific band frequency for the analysis;
the information that we obtain from the signal is more robust (nevertheless, this does not limit
the application of the method to particular frequency bands). The visualization of the data in a
complexity–entropy graph permits a better understanding of the results especially for people who
are not so familiar with this kind of analysis. The method is very simple to apply and has a very
low computational cost, which makes it very appropriate for real-time analysis. The method has no
limitations to the length of recording, although it is very important to take into account the parameters
used for the analysis, especially the embedding dimension d. As an additional feature, the analysis
was done for each channel separately; thus, it can be used in different types of recording settings.

Taking up the clinical objectives of this work, we consider that the instrument is useful for
the evolutionary follow-up of patients undergoing pharmacological treatment with psychotropic
drugs. The epidemiological and statistical approach in electroencephalography is accessible if the
control groups can be adjusted by age groups, the latter being especially important in neonatal
electroencephalography. For prolonged studies of hours or days of patients hospitalized in
electroencephalographic monitoring units, the instrument offers the possibility of reading each
recorded signal hourly, which helps to reduce the reading time of such monitoring in medical care tasks.

Finally, in relation to pharmacodynamic studies by means of EEG signals, the spectrogram is one
of the most widely used methods in the field of anesthesiology. The instrument presented here was
not used for this purpose. However, we think that it can add information to the data obtained by the
spectrogram and contribute to the investigation in this field. This is part of the work in progress.
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1. Janáčková, S.; Boyd, S.; Yozawitz, E.; Tsuchida, T.; Lamblin, M.D.; Gueden, S.; Pressler, R.
Electroencephalographic characteristics of epileptic seizures in preterm neonates. Clin. Neurophysiol.
2016, 127, 2721–2727.

2. Purdon, P.L.; Pierce, E.T.; Mukamel, E.A.; Prerau, M.J.; Walsh, J.L.; Wong, K.F.K.; Salazar-Gomez, A.F.;
Harrell, P.G.; Sampson, A.L.; Cimenser, A.; et al. Electroencephalogram signatures of loss and recovery of
consciousness from propofol. Proc. Natl. Acad. Sci. USA 2013, 110, E1142–E1151.

3. Olofsen, E.; Sleigh, J.; Dahan, A. Permutation entropy of the electroencephalogram: A measure of anaesthetic
drug effect. Br. J. Anaesth. 2008, 101, 810–821.

4. Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett.
2002, 88, 174102.

5. Zozor, S.; Mateos, D.; Lamberti, P.W. Mixing Bandt-Pompe and Lempel-Ziv approaches: Another way to
analyze the complexity of continuous-states sequences. Eur. Phys. J. B 2014, 87, 107.

6. Jung, T.P.; Makeig, S.; Stensmo, M.; Sejnowski, T.J. Estimating alertness from the EEG power spectrum.
IEEE Trans. Biomed. Eng. 1997, 44, 60–69.

7. Adeli, H.; Zhou, Z.; Dadmehr, N. Analysis of EEG records in an epileptic patient using wavelet transform.
J. Neurosci. Methods 2003, 123, 69–87.

8. Rosso, O.; Larrondo, H.; Martin, M.; Plastino, A.; Fuentes, M. Distinguishing noise from chaos. Phys. Rev. Lett.
2007, 99, 154102.



Entropy 2017, 19, 540 13 of 13

9. Rosso, O.A.; Craig, H.; Moscato, P. Shakespeare and other English Renaissance authors as characterized by
Information Theory complexity quantifiers. Physica A 2009, 388, 916–926.

10. Montani, F.; Rosso, O.A. Entropy-Complexity Characterization of Brain Development in Chickens. Entropy
2014, 16, 4677–4692.

11. Mateos, D.M.; Zozor, S.; Olivarez, F. On the Analysis of Signals in a Permutation Lempel–Ziv
Complexity-Permutation Shannon Entropy Plane. arXiv 2017, arXiv:1707.05164.

12. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley & Sons: Hoboken, NJ,
USA, 2006.

13. Thakor, N.V.; Zhu, Y.S.; Pan, K.Y. Ventricular Tachycardia and Fibrillation Detection by a Sequantial
Hypothesis Testing Algorithm. IEEE Trans. Biomed. Eng. 1990, 37, 837–843.

14. Zhang, X.S.; Zhu, Y.S.; Thakor, N.V.; Wang, Z.Z. Detecting ventricular tachycardia and fibrillation by
complexity measure. IEEE Trans. Biomed. Eng. 1999, 46, 548–555.

15. Radhakrishnan, N.; Gangadhar, B.N. Estimating Regularity in Epileptic Seizure Time-Series Data—A
Complexity-Measure Approach. IEEE Eng. Med. Biol. Mag. 1998, 17, 89–94.

16. Hansel, G. Estimation of the entropy by the Lempel-Ziv method. In Lecture Notes in Computer Science
(Electronic Dictionaries and Automata in Computational Linguistics); Springer: Berlin/Heidelberg, Germany,
1987; Volume 377, pp. 51–65. Available online: https://link.springer.com/chapter/10.1007/3-540-51465-1_4
(accessed on 13 October 2017).

17. Schürmann, T.; Grassberger, P. Entropy estimation of symbol sequences. Chaos 1996, 6, 414.
18. Amigo, J.; Kennel, M.B. Variance estimators for the Lempel-Ziv entropy rate estimator. Chaos 2006, 16,

doi:10.1063/1.2347102.
19. Mateos, D.; Erra, R.G.; Wennberg, R.; Velazquez, J. Measures of Entropy and Complexity in Altered States of

Consciousness. arXiv 2017, arXiv:1701.07061.
20. Deuschl, G.; Eisen, A.; International Federation of Clinical Neurophysiology; International Federation of

Societies for Electroencephalography and Clinical Neurophysiology. Recommendations for the Practice of
Clinical Neurophysiology: Guidelines of the International Federation of Clinical Neurophysiology. 1999.
Available online: http://www.clinph-journal.com/content/guidelinesIFCN (accessed on 13 October 2017).

21. Popov, A.; Avilov, O.; Kanaykin, O. Permutation entropy of EEG signals for different sampling rate and time
lag combinations. In Proceedings of the Signal Processing Symposium (SPS), Serock, Poland, 5–7 June 2013;
pp. 1–4.

22. De Micco, L.; Fernández, J.G.; Larrondo, H.A.; Plastino, A.; Rosso, O.A. Sampling period, statistical
complexity, and chaotic attractors. Physica A 2012, 391, 2564–2575.

23. Mammone, N.; Duun-Henriksen, J.; Kjaer, T.W.; Morabito, F.C. Differentiating interictal and ictal states in
childhood absence epilepsy through permutation Rényi entropy. Entropy 2015, 17, 4627–4643.

24. Taylor, I.; Marini, C.; Johnson, M.R.; Turner, S.; Berkovic, S.F.; Scheffer, I.E. Juvenile myoclonic epilepsy and
idiopathic photosensitive occipital lobe epilepsy: Is there overlap? Brain 2004, 127, 1878–1886.

25. Kryger, M.; Roth, T.; Dement, W. Principles and Practice of Sleep Medicine; Elsevier: Amsterdam,
The Netherlands, 2017; pp. 1592–1601.

26. Goldman, L.; Bennett, J.C. Tratado De Medicina Interna; Macgraw-Hill: New York, NY, USA, 2002.
27. Bandt, C. A New Kind of Permutation Entropy Used to Classify Sleep Stages from Invisible EEG

Microstructure. Entropy 2017, 19, 197.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://link.springer.com/chapter/10.1007/3-540-51465-1_4
http://www.clinph-journal.com/content/guidelinesIFCN
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Method
	Signal Analysis
	Data Quantification
	Permutation Entropy
	Lempel–Ziv Complexity
	Complexity vs. Entropy Map

	Patient Recording 
	Clinical Description of the Cases
	Case I
	Case II


	Results
	Discussion
	Conclusions

