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Abstract: The behavioural diagnostics of bearings play an essential role in the management of
several rotation machine systems. However, current diagnostic methods do not deliver satisfactory
results with respect to failures in variable speed rotational phenomena. In this paper, we consider
the Shannon entropy as an important fault signature pattern. To compute the entropy, we propose
combining stationary wavelet transform and singular value decomposition. The resulting feature
extraction method, that we call stationary wavelet singular entropy (SWSE), aims to improve the
accuracy of the diagnostics of bearing failure by finding a small number of high-quality fault
signature patterns. The features extracted by the SWSE are then passed on to a kernel extreme
learning machine (KELM) classifier. The proposed SWSE-KELM algorithm is evaluated using two
bearing vibration signal databases obtained from Case Western Reserve University. We compare
our SWSE feature extraction method to other well-known methods in the literature such as
stationary wavelet packet singular entropy (SWPSE) and decimated wavelet packet singular entropy
(DWPSE). The experimental results show that the SWSE-KELM consistently outperforms both the
SWPSE-KELM and DWPSE-KELM methods. Further, our SWSE method requires fewer features than
the other two evaluated methods, which makes our SWSE-KELM algorithm simpler and faster.

Keywords: stationary wavelet singular entropy; singular value decomposition; kernel extreme
learning machine

1. Introduction

Early diagnosis of failures of rolling element bearings is very important for improving both
the reliability and safety of the rotating machinery that is widely used in the industry. In order
to achieve early diagnosis, we need to identify those hidden patterns that provide us with
high-quality information regarding the bearing fault features. Unfortunately, extracting those
features from non-stationary and non-linear vibration signals under time-varying speed conditions
is not an easy task, and commonly used techniques for feature extraction are not accurate
enough. Because of this, in the last decade several time-frequency analysis methods have been
applied to the feature extraction problem for bearing fault diagnosis. Among them, we can
find empirical mode decomposition (EMD) [1] and wavelet transform (WT) [2,3]. The EMD
method can decompose a signal into a sum of intrinsic mode functions (IMFs) according to the
oscillatory nature of the signal [4]. On the other hand, the WT decomposes a signal into several
low-frequency components and high-frequency components, which can show features of hidden
failures [5–8]. From signal decomposition methods, such as those above, different features can be calculated,
such as energy entropy [9], permutation entropy [10], kurtosis value [11,12], relative energy [13],
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envelope spectrum [14], and singular values [15]. These features are generally passed on to some
classification methods such as support vector machines (SVMs) [9,10,14] or artificial neural networks
(ANNs) [12,13]. In particular, the authors of [9] use IMF energy entropy to determine whether a failure
exists or not. In case of failure, a vector of singular values is passed on to an SVM in order to determine
the type of failure. The vector of singular values is obtained by means of singular value decomposition
(SVD) of the IMF matrix. The authors in [10] propose a hybrid model for the bearing failure detection
problem. This hybrid model uses permutation entropy (PE) to determine whether there is a failure or
not. If a failure exists, then the PE of a subset of selected IMFs is computed and used as the input of an
SVM in order to classify the type of the failure as well as its severity. A wavelet neural network (WNN)
model combined with ensemble empirical mode decomposition (EEMD) for bearing fault diagnosis is
proposed in [12]. Here, the more effective IMFs are selected based on the kurtosis value of each IMF.
A subset of ten features from both the time domain and the frequency domain is used as input of the
WNN for failure classification. In [16] authors combine WT and EMD to create a new time-frequency
analysis method, namely empirical wavelet transform (EWT). A comparative study between EWT and
EMD for bearing failure diagnosis using acoustic signals is presented in [11]. In that study, authors
create an index based on the kurtosis value to select more effective IMFs. Results in [11] demonstrate
that EWT performs better than EMD in terms of the accuracy of the diagnosis. Further, it is shown
that EWT is able to efficiently find the frequency and the harmonic components corresponding to the
bearing fault characteristic frequency.

Support vector machines and artificial neural networks are widely used to classify different kinds
of failures in rotatory machines. However, one drawback of these techniques is that they are quite
time consuming during the training stages. In [17–19] authors use a new method called the extreme
learning machine (ELM) that aims to improve tuning time in a single-hidden layer feed-forward
neural networks (SLFNs). Since then, ELM has been used in several studies mainly because of
its efficiency. For instance, in [15] ELM is combined with local mode decomposition (LMD) and
SVD for the diagnosis of bearing failure. Here, singular values obtained from the product function
matrix are used as input of ELM. It has also been shown that the models combining LMD-SVD-ELM
perform better than EMD-SVD-ELM models [15]. An ELM model combined with a real-valued
gravitational search algorithm and the EEMD method for ball bearing fault diagnosis is proposed
in [20]. Here, time-frequency features, energy features, and singular value features were calculated
based on the EEMD method and it was shown to be effective in bearing fault diagnosis.

Besides vibration signals, other signals such as current signals [21–23], acoustic signals [24,25]
and stray flux signals [26,27] have also been used for fault diagnosis. Several surveys on detection
and diagnostic techniques considering vibration, current, acoustic, and stray flux signals can be found
in [26,28–30].

In this article, we present a feature extraction method based on the Shannon entropy, which is
computed by combining stationary wavelet transform (SWT) and SVD. Features extracted are passed
on to a kernel extreme learning machine (KELM) model. We call our method stationary wavelet single
entropy KELM (SWSE-KELM). The KELM model is created by replacing the ELM hidden activation
function with a kernel function to improve the generalisation capacities of ELM and reduce time
consumption for determining the number of hidden layer nodes [17–19]. While SWT is able to provide
local features in both the time domain and frequency domain as well as it is able to distinguish sudden
changes in the vibration signal, singular values are very stable, which leads to a more robust and
reliable method [31,32]. Further, this extraction method requires the input of fewer features than other
well-known extraction methods in the literature, with the same level of accuracy. We apply our method
to two bearing vibration signal data sets under variable speed operation conditions obtained from
Case Western Reserve University [33,34], and we evaluate our experimental results considering ten
different bearing fault types. We compare the diagnosis accuracy obtained by our method to those
obtained using stationary wavelet packet singular entropy (SWPSE) and decimated wavelet packet
singular entropy (DWPSE) [35–38].
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The remaining sections of this article are as follows. In Section 2 wavelet analysis is described.
Section 3 describes the bearing multi-fault diagnosis algorithm and the experimental setup that
is used in this paper. A discussion on the results obtained by the SWSE-KELM, SWPSE-KELM,
and DWPSE-KELM methods is presented in Section 4. Finally, in Section 5 some conclusions
are drawn.

2. Wavelet Analysis Techniques

2.1. Stationary Wavelet Transform

Stationary wavelet transform (SWT) [39–41] is a wavelet analysis method. It can be seen as
an alternative to discrete wavelet transform (DWT) [42,43]. SWT and DWT share some similarities;
the most important being that both high-pass and low-pass filters are applied at each level of the
input signal. At the first level of SWT, an input signal {x(n) = w0,0(n), n = 1, . . . , N} is convolved
with a low-pass filter h1 defined by a sequence h1(n) of length r and a high-pass filter g1 defined by a
sequence g1(n) of length r. Both the approximation coefficient w1,1 and the detail coefficient w1,2 are
obtained as follows:

w1,1(n) =
r−1

∑
k=0

h1(k)w0,0(n− k) (1a)

w1,2(n) =
r−1

∑
k=0

g1(k)w0,0(n− k) (1b)

Since no sub-sampling is performed, the obtained sub-bands w1,1(n) and w1,2(n) have the same
number of elements as the input signal w0,0(n). The general process of the SWT recursively continues
for j = 2, . . . , J and is given as follows:

wj,1(n) =
r−1

∑
k=0

hj(k)wj−1,1(n− k) (2a)

wj,2(n) =
r−1

∑
k=0

gj(k)wj−1,1(n− k) (2b)

Filters hj and gj are computed by using an operator called dyadic up-sampling. Using this operator,
zero values are inserted between each pair of elements in the filter that are adjacent. Thus, the SWT
strategy is then completely defined by the pair of filters (low- and high-pass filters) that is chosen
and the number of decomposition steps J. For this paper, a pair of Db2 wavelet filters has been
chosen, mainly due to its low complexity [34,42], whereas the decomposition at the J-th level is given
as follows:

J <= log2

(0.5 fs

FCF

)
(3)

where fs represents the frequency sampling of the vibration signal and FCF denotes the bearing fault
characteristic frequency [44].

2.2. Stationary Wavelet Packet Transform

The stationary wavelet packet transform (SWPT) is similar to the SWT in that the high-pass and
low-pass filters are applied to the input signal at each level. At the first level of SWPT, an input
signal w0,0(n) is convolved with a low-pass filter h1 and with a high-pass filter g1 to obtain both the
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approximation coefficient w1,1 and the detail coefficient w1,2, respectively, which are calculated using
Equation (1a,b). The general process of the SWPT is continued recursively for j = 2, . . . , J as follows:

wj,2i−1(n) =
r−1

∑
k=0

hj(k)wj−1,i(n− k) (4a)

wj,2i(n) =
r−1

∑
k=0

gj(k)wj−1,i(n− k) (4b)

where the i value denotes the i-th sub-band at the (j− 1)-th level and the number of sub-bands at the
(j− 1)-th level is equal to i = 1, . . . , 2j−1.

2.3. Decimated Wavelet Packet Transform

While very similar to the SWPT, the DWPT is different in that it includes a downsampling operator
by a factor of two. Just as in the SWPT, the DWPT process computes recursively the j-th level for
j = 2, . . . , J, as follows:

wj,2i−1(n) =
r−1

∑
k=0

hj(k)wj−1,i(2n− k) (5a)

wj,2i(n) =
r−1

∑
k=0

gj(k)wj−1,i(2n− k) (5b)

where again, the i value denotes the i-th sub-band at the (j− 1)-th level, and the number of sub-bands
at the (j − 1)-th level is equal to i = 1, . . . , 2j−1. Note that, unlike the SWPT, the length of each
decomposition coefficient in DWPT, wj,i, is equal to Nj =

N
2j .

3. Bearing Multi-Fault Diagnosis Algorithm

The failure diagnosis algorithm proposed in this study is based on both the feature extraction
phase and the classification phase. On the one hand, the feature extraction phase is carried out by
integrating wavelet analysis and singular value decomposition. On the other hand, the multi-fault
classification phase is constructed using a KELM model based on the Gaussian kernel function.
These phases are described in the following sections.

3.1. Feature-Extraction Algorithm

Below we present the algorithm for the wavelet singular entropy (WSE) based on both wavelet
analysis and the SVD method.

1. Calculate the envelope signal from the raw vibration signal using the Hilbert transform as follows:

x(n) =
√

x(n) + HT2[x(n)] n = 1, . . . , L (6)

where HT[·] denotes the Hilbert transform, and L represents the length of the vibration signal.
2. Divide the envelope signal into non-overlapping sub-signals of N data points.
3. Decompose the envelope sub-signal x(n), n = 1, . . . , N into J levels by using wavelet analysis

(SWT, SWPT, and DWPT).
4. Decompose the wavelet coefficients matrix W using the SVD method. The SVD method

decomposes the wavelet matrix W into a series of mutually orthogonal, unit-rank, and elementary
matrices, whose representation is given as follows [45]:

W =
K

∑
k=1

skukvT
k = USVT (7)
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where

K =

{
J + 1 for SWT

2J for SWPT and DWPT
(8)

where U ∈ RK×K, V ∈ RN×N , S is the K× N diagonal matrix, and sk represents the k-th singular
value of matrix W.

5. Create the D-dimensional feature vector as follows:

zi = [s1, . . . , sK, En1, En2] i = 1, 2, . . . , L/N and D = K + 2 (9)

where En1 and En2 represent the wavelet singular entropy value, and it is computed as

En1 = − 1
log2(K)

K

∑
k=1

pklog2(pk) (10a)

pk =
z2

i,k

∑D
k=1 z2

i,k

(10b)

En2 = − 1
log2(N)

N

∑
n=1

qnlog2(qn) (10c)

qn =
x2(n)

∑N
n=1 x2(n)

(10d)

6. Normalise the features matrix Z as follows:

Zj =
Zj

max(Zj)
j = 1, 2, . . . , D (11)

where Zj represents the j-th column of the features matrix Z.
7. Randomly select 80% of the features matrix Z for training data and the remaining 20% for

testing data.

3.2. Kernel-ELM Classifier

In this section a brief description of ELM and KELM is presented. For more details on this topic
see [17–19,46]. The output of the ELM algorithm is obtained as follows:

ŷj(z) =
Nh

∑
i=1

β j,iφi

[
zk, ai,k, bi

]
j = 1, 2, . . . , 10 (12)

where Nh denotes the number of hidden nodes, zk ∈ RD represents the input vector containing
D-features, ai,k are the weights of the hidden layer, bi are bias units, β j,i are output weights of the output
layer, and φ(·) represents the hidden nodes activation functions. The Moore–Penrose generalised
inverse method (M-P) [47] is used to estimate the output weights β j,i, whereas the weights ai,k and bi
are randomly assigned. The optimal values of the linear weights of the output layer, for any given
representation of the hidden weights, are obtained as follows:

β = HT
( I

C
+ HHT

)†
Y (13)
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where (·)T denotes transposed operator, H is the hidden layer output matrix, Y represents the desired
output pattern matrix, I is the identity matrix, and C denotes a regularisation parameter. The expression
(·)† represents the Moore–Penrose generalised inverse matrix [47].

In the ELM algorithm, if the mapping function φ(·) is unknown, then as proposed by Huang [18],
we can use the Mercer’s conditions on ELM to calculate a kernel matrix, which is given as follows:

Ω = ΦΦT : Ωi,j = φ(zi)φ(zj) = ker(zi, zj) i, j = 1, . . . , M (14)

where M represents the sample number and ker(·) denotes a Kernel function. In this paper we will
use a Gaussian kernel function to construct the KELM model because of its superior performance [18].
This Gaussian kernel function is given as

ker(zi, zj) = exp
(
−
‖zi − zj‖2

2σ2

)
(15)

where σ represents the value of the Kernel width parameter, and here the σ parameter is selected
as follows:

σ2 = D−1 (16)

where the D value represents the dimension of the input features vector to the KELM model
(see Equation (9)).

Finally, by placing Equations (13) and (15) in Equation (12), we can obtain the output values of
KELM classifier as follows:

ŷ(z) =


ker(z, z1)

ker(z, z2)
...

ker(z, zN)


(

I
C
+ Ker

)†

Y (17)

where ŷj denoted the output value of the j-th output node and the predicted class label of sample z is
obtained as:

Label
(

ŷ(z)
)
= max{ŷ1(z), . . . , ŷ10(z)} (18)

To obtain a good generalisation performance in the KELM model, the regularisation parameter C
is selected from {101, 102, . . . , 1010} by using the 5-fold cross-validation (CV) method [48,49].

4. Experimental Setup

The experimental raw data used in this paper corresponds to vibration signals coming from two
bearings: the drive-end (6205-2RS JEM SKF, deep groove ball bearing) and the fan-end (6203-2RS JEM
SKF, deep groove ball bearing) bearings. Both data sets can be obtained from the CWRU bearing data
centre [33]. This data set were generated using an experimental setup that considered a 2 hp Reliance
Electric motor, a torque transducer/encoder, and a dynamometer. During the experiments, the bearing
holds the motor shaft. An accelerometer mounted on the motor housing (as shown in Figure 1),
is used to collect vibration signals. Single point failures with different failure diameters of 0.007,
0.014, and 0.021 inches are introduced to both the driving-end and the fan-end bearings using the
electro-discharge machining method, with the motor speed varied at 1730, 1750, 1772, and 1797 r/min
with loads of 3, 2, 1, and 0 hp, respectively. Digital data is produced at 12,000 samples per second for
normal bearing (NB) samples and failure samples: inner race fault (IRF), outer race fault (ORF), and ball
fault (BF). Further details on the experimental setup can be found in [33].
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Figure 1. Experimental setup [50].

5. Discussion Results

For both data sets (drive-end and fan-end bearing), we consider one normal bearing condition
and nine faulty bearing conditions that correspond to all possible combinations of the three failure
locations over the three different fault severity levels, giving 10 class labels. For each class, we have
four vibration signals corresponding to the rotatory shaft speeds of 1797, 1772, 1750, and 1730 r/min
with loads of 0, 1, 2 and 3 hp, respectively, leaving a total of 40 vibration signals. The lengths of these
raw vibration signals are set to 120,000 data points (obtained in 10 s). Each of these 40 signals is divided
into 150 segments. The size of each segment is set to 800 data points (≈two times the rotation shaft
period), i.e., we use the all 120,000 data points for our experiments.

As explained before, we set parameter J of our feature extraction method to values in {1, 2} for
the drive-end bearing data set and values in {2, 3, 4} for the fan-end bearing data set. Parameter C of
our KELM classifier is then adjusted using a 5-fold cross validation method for each value of J. To this
end, we use 150 segments for each of the 40 signals considered in our data set, that is, 6000 samples
in total for the fault diagnosis. Then, 80% of these 6000 samples (i.e., 4800 samples) are used in
the training process, while the remaining 20% (1200 samples) are used during the testing process
(see Feature Extraction Algorithm in Section 3.1). Table 1 shows these values.

Table 1. Structure of both data sets considered in this paper. NB: normal bearing; IRF: inner race fault;
ORF: outer race fault; BF: ball fault.

Fault Speed Load Fault Training/Test Class
Types (r/min) (hp) Diameter (in) Samples Label

NB 1797–1730 0–3 0 480/120 1

IRF 1797–1730 0–3
0.007 480/120 2
0.014 480/120 3
0.021 480/120 4

ORF 1797–1730 0–3
0.007 480/120 5
0.014 480/120 6
0.021 480/120 7

BF 1797–1730 0–3
0.007 480/120 8
0.014 480/120 9
0.021 480/120 10
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The training database, which consists of 4800 samples, is divided into five folds (960 samples each).
Four out of the five folds are used to adjust the parameters J and C of our fault diagnosis model.
The remaining fold is used during the validation stage. During the training process, the output weights
of the output layer are obtained as explained in Equations (13) and (15). To evaluate the performance
of both the training and the testing process, we use two performance measures given as follows:

Accuracy =
1
M

10

∑
j=1

CMj,j (19)

where the M value is the total number of samples for all classes combined, CM denotes the confusion
matrix, and CMj,j represents the number of samples in class yj that are correctly classified as class
yj [51,52]. The second measures are for the F-scores and they are obtained for every class label
as follows:

F-scores(j) = 2× Precision(j)× Recall(j)
Precision(j) + Recall(j)

j = 1, 2, . . . , 10 (20a)

Precision(j) =
CMj,j

∑10
i=1 CMj,i

(20b)

Recall(j) =
CMj,j

∑10
i=1 CMi,j

(20c)

where Precision(j), Recall(j) and F-scores(j) represent the precision, recall, and F-scores measures of
the j-th predicted class; respectively [51,52].

We try the proposed bearing multi-fault diagnosis method on both the drive-end and the fan-end
bearing data set to validate the efficiency of our approach. We compare the SWSE-KELM method
proposed in this paper to two fault diagnosis methods that combine a wavelet packet singular entropy
and a KELM classifier, namely stationary wavelet packet singular entropy (SWPSE) and decimated
wavelet packet singular entropy (DWPSE). On the one hand, we have the DWPSE, a widely used
technique that has been shown to be very effective in the context of feature extraction [35,37,38]. On the
other hand, we have the SWPSE method, which is an extension of the SWSE method we propose in
this paper.

5.1. Data Set 1: Drive-End Bearing

We first use the training data to find the best possible parameters for the fault diagnosis. In order
to calculate the diagnostic accuracy of the proposed method, first, the feature extraction algorithm is
carried out to obtain fault signatures based on stationary wavelet singular entropy, which are later
used as input patterns in the KELM-classifier.

To evaluate the effect of the number of features and the regularisation parameter C on the
diagnosis accuracy level, we use a 5-fold cross validation method. While results of the 5-fold cross
validation method during the validation phase for the SWSE method are shown in Figure 2, results for
the SWPSE and the DWPSE are shown in Figure 3a,b, respectively.

As we can see in Figure 2, for four features, the best value for the average accuracy level (99.7%)
is obtained when the parameter C is equal to 1010. When five features are considered, a 100% average
accuracy level is reached for values of C = {104, 105, 106, 107, 108, 109, 1010}. Thus, the model we shall
use in the testing phase considers five features and the regularisation parameter C = 104.

We then adjust the parameter C and the number of features for both the SWPSE and DWPSE
methods. We do this by using the same 5-fold cross validation procedure. As we can see in
Figure 3a, the best average accuracy level for the SWPSE is reached for six features (i.e., J = 2)
and the regularisation parameter C = 105. The same values are obtained for the DWPSE method
(see Figure 3b).
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Figure 2. Stationary wavelet single entropy kernel extreme learning machine (SWSE-KELM) selection
results with 5-fold cross validation (CV) during the validation phase for drive end bearing.
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Figure 3. Model selection results with 5-fold CV during validation phase for drive end
bearing: (a) Stationary wavelet packet singular entropy (SWPSE)-KELM; (b) Decimated wavelet
packet singular entropy (DWPSE)-KELM.

Once the number of features and the regularisation parameter C have been chosen, the output
weights matrix for the KELM classifier is selected from the best fold computed during the validation
phase. We do this for the all three methods considered in our experiments. We then compare our SWSE
method to the SWPSE and DWPSE methods. As mentioned before, all three methods are applied to
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the data set of the testing phase and the same KELM classifier is used. To the best of our knowledge,
the SWSE method has not been applied to the bearing fault diagnosis problem.

Figure 4 shows the F-score values obtained during the testing phase. As we can see, all three
methods are able to reach, for each class, a 100% F-score value. Further, the accuracy level for all
methods is also 100%. Although both the SWPSE-KELM and the DWPSE-KELM methods are also able
to reach 100% F-Score value for the all 10 classes, they need one more feature than the SWSE-KELM
method, which increases the method complexity.
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Figure 4. Bearing fault diagnosis results during testing phase for the drive-end bearing: (a) SWSE-KELM
with five features; (b) SWPSE-KELM with six features; (c) DWPSE-KELM with six features.

5.2. Data Set 2: Fan-End Bearing

For the second data set that we use in this paper (fan-end bearing), we first use the training data to
find the best possible parameters for the fault diagnosis. Just as we did for the drive-end bearing data
set, we calculate the diagnostic accuracy of the proposed method by computing fault signatures using
the SWSE feature extraction algorithm. The obtained signatures will be then used as input patterns in
the KELM-classifier.

As in the first data set, we need to evaluate the effect of the number of features and the
regularisation parameter C on the diagnosis accuracy level. To this end, we use again a 5-fold
cross validation method.

Figure 5 shows the average accuracy with 5, 6, and 7 features, obtained after the training process.
In Figure 5, can see that the SWSE-KELM method reaches its highest value when considering C = 107

and six features. Moreover, results obtained for five and seven features are consistently below the ones
obtained when using six features. Thus, the model we shall use during the testing phase considers
C = 107 and six features. It is interesting to note that the SWSE-KELM method needs, for the fan-end
bearing data set, one more feature than for the drive-end bearing data set. Thus, we can say that the
fan-end bearing is more complex than the drive-end bearing data set. This might be caused because of
the location of the bearing in the motor, which makes the fan-end bearing data set harder to work with.
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Figure 5. SWSE-KELM selection results with 5-fold CV during the validation phase for fan-end bearing.

We then need to evaluate the effect of the regularisation parameter C on the diagnosis accuracy
level for the SWPSE-KELM and the DWPSE-KELM methods. As before, we implement the 5-fold
cross validation method again with 6, 10, and 18 features. As we can see in Figure 6a, the best average
accuracy level for the SWPSE-KELM is reached for 10 features (i.e., J = 3) and regularisation parameter
C = 105. The best average accuracy level for the DWPSE-KELM is reached for six features (i.e., J = 2)
and regularisation parameter C = 106 (see Figure 6b). We need to note at this point that, as the number
of features gets larger, both the kernel width (σ2 in Equation (16)) and the value of C become smaller.
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Figure 6. Model selection results with 5-fold CV during the validation phase for fan-end bearing:
(a) SWPSE-KELM; (b) DWPSE-KELM.

We then compare our SWSE-KELM method to the SWPSE-KELM and DWPSE-KELM methods.
Results of this comparison are illustrated in Figure 7. As we can see, for the first seven classes,
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all three methods reach a 100% F-score value. Unlike this, for the ball faults (classes 8, 9, and 10 according
to Table 1), our method outperforms both the SWPSE-KELM and the DWPSE-KELM methods for
the severity levels of 0.007 inches and 0.021 inches. For the severity level of 0.014 inches, both our
method and the SWPSE-KELM method reach a 100% F-Score value, although our method needs
only six features. The DWPSE-KELM only reaches a 98.76% F-score value for the severity level of
0.014 inches. Finally, the best accuracy reached by our model is 99.83%, while the best accuracy levels
for the SWPSE-KELM and DWPSE-KELM methods are 99.75% and 98.75%, respectively.
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Figure 7. Bearing fault diagnosis results during the testing phase for the fan-end bearing.

6. Conclusions

This article presents a method of feature extraction for bearing failure diagnosis. Our proposed
method uses the Shannon entropy, which is computed by combining SWT and SVD, to improve the
accuracy of the classifier. Two data sets, namely drive-end and fan-end bearing, are used to validate
our proposal and the obtained results are compared to those obtained by other two well-known feature
extraction methods previously proposed in the literature, namely SWPSE and DWPSE. For the first
data set (drive-end bearing), we found that our SWSE-KELM method reaches a 100% accuracy level
and 100% F-score value for the 10 bearing operation conditions using only five features. Although both
the SWPSE and the DWPSE also reach 100% accuracy level and 100% F-score value, they need
one more feature to do so, and, thus, our method result is simpler and faster. For the second
data set (fan-end), all methods reach a 100% F-score value for the first seven bearing operation
conditions. However, for the last three bearing operation conditions (ball failure) our method reaches
better F-score values than the other two methods for severity levels of 0.007 inches and 0.021 inches.
As our SWSE-KELM method, the SWPSE-KELM method also reaches a 100% F-Score value for the
severity level of 0.014 inches. However, the SWPSE-KELM needs 10 features to do so. Further, our
method exhibits the best accuracy level (99.83%) when compared to both the SWPSE-KELM and the
DWPSE-KELM methods.

Based on these results, we can state that the stationary wavelet transform allows us to extract, in an
effective way, single-point bearing fault signatures using fewer features and improving significantly
the accuracy of the diagnosis.

As future work, we aim to apply our feature extraction method to bearing failure diagnosis
considering a run-to-failure data set. Although this problem is more representative of the damage
propagation during the lifetime of the bearing under real operation conditions, it has been shown
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that this kind of signal is much harder to classify due to the (highly) nonlinear damage propagation.
An application of this kind of signals can be found in the transmission systems of mining machinery.
In the near future, we expect to apply our algorithms to run-to-failure data sets obtained from a mining
company in Chile.
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