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Abstract: We investigate the stationary and dynamic properties of the celebrated Nosé–Hoover
dynamics of many-body interacting Hamiltonian systems, with an emphasis on the effect of
inter-particle interactions. To this end, we consider a model system with both short- and long-range
interactions. The Nosé–Hoover dynamics aim to generate the canonical equilibrium distribution
of a system at a desired temperature by employing a set of time-reversible, deterministic equations
of motion. A signature of canonical equilibrium is a single-particle momentum distribution that is
Gaussian. We find that the equilibrium properties of the system within the Nosé–Hoover dynamics
coincides with that within the canonical ensemble. Moreover, starting from out-of-equilibrium initial
conditions, the average kinetic energy of the system relaxes to its target value over a size-independent
timescale. However, quite surprisingly, our results indicate that under the same conditions and with
only long-range interactions present in the system, the momentum distribution relaxes to its Gaussian
form in equilibrium over a scale that diverges with the system size. On adding short-range interactions,
the relaxation is found to occur over a timescale that has a much weaker dependence on system
size. This system-size dependence of the timescale vanishes when only short-range interactions
are present in the system. An implication of such an ultra-slow relaxation when only long-range
interactions are present in the system is that macroscopic observables other than the average kinetic
energy when estimated in the Nosé–Hoover dynamics may take an unusually long time to relax to its
canonical equilibrium value. Our work underlines the crucial role that interactions play in deciding
the equivalence between Nosé–Hoover and canonical equilibrium.

Keywords: Hamiltonian systems; classical statistical mechanics; ensemble equivalence; long-range
interacting systems

1. Introduction

Often, one needs in studies in nonlinear dynamics and statistical physics to investigate the
dynamical properties of a many-body interacting Hamiltonian system evolving under the condition of
a constant temperature. For example, one might be interested in studying the dynamical properties of
the system in canonical equilibrium at a certain temperature T, with the temperature being proportional
to the average kinetic energy of the system by virtue of the Theorem of Equipartition (In this work, we
measure temperatures in units of the Boltzmann constant). To this end, one may devise a dynamics
having a temperature Ttarget as a dynamical parameter that is designed to relax an initial configuration
of the system to canonical equilibrium at temperature Ttarget, and then make the choice Ttarget = T.
A common practice is to employ a Langevin dynamics, i.e., a noisy, dissipative dynamics that mimics the
interaction of the system with an external heat bath at temperature Ttarget in terms of a deterministic
frictional force and an uncorrelated, Gaussian-distributed random force added to the equation of
motion [1]. In this approach, one then tunes suitably the strength of the random force such that the
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Langevin dynamics relaxes at long times to canonical equilibrium at temperature Ttarget. The presence
of dissipation renders the dynamics to be irreversible in time. A complementary approach to such
a noisy, dissipative dynamics was pioneered by Nosé and Hoover, in which the dynamics is fully
deterministic and time-reversible, while achieving the same objective of relaxing the system to canonical
equilibrium at the desired temperature Ttarget [2,3]; for a review, see [4,5]. The time evolution under
the condition of relaxation at long times to canonical equilibrium at a given temperature is said to
represent isokinetic ensemble dynamics when taking place according to the Nosé–Hoover equation
of motion and to represent Langevin/canonical ensemble dynamics when taking place following the
Langevin equation of motion.

To illustrate in detail the distinguishing feature of the Nosé–Hoover vis-à-vis Langevin dynamics,
consider an interacting N-particle system characterized by the set {qj, πj} of canonical coordinates and
conjugated momenta. The particles, which we take for simplicity to have the same mass m, interact
with one another via the two-body interaction potential Φ({qj}). In the following, we consider qj’s
and πj’s to be one-dimensional variables for reasons of simplicity. Our analysis, however, extends
straightforwardly to higher dimensions. The Hamiltonian of the system is given by

Hsystem =
N

∑
j=1

π2
j

2m
+ Φ({qj}), (1)

where the first term on the right-hand side stands for the kinetic energy of the system.
In the approach due to Langevin, the dynamical equations of the system are given by

dqj

dt
=

πj

m
,

dπj

dt
= −γ

πj

m
−

∂Φ({qj})
∂qj

+ ηj(t), (2)

where t denotes time, γ > 0 is the dissipation constant, while ηj(t) is a Gaussian, white noise satisfying

ηj(t) = 0, ηj(t)ηk(t′) = 2Dδjkδ(t− t′). (3)

Here, the overbars denote averaging over noise realizations, while D > 0 characterizes the
strength of the noise. The dynamics (2) are evidently not time-reversal invariant. Choosing D = γTtarget

ensures that the dynamics (2) relaxes at long times to the canonical distribution at Ttarget given by [1]

P({qj, πj}) ∝ exp(−Hsystem/Ttarget), (4)

in which the kinetic energy density of the system fluctuates around the average value Ttarget/2.
In the approach due to Nosé and Hoover, a degree of freedom s augmenting the set {qj, πj} is

introduced, which is taken to characterize an external heat reservoir that interacts with the system
through the momenta πj’s. The Hamiltonian of the combined system is given by

H =
N

∑
j=1

π2
j

2ms2 + Φ({qj}) +
p2

s
2Q

+ (N + 1)Ttarget ln s, (5)

where Q is the mass and ps is the conjugated momentum of the additional degree of freedom.
The dynamics of the system is given by the following Hamilton equations of motion:

dqj

dt
=

πj

ms2 ,
dπj

dt
= −

∂Φ({qj})
∂qj

,

(6)

ds
dt

=
ps

Q
,

dps

dt
=

N

∑
j=1

π2
j

ms3 − (N + 1)
Ttarget

s
.
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It may be easily checked that unlike dynamics (2), dynamics (6) is invariant under time reversal. In
terms of new variables

pj ≡
πj

s
, ζ ≡ ps

Q
, (7)

and rescaled time
t̃ ≡ t

s
, (8)

one obtains from the Hamilton Equations (6) the following dynamics:

dqj

dt̃
=

pj

m
, (9)

dpj

dt̃
= −

∂Φ({qj})
∂qj

− ζ pj, (10)

ds
dt̃

= ζs, (11)

dζ

dt̃
=

1
Q

(
N

∑
j=1

p2
j

m
− (N + 1)Ttarget

)
=

1
τ2

(K(P)
K0
− 1
)

, (12)

where K(P) ≡ ∑N
j=1 p2

j /(2m) is the kinetic energy, while we have defined

K0 ≡ (N + 1)
Ttarget

2
, τ2 ≡ Q

2K0
. (13)

From Equations (9)–(12), we observe that a complete description of the time evolution of the
system is given in terms of Equations (9), (10), and (12), without any reference to Equation (11) for s,
so that, as far as the description of the system is concerned, the variable s is an irrelevant one that may
be ignored. We note in passing that a different, but closely related, Hamiltonian giving directly the
Nosé-Hoover equations of motion but without any time scaling, as in Equation (8), is discussed in [6].
We will from now on drop the tilde over time in order not to overload the notation. Let us note that, in
terms of the variables pj’s, the Hamiltonian (5) takes the form

H =
N

∑
j=1

p2
j

2m
+ Φ({qj}) +

Qζ2

2
+ (N + 1)T ln s. (14)

From Equation (12), we find that, in the stationary state (dζ/dt = 0), the kinetic energy of the
system equals (N + 1)Ttarget/2 (the extra factor of unity takes care of the presence of the additional
degree of freedom s). For large N � 1, we then have the desired result: an ensemble of initial conditions
under the evolution given by Equations (9), (10), and (12) evolves at long times to a stationary state
in which the average kinetic energy density has the value Ttarget/2. The quantity τ in Equation (12)
denotes a relaxation timescale over which the kinetic energy relaxes to its target value. Beyond the
average kinetic energy, it has been demonstrated by invoking the phase space continuity equation that
the distribution

f ∝ exp

[
−
(

N

∑
j=1

p2
j

2m
+ Φ({qj}) + Qζ2/2

)
/Ttarget

]
(15)

is a stationary state of the Nosé–Hoover dynamics [3]. It then follows that the corresponding stationary
distribution for the system variables {qj, pj} is the canonical equilibrium distribution:

P({qj, pj}) ∝ exp

[
−
(

N

∑
j=1

p2
j

2m
+ Φ({qj})

)
/Ttarget

]
, (16)
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normalized as
∫ (

∏N
j=1 dqjdpj

)
P({qj, pj}) = 1. Thus, the dynamics (9)–(12) that includes the

additional dynamical variable s nevertheless preseves the canonical equilibrium distribution of the
system. A general formalism for constructing modified Hamiltonian dynamical systems that preserve
a canonical equilibrium distribution on adding a time evolution equation for a single additional
thermostat variable is discussed in [7].

Equation (16) implies that the single-particle momentum distribution P(p), defined such that
P(p)dp gives the probability that a randomly chosen particle has its momentum between p and p + dp,
is a Gaussian distribution with mean zero and width equal to Ttarget:

P(p) =
1√

2πmTtarget
exp

(
− p2

2mTtarget

)
. (17)

Consequently, the moments 〈pn〉 ≡
∫ ∞
−∞ dp pnP(p), with n = 1, 2, 3, . . ., satisfy 〈p4〉/〈p2〉2 = 3.

In the above backdrop, the principal objective of this work is to answer the question: what is
the effect of inter-particle interactions on the relaxation properties of the Nosé–Hoover dynamics?
More specifically, considering a system embedded in a d-dimensional space, we ask: do systems with
long-range interactions, in which the inter-particle interaction decays slower than 1/rd, behave in
a similar way to short-range systems that have the inter-particle interaction decaying faster than 1/rd?
How does the timescale over which the phase space distribution relaxes to its canonical equilibrium
form behave in the two cases, and, in particular, is there a system-size dependence in the timescale for
long-range systems with respect to short-range ones? Studying these issues is particularly relevant and
timely in the wake of recent surge in interest across physics in long-range interacting (LRI) systems.

LRI systems may display a notably distinct thermodynamic behavior with respect to short-range
ones [8–12]. These systems are characterized by a two-body interaction potential V(r) that decays
asymptotically with inter-particle separation r as V(r) ∼ r−α, with 0 ≤ α ≤ d in d spatial dimensions.
The limit α → 0 corresponds to the case of mean–field interaction. Examples of LRI systems are
self-gravitating systems, plasmas, fluid dynamical systems, and some spin systems. One of the
striking dynamical features resulting from long-range interactions is the occurrence of non-equilibrium
quasi-stationary states (QSSs) during relaxation of LRI systems towards equilibrium. These states
have lifetimes that diverge with the number of particles constituting the system, so that, in the
thermodynamic limit, the system remains trapped in QSSs and does not attain equilibrium. Only for
a finite number of particles do the QSSs eventually evolve towards equilibrium. Even in equilibrium,
LRI systems may exhibit features such as ensemble inequivalence and a negative heat capacity in the
microcanonical ensemble that are unusual for short-range systems.

In this work, we address our aforementioned queries within the ambit of a model system
comprising classical XY-spins occupying the sites of a one-dimensional periodic lattice and interacting
via a long-range (specifically, a mean–field interaction in which every spin interacts with every other
and a short-range (specifically, a nearest-neighbor interaction in which every spin interacts with its
left and right neighbors) interaction. With an aim to study the equilibrium properties as well as
relaxation towards equilibrium, we simulate the Nosé–Hoover dynamics of the model by integrating
the corresponding equations of motion in time. A signature of canonical equilibrium is a single-particle
momentum distribution that is Gaussian (see Equation (17)). We find that the equilibrium properties
of our model system evolving under the Nosé–Hoover dynamics coincide with those within the
canonical ensemble. As regards relaxation towards canonical equilibrium, we observe that starting
from out-of-equilibrium initial conditions, the average kinetic energy of the system relaxes to its target
canonical-equilibrium value over a size-independent timescale. However, quite surprisingly, our results
indicate that under the same conditions and with only long-range interactions present in the system,
the momentum distribution relaxes to its Gaussian form in equilibrium over a scale that diverges with
the system size. On adding short-range interactions, the relaxation is found to occur over a timescale
that has a much weaker dependence on system size. This system-size dependence vanishes when only
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short-range interactions are present in the system. An implication of such an ultra-slow relaxation
when only long-range interactions are present in the system is that macroscopic observables other than
the average kinetic energy when estimated in the Nosé–Hoover dynamics may take an unusually long
time to relax to its canonical equilibrium value. Our work underlines the crucial role that interactions
play in deciding the equivalence between Nosé–Hoover and canonical equilibrium.

The paper is organized as follows. In Section 2, we describe the model of study. In Section 3, we
obtain the so-called caloric curve of the model within the canonical ensemble, which we eventually
invoke in later parts of the paper to decide on the equivalence of the equilibrium properties of the
Nosé–Hoover dynamics and canonical equilibrium. In Section 4, we present results from simulations
of the Nosé–Hoover dynamics of the model, and discuss the implications and relevance of the results.
The paper ends with conclusions in Section 5.

2. Model of Study

Our system of study comprises a one-dimensional periodic lattice of N sites. Each site of the
lattice is occupied by a unit-inertia rotor characterized by its angular coordinate θj ∈ [0, 2π) and the
corresponding conjugated momentum pj, with j = 1, 2, . . . , N. One may also think of the rotors as
representing classical XY-spins. Note that both of the θj’s and the pj’s are one-dimensional variables.
There exist both a long-range (specifically, a global or a mean–field) coupling and a short-range
(specifically, nearest-neighbor) coupling between the rotors. Thus, a rotor on site j interacts with
strength J/(2N) with rotors on all the other sites and with strength K with the rotor occupying the
(j− 1)-th and the (j + 1)-th site. The Hamiltonian of the system is given by [13,14]

H =
N

∑
j=1

p2
j

2
+

J
2N

N

∑
j,k=1

[
1− cos(θj − θk)

]
+ K

N

∑
j=1

[
1− cos(θj+1 − θj)

]
; θN+1 ≡ θ1, pN+1 ≡ p1. (18)

Note that, for K = 0, the Hamiltonian (18) reduces to that of the widely-studied Hamiltonian
mean–field (HMF) model [15], which is regarded as a paradigmatic model to study statics and
dynamics of LRI systems [10]. On the other hand, for J = 0, the model (18) reduces to a short-ranged
XY model in one dimension.

In the following, we take both the mean–field coupling J and the short-range coupling K to
be positive, thereby modeling ferromagnetic global and nearest-neighbor couplings. Consequently,
both the long-range and the short-range coupling between the rotors favor an ordered state in which
all the rotor angles are equal, thereby minimizing the potential energy contribution to the total
energy. Such a tendency is, however, opposed by the kinetic energy contribution whose average
in equilibrium may be characterized by a temperature by invoking the Theorem of Equipartition.
Noting that, for a given N, the total potential energy is bounded from above while the total kinetic
energy is not, one expects the system to show in equilibrium an ordered/magnetized phase at
low energies/temperatures and a disordered/unmagnetized phase at high energies/temperatures.
This scenario holds even with K = 0.

The amount of order in the system is characterized by the XY magnetization

m ≡ 1
N

(
N

∑
j=1

cos θj,
N

∑
j=1

sin θj

)
, (19)

which is a vector whose length m has the thermodynamic value in equilibrium denoted by meq that is
nonzero in the ordered phase and zero in the disordered phase. For K = 0, the corresponding HMF
model is known to display a second-order phase transition between a high-temperature unmagnetized
phase and a low-temperature magnetized phase at the critical temperature Tc = J/2, with the
corresponding critical energy density being uc = 3J/4 [10]. On the other hand, invoking the Landau’s
argument for the absence of any phase transition at a finite temperature in a one-dimensional model
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with only short-range interactions, one may conclude for J = 0 that the corresponding short-ranged
XY model does not display any phase transitions, though it has been shown to have interesting
dynamical effects [16]. For general J 6= 0, K 6= 0, when both long-range and short-range interactions
are present, the model displays a second-order phase transition between an ordered and a disordered
phase [13,14]. Note that all the mentioned phase transitions are continuous. Although ensemble
equivalence is not guaranteed for LRI systems, it has been argued that inequivalence arises when one
has a first-order phase transition in the canonical ensemble, and not when one has a second-order
transition [17]. Consequently, we may regard the phase diagram of model (18) to be equivalent within
microcanonical and canonical ensembles. For an explicit demonstration of ensemble equivalence for
the model (18), one may refer to [14].

In the following section, we will obtain the caloric curve of model (18) that relates the equilibrium
internal energy with the equilibrium temperature of the system.

3. The Caloric Curve within the Canonical Ensemble

As mentioned in the preceding section, model (18) is known to have equivalent microcanonical
and canonical ensemble descriptions in equilibrium. Consequently, in obtaining the caloric curve of
the model, which will be invoked to decide the equivalence between the equilibrium properties of
the Nosé–Hoover dynamics and canonical equilibrium, it will suffice to restrict our analysis to the
canonical ensemble description of the model.

The Langevin/canonical ensemble dynamics (2) for the model (18) comprises the set of
time-evolution equations

dθj

dt
= pj,

(20)
dpj

dt
= −γpj +

J
N

N

∑
k=1

sin(θk − θj) + K
[
sin(θj+1 − θj) + sin(θj−1 − θj)

]
+ ηj(t),

with the properties of the noise ηj(t) given by Equation (3) with D = γT. Within the microcanonical
ensemble description of the system, the time evolution of the variables {θj, pj} is given by Hamilton
equations obtained from Equation (20) by setting γ to zero. The Nosé–Hoover dynamics of the
variables {θj, pj} is obtained from Equations (9) and (10) as

dθj

dt
= pj,

(21)
dpj

dt
=

J
N

N

∑
k=1

sin(θk − θj) + K
[
sin(θj+1 − θj) + sin(θj−1 − θj)

]
− ζ pj,

where the time evolution of the variable ζ is given by Equation (12).
In order to derive the desired caloric curve of model (18) within the canonical ensemble,

we start with the canonical partition function of the system at temperature T given by
ZN ≡

∫ (
∏N

j=1 dθjdpj

)
exp[−βH({θj, pj})], with β ≡ 1/T. Using Equation (18), we get

ZN =
(

2π
β

)N/2
e−βJN/2−βKN ∫ (∏N

j=1 dθj

)
exp

[
βJ
2N

{(
∑N

j=1 cos θj

)2
+
(

∑N
j=1 sin θj

)2
}
+ βK ∑N

j=1 cos(θj+1 − θj)
]
. (22)
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Using the Hubbard–Stratonovich transformation exp(ax2) =

1/(
√

4πa)
∫ ∞
−∞ dz exp

(
− z2

4a + zx
)

, a > 0 in Equation (22), we obtain

ZN =

(
2π

β

)N/2
e−βJN/2−βKN NβJ

2π

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ ( N

∏
j=1

dθj

)
exp

[
− NβJ

2
(z2

1 + z2
2)

+βJz1

N

∑
j=1

cos θj + βJz2

N

∑
j=1

sin θj + βK
N

∑
j=1

cos(θj+1 − θj)
]
. (23)

Writing z1 = z cos φ, z2 = z sin φ, with real z = (z2
1 + z2

2)
1/2 > 0 and φ ∈ [0, 2π) given by

φ = tan−1(z2/z1), we get

ZN =

(
2π

β

)N/2
e−βJN/2−βKN NβJ

2π

∫ 2π

0
dφ
∫ ∞

0
dz z

∫ ( N

∏
j=1

dθj

)
exp

[
− NβJ

2
z2

+βJz
N

∑
j=1

cos(θj − φ) + βK
N

∑
j=1

cos(θj+1 − θj)
]
. (24)

In view of the invariance of the Hamiltonian (18) under rotation by an equal amount of all the
θj’s, we get [18]

ZN =
(

2π
β

)N/2
e−βJN/2−βKN NβJ

∫ ∞
0 dz z

∫ (
∏N

j=1 dθj

)
exp

[
− NβJ

2 z2 + βJz ∑N
j=1 cos θj + βK ∑N

j=1 cos(θj+1 − θj)
]
. (25)

In order to proceed further, we consider separately the cases K = 0 and K 6= 0 in the following.

3.1. K = 0

For K = 0, Equation (25) yields

ZN =

(
2π

β

)N/2
NβJ

∫ ∞

0
dz z exp

[
−N

{
βJ
2
(1 + z2)− ln

(∫ 2π

0
dθ exp(βJz cos θ)

)}]
. (26)

In the thermodynamic limit, ZN may be approximated by invoking the saddle-point method to
perform the integration in z on the right-hand side; one gets

ZN =

(
2π

β

)N/2
NβJzs exp

[
−N

{
βJ
2
(1 + z2

s )− ln
(∫ 2π

0
dθ exp(βJzs cos θ)

)}]
, (27)

where the saddle-point value zs solves the equation

zs =
I1(βJzs)

I0(βJzs)
, (28)

with In(x) = (1/(2π))
∫ 2π

0 dθ exp(x cos θ) cos(nθ) being the modified Bessel function of first kind
and of order n. It may be shown by following the arguments given in [18] that zs is nothing but the
stationary magnetization meq. Equation (28) has a trivial solution meq = 0 valid at all temperatures,
while a non-zero solution exists for β ≥ βc = 2/J [10]. In fact, the system shows a continuous transition,
from a magnetized phase (meq 6= 0) at low temperatures to an unmagnetized phase (meq = 0) at high
temperatures at the critical temperature Tc = J/2 [10].

In the thermodynamic limit, the internal energy density of the system
u = − limN→∞(1/N)d ln ZN/dβ is obtained by using Equations (27) and (28) as

u =
1

2β
+

J
2

(
1− (meq)2

)
; meq =

I1(βJmeq)

I0(βJmeq)
, (29)
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yielding the critical energy density

uc =
3J
4

. (30)

Equation (29) gives the caloric curve of the model (18) at canonical equilibrium for J 6= 0, K = 0.

3.2. K 6= 0

For K 6= 0, Equation (25) gives

ZN =

(
2π

β

)N/2
NβJ

∫ ∞

0
dz z exp

[
−NβJ

2
(1 + z2)− βKN

]
ZN , (31)

ZN ≡
∫ ( N

∏
j=1

dθj

)
exp

[
βJz

N

∑
j=1

cos θj + βK
N

∑
j=1

cos(θj+1 − θj)

]
, (32)

where we may identify the factor ZN with the canonical partition function of a 1d periodic chain of N
interacting angle-only rotors, where a rotor on each site interacts with strength K with the rotor on the
left nearest-neighbor and the right nearest-neighbor site, and also with an external field of strength Jz
along the x direction.

One may evaluate ZN by rewriting it in terms of a transfer operator T(θ, θ′) as

ZN =
∫ ( N

∏
j=1

dθj

)
T (θ1, θ2)T (θ2, θ3) . . . T (θN , θ1), (33)

T (θj, θj+1) ≡ exp
[

βJz
{

cos θj + cos θj+1

2

}
+ βK cos(θj+1 − θj)

]
. (34)

Let {λm} denote the set of eigenvalues of the transfer operator T (θ, θ′). In other words, denoting
the eigenfunctions of T (θ, θ′) as fm(θ), we have

∫
dθ′ T (θ, θ′) fm(θ′) = λm fm(θ). In terms of {λm},

we obtain
ZN = ∑

m
[λm (βJz, βK)]N . (35)

For large N, the sum in Equation (35) is dominated by the largest eigenvalue λmax =

λmax (βJz, βK), yielding
ZN = λN

max. (36)

Substituting Equation (36) in Equation (31), and approximating the integral on the right-hand
side of the latter by the saddle-point method, one gets

ZN =

(
2π

β

)N/2
NβJzs exp

[
−N

{
βJ
2
(1 + z2

s ) + βK− ln λmax (βJzs, βK)
}]

, (37)

where zs solves the saddle-point equation zs ≡ supz φ̃(β, z), with φ̃(β, z) being the free-energy function:

− φ̃(β, z) ≡ −1
2

ln β− βJ
2
(1 + z2)− βK + ln λmax (βJz, βK) . (38)

The saddle-point equation may thus be written as

zs =
∂ ln λmax (βJz, βK)

∂(βJz)

∣∣∣
z=zs

. (39)
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Equation (37) gives the dimensionless free energy per rotor, φ(β) ≡ − limN→∞(ln ZN)/N,
as −φ(β) = supz

[
−φ̃(β, z)

]
, where we have suppressed the dependence of φ(β) on K. We thus have

− φ(β) ≡ −1
2

ln β− βJ
2
(1 + z2

s )− βK + ln λmax (βJzs, βK) . (40)

Note that the free energy at a given temperature has a definite value given by Equation (40),
and is obtained by substituting the saddle-point solution zs into the expression for the free-energy
function φ̃(β, z).

In the thermodynamic limit, the internal energy density of the system
u = − limN→∞(1/N)d ln ZN/dβ is obtained as

u =
1

2β
+

J
2
(1 + z2

s ) + βJzs
dzs

dβ
+ K− d ln λmax(βJz, βK)

dβ

∣∣∣
z=zs

. (41)

Using Equation (39), and the fact that, as for K = 0, the quantity zs is nothing but the stationary
magnetization meq, we get

u =
1

2β
+

J
2

(
1− (meq)2

)
+ βJmeq dmeq

dβ
+ K− K

∂ ln λmax(βJmeq, βK)
∂(βK)

, (42)

with meq satisfying

meq =
∂ ln λmax (βJz, βK)

∂(βJz)

∣∣∣
z=meq

. (43)

To proceed, we need to find λmax(βJz, βK). We consider separately the cases J = 0 and J 6= 0.

3.2.1. J = 0

In this case, it may be easily checked that the eigenvalues of T are given by 2π Im(βK) with the
corresponding eigenvector given by plane waves exp(iqθ)/

√
2π [14]. Using I0(x) > I1(x) > I2(x) . . .,

we conclude that λmax(0, βK) = I0(βK). Equation (43) then yields meq = 0, while Equation (42) gives

u =
1

2β
+ K

(
1− I1(βK)

I0(βK)

)
, (44)

where we have used the result dI0(x)/dx = I1(x). Equation (44) is the desired caloric curve of the
model (18) within the canonical ensemble for J = 0, K 6= 0.

3.2.2. J 6= 0

In this case, not knowing the analytic forms of the eigenvalues of T , we resort to a numerical
scheme to estimate the largest eigenvalue λmax(βJz, βK). To this end, we discretize the angles over

the interval [0, 2π) as θ
(aj)

j = aj∆θ, with aj = 1, 2, . . . , P and ∆θ = 2π/P for any large positive integer
P (we choose P = 30). The operator T (θ, θ′) then takes the form of a matrix of size P× P, whose
largest eigenvalue may be estimated numerically by employing the so-called power method [19] (A
FORTRAN90 library that implements the power method and is distributed under the GNU Lesser
General Public License (GPL) is available at [20]). Noting that T (θ, θ′) is a finite-dimensional real
square matrix with positive entries, the application of the Perron–Frobenius theorem implies the
existence of its largest eigenvalue that is real and non-degenerate. At given values of T, K, J, z, once
λmax(βJz, βK) has been estimated numerically, we compute the free-energy function φ̃(β, z) as a
function of z by using Equation (38). We then find numerically the value of z at which the computed
free-energy function attains its minimum value. As discussed above, this minimizer is the equilibrium
magnetization of the system at the given values of T, K, J. In order to obtain the caloric curve, one has
to estimate numerically the derivative ∂ ln λmax(βJmeq, βK)/∂(βK), and then use Equation (42).
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4. Results and Discussion

In this section, we discuss the results on equilibrium as well as relaxation properties of model (18)
obtained by performing numerical integration of the Nosé–Hoover equations of motion (21). The
numerical integration involved using a fourth-order Runge–Kutta method with timestep dt = 0.01.

4.1. Results in Equilibrium

Here, we discuss the Nosé–Hoover equilibrium properties for model (18). The initial condition
corresponds to the θj’s independently and uniformly distributed in [0, 2π) and the pj’s independently
sampled from a Gaussian distribution with zero mean and width equal to 0.5. The initial value of
the parameter ζ is 2.0, while we have taken τ = 0.01. In Figure 1, we consider the case when only
long-range interactions are present in system (J = 1.0, K = 0.0). Figure 1a shows for Ttarget = 2.5 that
the average kinetic energy relaxes at long times to the value Ttarget/2, as desired. Figure 1b shows for
the same value of Ttarget that the average internal energy has the same value in the stationary state as
the one in canonical equilibrium given by Equation (29); Figure 1c shows the single-particle momentum
distribution P(p) in the stationary state. We observe that P(p) has the correct canonical-equilibrium
form of a Gaussian distribution, which further corroborates the property of the Nosé–Hoover dynamics
that the canonical distribution (16) is a stationary state of the dynamics. Figure 1d shows for a range of
values of the temperature T = Ttarget that the caloric curve obtained within the Nosé–Hoover dynamics
in equilibrium coincides with that within the canonical ensemble given by Equation (29). Figure 1a–c
refer to the system size N = 128, while Figure 1d refers to two system sizes, namely, N = 128 and
N = 512. The aforementioned observed properties of the Nosé–Hoover dynamics have been checked
to hold for (i) the case when only short-range interactions are present in the system (see Figure 2 that
corresponds to J = 0.0, K = 1.0), in which case the caloric curve within the canonical ensemble is given
by Equation (44), and (ii) when both long- and short-range interactions are present in the system (data
not shown; see, however, Figure 3c).
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Figure 1. Comparison of Nosé–Hoover and canonical equilibrium results for model (18) with J =

0.0, K = 1.0 (that is, with only short-range interactions). (a) variation of the average kinetic energy
density with time. The black line denotes the value Ttarget/2; (b) variation of the internal energy density
with time. The black line denotes the average internal energy density within the canonical ensemble
given by Equation (44); (c) stationary single-particle momentum distribution obtained from momentum
values measured at time t = 5000. The black line denotes a Gaussian distribution with zero mean and
width equal to Ttarget; (d) caloric curve for two system sizes, N = 128 and N = 512. The black line shows
the caloric curve within the canonical ensemble given by Equation (44). The data for the Nosé–Hoover
dynamics are generated by integrating the equations of motion (21) using a fourth-order Runge–Kutta
method with timestep equal to 0.01. The initial condition corresponds to the θj’s independently and
uniformly distributed in [0, 2π) and the pj’s independently sampled from a Gaussian distribution
with zero mean and width equal to 0.5. The initial value of the parameter ζ is 2, while we have taken
τ = 0.01.
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Figure 2. Comparison of Nosé–Hoover and canonical equilibrium results for the model (18) with
J = 1.0, K = 0.0 (that is, with only long-range interactions); (a) variation of the average kinetic energy
density with time. The black line denotes the value Ttarget/2; (b) variation of the internal energy density
with time. The black line denotes the average internal energy density within the canonical ensemble
given by Equation (29); (c) stationary single-particle momentum distribution obtained from momentum
values measured at time t = 5000. The black line denotes a Gaussian distribution with zero mean and
width equal to Ttarget; (d) caloric curve for two system sizes, N = 128 and N = 512. The black line shows
the caloric curve within the canonical ensemble given by Equation (29). The data for the Nosé–Hoover
dynamics are generated by integrating the equations of motion (21) using a fourth-order Runge–Kutta
method with timestep equal to 0.01. The initial condition corresponds to the θj’s independently and
uniformly distributed in [0, 2π) and the pj’s independently sampled from a Gaussian distribution
with zero mean and width equal to 0.5. The initial value of the parameter ζ is 2, while we have taken
τ = 0.01.
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Figure 3. Relaxation properties of the Nosé–Hoover dynamics for model (18) with J = 1.0, K = 0.1. (a)
variation of the average kinetic energy density with time, for four different system sizes. The black line
denotes the value Ttarget/2; (b) variation of the ratio 〈p4〉/〈p2〉2 with time, for four different system
sizes. The black line denotes the value 3 corresponding to a Gaussian distribution; (c) variation of the
magnetization with time, again for four different system sizes. The black line denotes the canonical
equilibriu m value obtained by the method described in Section 3.2.2; (d) single-particle momentum
distribution as a function of time, for system size N = 512. The black line denotes a Gaussian
distribution with zero mean and width equal to Ttarget, Equation (17). The data for the Nosé–Hoover
dynamics are generated by integrating the equations of motion (21) using a fourth-order Runge–Kutta
method with timestep equal to 0.01. The initial condition corresponds to the θj’s independently and
uniformly distributed in [0, 2π) and the pj’s independently and uniformly distributed in [−

√
1.5,
√

1.5].
The initial value of the parameter ζ is 2, while we have taken τ = 1.0.

4.2. Results out of Equilibrium

Here, we discuss the relaxation properties of the Nosé–Hoover dynamics for model (18). The initial
condition corresponds to the so-called water-bag distribution that has both θ and p uniformly
distributed over given intervals [10]. We consider θj’s to be independently and uniformly distributed
in [0, 2π) and the pj’s to be independently and uniformly distributed in [−

√
1.5,
√

1.5]. The initial
value of the parameter ζ is 2.0, while we have taken τ = 1.0.

Let us start with a discussion of the results in Figure 4 that corresponds to the case when only
long-range interactions are present in the system (18). In Figure 4a, we see that, for four different
system sizes, the average kinetic energy density relaxes at long times to the target value Ttarget/2 over
a timescale that does not depend on the system size. A Gaussian distribution for the momentum, expected
in canonical equilibrium, is characterized by a value 3 of the ratio 〈p4〉/〈p2〉2 (see Equation (17)). We
see in Figure 4b that, in contrast to Figure 4a, this ratio, however, relaxes to the canonical equilibrium
value over a time that depends on the system size, and which grows with increase of N. Figure 4c shows
that the long-time magnetization value reached by the Nosé–Hoover dynamics coincides with the
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canonical equilibrium value for all system sizes. On the basis of these results, we conclude that, with
only long-range interactions in system (18), only the second moment of the momentum distribution
relaxes to its canonical equilibrium value over a size-independent timescale, while higher moments
(and consequently, the whole of the momentum distribution) relax to their canonical equilibrium
values over a time that grows with the system size. The latter fact is demonstrated in Figure 4d that
shows for N = 512 the time evolution of the single-particle momentum distribution.
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Figure 4. Relaxation properties of the Nosé–Hoover dynamics for the model (18) with J = 1.0, K = 0.0
(that is, with only long-range interactions). (a) variation of the average kinetic energy density with
time, for four different system sizes. The black line denotes the value Ttarget/2; (b) variation of
the ratio 〈p4〉/〈p2〉2 with time, for four different system sizes. The black line denotes the value 3
corresponding to a Gaussian distribution; (c) variation of the magnetization with time, again for four
different system sizes. The black line denotes the canonical equilibrium value given by Equation (28);
(d) single-particle momentum distribution as a function of time, for system size N = 512. The black
line denotes a Gaussian distribution with zero mean and width equal to Ttarget, Equation (17). The data
for the Nosé–Hoover dynamics are generated by integrating the equations of motion (21) using
a fourth-order Runge–Kutta method with timestep equal to 0.01. The initial condition corresponds to
the θj’s independently and uniformly distributed in [0, 2π) and the pj’s independently and uniformly
distributed in [−

√
1.5,
√

1.5]. The initial value of the parameter ζ is 2, while we have taken τ = 1.0.

The feature of a size-independent timescale for the relaxation of the average kinetic energy
density to its canonical equilibrium value, observed in the case of purely long-range interactions in
model (18), also holds on adding short-range interactions to the model and when the latter are the
only interactions present in the system (see Figures 3a and 5a). Moreover, in all cases, the long-time
value of the magnetization matches with its canonical equilibrium value (see Figures 3c and 5c).
The most significant difference in the relaxation properties that is observed on adding short-range
interactions may be inferred by comparing Figures 3b and 4b: the very strong size-dependence
observed in the relaxation of the ratio 〈p4〉/〈p2〉2 to its canonical equilibrium value gets substantially



Entropy 2017, 19, 544 15 of 17

weakened on adding short-range interactions with coupling strength as low as K = 0.1 compared
to the value of the long-range coupling constant J = 1.0. Similar inference may be drawn
from a comparison of Figures 3d and 4d. This observation has an immediate and an important
implication: additional short-range interactions speed up the relaxation of the momentum distribution
towards canonical equilibrium. The aforementioned system-size dependence vanishes on turning off
long-range interactions, so that the only remnant interactions in the system are the short-range ones
(see Figure 5b,d).
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Figure 5. Relaxation properties of the Nosé–Hoover dynamics for the model (18) with J = 0.0, K = 1.0
(that is, with only short-range interactions). (a) variation of the average kinetic energy density with
time, for four different system sizes. The black line denotes the value Ttarget/2; (b) variation of
the ratio 〈p4〉/〈p2〉2 with time, for four different system sizes. The black line denotes the value 3
corresponding to a Gaussian distribution; (c) variation of the magnetization with time, again for four
different system sizes. The equilibrium magnetization goes to zero with increase of N as meq ∼ 1/

√
N;

(d) single-particle momentum distribution as a function of time, for system size N = 512. The black
line denotes a Gaussian distribution with zero mean and width equal to Ttarget, Equation (17). The data
for the Nosé–Hoover dynamics are generated by integrating the equations of motion (21) using
a fourth-order Runge–Kutta method with timestep equal to 0.01. The initial condition corresponds to
the θj’s independently and uniformly distributed in [0, 2π) and the pj’s independently and uniformly
distributed in [−

√
1.5,
√

1.5]. The initial value of the parameter ζ is 2, while we have taken τ = 1.0.

5. Conclusions

In this paper, we investigated the relaxation properties of the Nosé–Hoover dynamics of
many-body interacting Hamiltonian systems, with an emphasis on the effect of inter-particle
interactions. The dynamics aim to generate the canonical equilibrium distribution of a system
at the desired temperature by employing time-reversible, deterministic dynamics. To pursue our
study, we considered a representative model comprising N classical XY-spins occupying the sites
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of a one-dimensional periodic lattice. The spins interact with one another via both a long-range
interaction, modelled as a mean–field interaction in which every spin interacts with every other,
and a short-range one, modelled as a nearest-neighbor interaction in which every spin interacts with
its left and right neighboring spins. We studied the Nosé–Hoover dynamics of the model through
N-body integration of the corresponding equations of motion. Canonical equilibrium is characterized
by a momentum distribution that is Gaussian. We found that the equilibrium properties of our model
system evolving according to Nosé–Hoover dynamics are in excellent agreement with exact analytic
results for the equilibrium properties derived within the canonical ensemble. Moreover, while starting
from out-of-equilibrium initial conditions, the average kinetic energy of the system relaxes to its target
value over a size-independent timescale. However, quite unexpectedly, we found that under the same
conditions and with only long-range interactions present in the system, the momentum distribution
relaxes to its Gaussian form in equilibrium over a scale that grows with N. The N-dependence gets
weaker on adding short-range interactions, and vanishes when the latter are the only inter-particle
interactions present in the system.

Viewed from the perspective of LRI systems, the slow relaxation observed within the
Nosé–Hoover dynamics allows for drawing an analogy with a similar slow relaxation observed within
the microcanonical dynamics of isolated LRI systems, a phenomenon that leads to the occurrence of
nonequilibrium quasistationary states (QSSs) that have lifetimes diverging with the system size [10,21].
Within a kinetic theory approach, the QSSs are understood as stable, stationary solutions of the so-called
Vlasov equation that governs the time evolution of the single-particle phase space distribution. The
Vlasov equation is obtained as the first equation of the Bogoliubov–Born–Green–Yvon–Kirkwood
(BBGKY) hierarchy by neglecting the correlation between particle trajectories, with corrections that
decrease with an increase of N. For large but finite N, the eventual relaxation of QSSs towards
equilibrium is understood as arising due to these finite-N corrections, the so-called collisional terms,
to the Vlasov equation. In models in which the momentum variables are one-dimensional, it has been
shown by analyzing the behavior of the dominant collisional term that Vlasov-stable phase-space
distributions that are homogeneous in the coordinates evolve on times much larger than N, thereby
leading for the distributions to characterize QSSs that have lifetimes diverging with N [8,11,22]. In
light of the foregoing discussions, it is evidently pertinent and of immediate interest to invoke a kinetic
theory approach and investigate in the context of the Nosé–Hoover dynamics of long-range systems
whether additional short-range interactions play the role of collisional dynamics that speed up the
relaxation of the system towards canonical equilibrium. Work in this direction is in progress and will
be reported elsewhere.

The agreement reported in this paper in the value of the average kinetic energy computed in
canonical equilibrium and within the Nosé–Hoover dynamics is reminiscent of a similar agreement
in the large-system limit between ensemble and time averages predicted by Khinchin for the
so-called sum-functions, that is, functions such as the kinetic energy that are sums of single-particle
contributions [23]. The result was obtained for rarefied gases, which was later observed to also hold
for systems with short-range interactions [24,25]. Our work hints at the validity of such a result even
for long-range systems, as is evident from the agreement in the value of the average kinetic energy
computed within the Nosé–Hoover dynamics and in canonical equilibrium (see Figure 4a). This point
warrants a more detailed investigation that will be left for future studies.
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