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Abstract: It is demonstrated that the magic three-qubit Veldkamp line occurs naturally within the
Veldkamp space of a combinatorial Grassmannian of type G2(7), V(G2(7)). The lines of the ambient
symplectic polar space are those lines of V(G2(7)) whose cores feature an odd number of points of
G2(7). After introducing the basic properties of three different types of points and seven distinct types
of lines of V(G2(7)), we explicitly show the combinatorial Grassmannian composition of the magic
Veldkamp line; we first give representatives of points and lines of its core generalized quadrangle
GQ(2, 2), and then additional points and lines of a specific elliptic quadric Q−(5, 2), a hyperbolic
quadric Q+(5, 2), and a quadratic cone Q̂(4, 2) that are centered on the GQ(2, 2). In particular, each
point of Q+(5, 2) is represented by a Pasch configuration and its complementary line, the (Schläfli)
double-six of points in Q−(5, 2) comprise six Cayley–Salmon configurations and six Desargues
configurations with their complementary points, and the remaining Cayley–Salmon configuration
stands for the vertex of Q̂(4, 2).
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1. Introduction

One of the most startling results of the finite-geometric approach to the field of quantum
information and the so-called black-hole/qubit correspondence is undoubtedly the recent
discovery [1,2] of the existence of a magic Veldkamp line associated with the five-dimensional binary
symplectic polar spaceW(5, 2) ( the finite-geometrical concepts, symbols, and notation are explained
in the next section) underlying the geometry of the three-qubit Pauli group. There are as many as five
different types of Veldkamp lines inW(5, 2) [3] (see also [4] for a detailed discussion of the Veldkamp
space of W(3, 2)). The one we are interested in features an elliptic quadric, a hyperbolic quadric,
and a quadratic cone over a parabolic quadric Q(4, 2), the three objects having the latter quadric in
common and no other pairwise intersection. The three basic constituents of this line (also illustrated
graphically in Figure 1) host a number of extensions of generalized quadrangles, with lines of size
three isomorphic to affine polar spaces of rank three and order two, each having distinguished physical
interpretation and in their totality offering a remarkable unifying framework for form theories of
gravity and black hole entropy. The main reason why this particular Veldkamp line is referred to as
“magic” is the fact that it features a remarkable 20-point extension of the generalized quadrangle of
type GQ(2, 1) that hosts 12 particularly interwoven copies of a so-called magic Mermin pentagram;
i. e., of a specific set of ten three-qubit observables arranged in quadruples of pairwise commuting
ones into five edges of a pentagram that provides one of the simplest (three-qubit) observable proofs
of quantum contextuality [5]. Moreover, even a GQ(2, 1) itself, when viewed as embedded into
W(3, 2) and with a two-qubit labeling of its points inherited from the latter polar space, furnishes an
analogous contextuality proof, usually referred to as a magic Mermin square [5]. The purpose of this
paper is to show that this magic line also has a remarkable representation in the Veldkamp space of a
combinatorial Grassmannian of type G2(7).
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Figure 1. A sketch of the structure of the magic three-qubit Veldkamp line comprising an elliptic
quadric (Q−(5, 2) ∼= GQ(2, 4); represented by a blue rhombus), a hyperbolic quadric (Q+(5, 2); green
rhombus), and a quadratic cone (Q̂(4, 2); red rhombus), the three objects having a Q(4, 2) ∼= GQ(2, 2) in
common (illustrated by a black “doily” in the middle). The numbers inside the triangles indicate the
number of points in the complement of GQ(2, 2) of the geometrical object in question.

2. Relevant Finite-Geometrical Background

To this end, we first give an overview of relevant finite geometry. We start with a finite point–line
incidence structure C = (P ,L, I) where P and L are, respectively, finite sets of points and lines and
where incidence I ⊆ P ×L is a binary relation indicating which point–line pairs are incident (e. g., [6]).
Here, we shall only be concerned with specific point–line incidence structures called configurations [7].
A (vr, bk)-configuration is a C where: (1) v = |P| and b = |L|; (2) every line has k points and every
point is on r lines; and 3) two distinct lines intersect in at most one point and every two distinct
points are joined by at most one line; a configuration where v = b and r = k is called symmetric
(or balanced), and usually denoted as a (vr)-configuration. A (vr, bk)-configuration with v = (r+k−1

r )

and b = (r+k−1
k ) is called a binomial configuration. Next, a geometric hyperplane of C = (P ,L, I)

is a proper subset of P such that a line from C either lies fully in the subset, or shares only one
point with it. If C possesses geometric hyperplanes, then one can define the Veldkamp space of C,
V(C), as follows [8]: (i) a point of V(C) is a geometric hyperplane of C; and (ii) a line of V(C) is
the collection H′H′′ of all geometric hyperplanes H of C such that H′ ∩ H′′ = H′ ∩ H = H′′ ∩ H or
H = H′, H′′, where H′ and H′′ are distinct geometric hyperplanes. The set H′ ∩ H′′ is sometimes
called the core. If each line of C has three points, a line of V(C) is also of size three and of the form
{H′, H′′, H′∆H′′}, where the symbol ∆ stands for the symmetric difference of the two geometric
hyperplanes and an overbar denotes the complement of the object indicated. Our central concept
is that of a combinatorial Grassmannian (e. g., [9,10]) Gk(|X|), where k is a positive integer and X is
a finite set, which is a point–line incidence structure whose points are k-element subsets of X and
whose lines are (k + 1)-element subsets of X, incidence being inclusion. It is known [9] that if |X| = N
and k = 2, G2(N) is a binomial

(
(N

2 )N−2, (N
3 )3

)
-configuration; in particular, G2(3) is a single line,

G2(4) is the Pasch (62, 43)-configuration, G2(5) is the Desargues (103)-configuration, and G2(6) is the
Cayley–Salmon (154, 203)-configuration [11].

A (finite-dimensional) classical polar space (see, for example, [12,13]) describes the geometry of a
d-dimensional vector space over the Galois field GF(q), V(d, q), carrying a non-degenerate reflexive
sesquilinear form σ(x, y). The polar space is called symplectic, and is usually denoted asW(d− 1, q),
if this form is bilinear and alternating; i.e., if σ(x, x) = 0 for all x ∈ V(d, q). Such a space exists
only if d = 2N, where N ≥ 2 is called its rank. A subspace of V(d, q) is called totally isotropic
if σ vanishes identically on it. W(2N − 1, q) can then be regarded as the space of totally isotropic
subspaces of the ambient space PG(2N − 1, q), the ordinary (2N − 1)-dimensional projective space
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over GF(q), with respect to a symplectic form (also known as a null polarity). A quadric in PG(d, q),
d ≥ 1, is the set of points whose coordinates satisfy an equation of the form ∑d+1

i,j=1 aijxixj = 0, where
at least one aij 6= 0. Up to transformations of coordinates, there is one or two distinct kinds of
non-singular quadrics in PG(d, q) according as d is even or odd, namely [12]: Q(2N, q), the parabolic
quadric formed by all points of PG(2N, q) satisfying the standard equation x1x2 + · · ·+ x2N−1x2N +

x2
2N+1 = 0; Q−(2N − 1, q), the elliptic quadric formed by all points of PG(2N − 1, q) satisfying the

standard equation f (x1, x2) + x3x4 + · · · + x2N−1x2N = 0, where f is irreducible over GF(q); and
Q+(2N − 1, q), the hyperbolic quadric formed by all points of PG(2N − 1, q) satisfying the standard
equation x1x2 + x3x4 + · · ·+ x2N−1x2N = 0, where N ≥ 1. The number of points lying on quadrics
is as follows [12]: |Q(2N, q)|p = (q2N − 1)/(q− 1), |Q−(2N − 1, q)|p = (qN−1 − 1)(qN + 1)/(q− 1),
|Q+(2N − 1, q)|p = (qN−1 + 1)(qN − 1)/(q − 1). Given the hyperbolic quadric Q+(2N − 1, q) of
PG(2N − 1, q), N ≥ 2, a set S of points such that each line joining two distinct points of S has no
point in common with Q+(2N − 1, q) is called an exterior set of the quadric. It is known that |S| ≤
(qN − 1)/(q− 1); if |S| = (qN − 1)/(q− 1), then S is called a maximal exterior set. Interestingly [14],
Q+(5, 2) has, up to isomorphism, a unique such set — also known, after its discoverer, as a Conwell
hetpad [15].

Finally, one has to introduce a finite generalized quadrangle of order (s, t), usually denoted GQ(s, t),
which is a C satisfying the following axioms [16]: (i) each point is incident with 1 + t lines (t ≥ 1) and
two distinct points are incident with at most one line; (ii) each line is incident with 1 + s points (s ≥ 1)
and two distinct lines are incident with at most one point; and (iii) if x is a point and L is a line not
incident with x, then there exists a unique line through x that is incident with L; from these axioms,
it readily follows that |P| = (s + 1)(st + 1) and |L| = (t + 1)(st + 1). In what follows, we shall only
be concerned with its two particular types: GQ(2, 2) ∼= Q(4, 2) ∼=W(3, 2) and GQ(2, 4) ∼= Q−(5, 2).

3. Veldkamp Space of G2(7)

The Veldkamp space of G2(7), V(G2(7)) is isomorphic to PG(5, 2). Its detailed computer-aided
analysis was carried out in [11], from which we highlight its basic properties. Let us take X =

{1, 2, 3, 4, 5, 6, 7} and assume that a, b, c, d, e, f , and g—all different—belong to X. The 63 points of
V(G2(7)) are of three different types, as shown in Table 1, whereas its 651 lines fall into seven distinct
orbits, whose properties are given in Table 2; here, for example, abcd:e f g indicates both a particular
partition of X into two complementary sets (i. e., {a, b, c, d} and {e, f , g}) and the two combinatorial
Grassmannians defined on these sets (i. e., G2(4) and G2(3)). We briefly note that every point of
V(G2(7)) is a pair of complementary Grassmannians, and that there are no lines of type (α, γ, γ),
(β, β, γ) and (γ, γ, γ).

Table 1. The three different types of points of V(G2(7)).

Type Form Geometrical Constituents Number

α abcd:e f g Pasch configuration and its complementary line 35
β abcde: f g Desargues configuration and its complementary point 21
γ abcde f :g Cayley–Salmon configuration 7

In V(G2(7)), there exists a distinguished symplectic polar spaceW(5, 2) whose lines comprise
three orbits of lines of type (α, α, α), (α, β, β), and (α, β, γ)—that is, the orbits whose cores feature
an odd number of points of G2(7). Other prominent geometrical objects of V(G2(7)) are: a hyperbolic
quadricQ+

0 (5, 2) ∈ W(5, 2) formed by 35 points of type α and 105 lines of type (α, α, α); a combinatorial
Grassmannian G2(7) formed by 21 points of type β and 35 lines of type (β, β, β); and a Conwell heptad
with respect to the above-defined Q+

0 (5, 2) represented by seven points of type γ (see also [17]).
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Table 2. The seven different types of lines of V(G2(7)).

Type Form Core Composition Number

abcd:e f g
(α, α, α) abe f :cdg three mutually non-collinear points (ab, cd, and e f ) 105

cde f :abg

abcd:e f g
(α, α, β) abce:d f g a line (abc) and a point ( f g) 210

abc f g:de

abc:de f g
(α, α, γ) de f :abcg two disjoint lines (abc and de f ) 70

abcde f :g

abcd:e f g
(α, β, β) ab:cde f g a line (e f g) and two non-collinear points (ab and cd) 105

cd:abe f g

abcd:e f g
(α, β, γ) abcde: f g a Pasch configuration (abcd) and a point ( f g) 105

abcd f g:e

abcde: f g
(β, β, β) abcd f :eg a Pasch configuration (abcd) 35

abcdg:e f

abcde: f g
(β, γ, γ) abcde f :g a Desargues configuration (abcde) 21

abcdeg: f

4. Magic Three-Qubit Veldkamp Line in V(G2(7))

There are seven distinguished magic Veldkamp lines living inW(5, 2), one per each element of X.
A representative of them—also depicted in Figure 2—is structured as follows:

• Core GQ(2, 2): Its 15 points are represented by those α-points that share one digit in the second
set; that is, by points whose representatives are abcd:e f 7 if the common digit is “7”; its 15 lines are
those of type (α, α, α) of the following particular form

abcd:e f 7,
abe f :cd7,
cde f :ab7.

• Q−(5, 2)∼= GQ(2, 4): The 12 additional points (the double-six) are represented by six β-points of the
form abcde: f 7 and six γ-points of the form abcde7: f ; the 30 additional lines lie in the (α, β, γ)-orbit,
being of the (complementary) form

abcd:e f 7, abcd:e f 7,
abcd f :e7, abcde: f 7,
abcde7: f , abcd f 7:e.

• Q+(5, 2) ≡ Q+
0 (5, 2): The 20 additional points are represented by α-points of the form abc7:de f ;

the 90 additional lines, belonging to the (α, α, α)-orbit, read

abcd:e f 7, abcd:e f 7,
abe7:cd f , ab f 7:cde,
cde7:ab f , cd f 7:abe.

• Q̂(4, 2): The 16 additional points are represented by 15 β-points of the form abcd7:e f and a single
γ-point abcde f :7 (the vertex of the cone); the 15 additional lines are located in the (α, β, γ)-orbit,
having the form
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abcd:e f 7,
abcd7:e f ,
abcde f :7.

abcdef:7

abcd7:ef

(1+15)

U

abcde7:f

abcde:f7

(6+6)

U

abcd:ef7

(15)

abc7:def

(20)

Figure 2. A pictorial representation of the four sectors of the magic Veldkamp line by different types of
points ofW(5, 2) ∈ V(G2(7)).

5. Conclusions

We have demonstrated that the Veldkamp space V(G2(7)) provides a rather natural environment
for the magic Veldkamp line of three-qubits. Interestingly, V(G2(7)) was recently found to be also
related to finite geometry behind the 64-dimensional real Cayley–Dickson algebra [11]. Hence,
our findings seem to indicate that the nature of magic Veldkamp line may well have something
to do with this particular algebra. It has to be made clear that at this stage we cannot offer any
rigorous analytical proof(s) of our findings; in fact, all the results presented above were found
by explicit (both computer-aided and by-hand) computations. The main reason why this is so is
the fact that the theory of Veldkamp spaces in its generality is still far from being able to handle
all physically attractive/relevant geometries, especially when it comes to point–line incidence
geometries featuring geometric hyperplanes contained in other geometric hyperplanes, which may
be relevant for addressing questions related to quantum non-locality. However, this “lack of rigor”
should not be regarded as a drawback, because the main message of the paper is to address a
wider—preferably interdisciplinary—audience with a novel mathematical concept that is not only
relevant for foundational issues of quantum information theory, but can also have serious bearing
on other scientific disciplines (e. g., quantum physical chemistry and/or condensed matter physics).
Finally, a curious reader may well ask why we employ the concept of Veldkamp space when one can
just look at the universal embedding from which one can obtain all the above results, even without
much use of a computer. The reason is rather simple. When a W(5, 2) is viewed as an abstract
geometry per se, all its points and lines have, so to speak, the same footing. However, when this
polar space occurs as a subgeometry of the Veldkamp space of a certain point–line incidence structure,
this is no longer the case, as it shows a refined structure, strongly depending on properties of the
point–line incidence structure employed. In our particular case, when the point–line incidence in
question is the combinatorial Grassmannian of type G2(7), it features (see Section 3) three different
kinds of points and the same number of distinct types of lines; but, more importantly, this intrinsic
stratification of points/lines of W(5, 2) has just the right combinatorial structure to account for the
composition of our magic Veldkamp line. This can be compared to the case ofW(3, 2), where the use
of the notion of Veldkamp space [4] enabled us to reveal straightforwardly that all three distinguished
kinds of sets of two-qubit quantum observables correspond geometrically to nothing but three different
types of geometric hyperplanes (aka Veldkamp points) ofW(3, 2); or to the case of GQ(2, 4), whose
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Veldkamp points have their physical counterparts in specific truncations of certain black-hole entropy
formulas [18].
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